JPH08206787A - Continuous casting method of slab of large section and mold for casting - Google Patents

Continuous casting method of slab of large section and mold for casting

Info

Publication number
JPH08206787A
JPH08206787A JP1925695A JP1925695A JPH08206787A JP H08206787 A JPH08206787 A JP H08206787A JP 1925695 A JP1925695 A JP 1925695A JP 1925695 A JP1925695 A JP 1925695A JP H08206787 A JPH08206787 A JP H08206787A
Authority
JP
Japan
Prior art keywords
mold
slab
copper
casting
meniscus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1925695A
Other languages
Japanese (ja)
Inventor
Kenji Kawai
健治 河合
Mitsuaki Maeda
光明 前田
Takaharu Arakawa
高治 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1925695A priority Critical patent/JPH08206787A/en
Publication of JPH08206787A publication Critical patent/JPH08206787A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To cast a slab of large section by forming the heat insulation layer of the metal or ceramics with the heat conductivity lower than that of copper on an inner wall of a mold at the lower and upper part of the meniscus to prevent surface flaws due to the inclination. CONSTITUTION: The region to form the heat insulation layer 2 is from the position of 35-45mm below the meniscus level 3 to the position of >=20mm above the meniscus level 3. At the part of <35mm below the meniscus level 3, the cooling is intense and the inclination of the solidified shell becomes large while at the part of >45mm, the growth of the solidified shell becomes slow and the breakout is generated. This phenomenon is similar to the position of 20mm from the upper end part of the heat insulation layer 2. The substance composing the heat insulation layer 2 is the metal or ceramics such as Ni and Fe with the 1/3-1/10 heat conductivity of copper, i.e. The slab of large section where surface flaws are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば厚さ600〜1
000mm,幅700〜3000mmの断面サイズを有
する大断面鋳片を連続的に鋳造する方法、およびこの方
法を実施する為の鋳造用鋳型に関するものであり、特に
優れた表面品質を有する大断面鋳片を連続鋳造する為の
技術に関するものである。
BACKGROUND OF THE INVENTION The present invention has a thickness of 600 to 1, for example.
TECHNICAL FIELD The present invention relates to a method for continuously casting a large cross-section slab having a cross-sectional size of 000 mm and a width of 700 to 3000 mm, and a casting mold for carrying out this method, and particularly to a large-section slab having excellent surface quality. The present invention relates to a technique for continuously casting steel.

【0002】[0002]

【従来の技術】上記の様な大断面鋳片を鋳造するに当た
っては、以前は寸法制約等によって連続鋳造化が困難と
され、大断面鋼塊をできるだけ連続して生産するいわば
半連続鋳造法が実施されるのが一般的であり、こうした
観点から様々な技術が提案されてきた。
2. Description of the Related Art In casting a large cross-section slab as described above, continuous casting has previously been difficult due to dimensional constraints and the like. It is generally carried out, and various techniques have been proposed from such a viewpoint.

【0003】一方、鉄鋼製造業における連続鋳造操業の
普及は、歩留り向上、省エネルギーおよび省力等の面で
コスト合理化に大きく寄与している。こうしたことから
近年では、上記の様な大断面鋳片を鋳造するに当たって
も、連続鋳造法を適用することが試みられる様になって
きている。
On the other hand, the widespread use of continuous casting operations in the steel manufacturing industry has greatly contributed to cost rationalization in terms of yield improvement, energy saving and labor saving. For these reasons, in recent years, it has been attempted to apply the continuous casting method even when casting a large-section slab as described above.

【0004】こうした大断面鋳片を連続鋳造法によって
製造するに当たっては、鋳片のバルジングを防止すると
いう観点から、鋳造速度は普通鋳片を製造する場合に比
べて非常に遅く設定されているのが一般的である。例え
ば、断面サイズが700mm×1400mmの大断面鋳
片の場合には、鋳造速度は0.10m/min程度であ
る。
In the production of such a large-section slab by the continuous casting method, the casting speed is set to be much slower than in the case of producing a normal slab from the viewpoint of preventing bulging of the slab. Is common. For example, in the case of a large cross-section slab having a cross-sectional size of 700 mm × 1400 mm, the casting speed is about 0.10 m / min.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
様な低速鋳造では、溶鋼のメニスカス部と鋳型との接触
部分において凝固シェルが鋳片表面から内側に倒れ込
む、いわゆる凝固シェルの倒れ込みと呼ばれる現象が顕
在化するという問題がある。この現象が顕在化すると、
鋳片表面が凹凸状になり、この凹凸はその程度がひどく
なれば、鍛造時や圧延時に表面疵となり、製品の品質を
損なうことになる。
However, in the low-speed casting as described above, there is a phenomenon called so-called collapse of the solidified shell, in which the solidified shell collapses inward from the surface of the slab at the contact portion between the molten steel meniscus and the mold. There is a problem of manifestation. When this phenomenon becomes apparent,
If the surface of the slab becomes uneven, and if the degree of this unevenness becomes severe, it will cause surface defects during forging and rolling, and will impair the quality of the product.

【0006】ところで現在の連続鋳造法においては、鋳
片と鋳型間の潤滑性が良好であることも重要な要件であ
り、その潤滑性を達成する手段として、モールドフラッ
クスと呼ばれる潤滑剤を鋳片と鋳型間に溶融状態で存在
させつつ鋳造を行なう様にしている。ところがモールド
フラックスの溶融が不十分であると、鋳片と鋳型間の潤
滑性が良好に維持されず、両者間に固着が生じて鋳片表
面の凝固シェルが破れ、いわゆるブレークアウトが発生
するという問題がある。こうした問題を解決する技術と
して、例えば特開昭57−109952号の様な技術も
提案されている。この技術は、鋳型内溶鋼面上に形成し
たフラックス層中に電極を浸漬し、通電に伴う抵抗熱に
よってかかるフラックスを溶融させ、前記溶鋼面上に所
定厚さの溶融ファラックス層を確保するものである。こ
の技術によれば、モールドフラックスの溶融が不十分な
ことによるブレークアウトの発生を防止するという観点
からすれば、一応の効果が得られるものと考えられる。
またこの技術によれば、未溶融のフラックスに起因する
表面疵も防止できるという効果が達成されるとされてい
る。
In the present continuous casting method, good lubricity between the cast piece and the mold is also an important requirement. As a means for achieving the lubricity, a lubricant called mold flux is used for the cast piece. The casting is performed while the molten metal is present between the mold and the mold. However, if the melting of the mold flux is insufficient, the lubricity between the slab and the mold is not maintained well, and sticking occurs between the slab and the solidified shell on the surface of the slab and the so-called breakout occurs. There's a problem. As a technique for solving such a problem, a technique such as Japanese Patent Laid-Open No. 57-109952 has been proposed. In this technique, the electrode is immersed in a flux layer formed on the molten steel surface in the mold, and the flux is melted by resistance heat accompanying energization, and a molten falax layer having a predetermined thickness is secured on the molten steel surface. Is. According to this technique, from the viewpoint of preventing the occurrence of breakout due to insufficient melting of the mold flux, it is considered that a temporary effect can be obtained.
It is also said that this technique achieves the effect of preventing surface defects due to unmelted flux.

【0007】しかしながら、この技術においても、凝固
シェルの倒れ込みと呼ばれる現象に起因する表面疵の発
生防止という観点からすれば、依然として不十分であ
り、こうした不都合を解消する為の技術の確立が望まれ
ているのが実情である。
However, even this technique is still insufficient from the viewpoint of preventing the occurrence of surface defects due to a phenomenon called collapse of the solidified shell, and it is desired to establish a technique for eliminating such inconvenience. It is the actual situation.

【0008】本発明はこうした従来技術における技術的
課題を解決する為になされたものであって、その目的
は、大断面鋳片を連続的に鋳造するに際し、凝固シェル
の倒れ込みと呼ばれる現象(以下、単に「倒れ込み現
象」と呼ぶ)に起因する表面疵の発生を効果的に防止す
ることができる方法、およびこの方法を実施する為の鋳
造用鋳型を提供することにあり、しかもより簡略な構成
によってそれを達成することにある。
The present invention has been made in order to solve the technical problems in the prior art, and the purpose thereof is a phenomenon called collapse of a solidified shell when continuously casting a large-section slab (hereinafter referred to as "falling down"). , Which is simply referred to as "falling phenomenon"), and a casting mold for carrying out this method, which is capable of effectively preventing the occurrence of surface defects caused by the above, and has a simpler structure. To achieve that.

【0009】[0009]

【課題を解決するための手段】上記目的を達成した本発
明方法とは、上下が開放された銅または銅合金製鋳型に
溶鋼を供給すると共に、鋳型下部から鋳片を連続的に引
き抜いて大断面鋳片を鋳造するに当たり、鋳型内溶鋼に
おけるメニスカス部の下部35〜45mmの位置よりメ
ニスカス部の上部20mm以上の位置までの領域に亘る
鋳型内壁面部分に、銅の1/3〜1/10の熱伝導率を
有する金属またはセラミックスからなる保温層を形成し
て操業する点に要旨を有する大断面鋳片の連続鋳造方法
である。またこの上記方法において、鋳型に供給された
溶鋼の表面に、発熱性モールドフラックスを被覆して操
業することも有効である。
According to the method of the present invention which achieves the above object, molten steel is supplied to a copper or copper alloy mold whose upper and lower sides are opened, and a slab is continuously drawn from the lower part of the mold to obtain a large size. In casting a cross-section cast slab, 1/3 to 1/10 of copper in the mold inner wall surface portion extending from the lower 35-45 mm position of the meniscus portion of the molten steel in the mold to the upper 20 mm or more position of the meniscus portion. The method for continuous casting of large-section cast slabs is characterized in that a heat retaining layer made of metal or ceramics having the above-mentioned thermal conductivity is formed and operated. In this method, it is also effective to coat the surface of the molten steel supplied to the mold with a heat-generating mold flux for operation.

【0010】一方、上記目的を達成した本発明の鋳造用
鋳型とは、上下が開放された銅または銅合金製鋳型であ
って、鋳型内溶鋼におけるメニスカス部の下部35〜4
5mmの位置よりメニスカス部の上部20mm以上の位
置までの領域に亘る鋳型内壁面部分に、銅の1/3〜1
/10の熱伝導率を有する金属またはセラミックスから
なる保温層が形成された点に要旨を有するものである。
On the other hand, the casting mold of the present invention which has achieved the above-mentioned object is a mold made of copper or a copper alloy whose upper and lower sides are open, and the lower parts 35 to 4 of the meniscus portion in the molten steel in the mold.
1/3 to 1 of copper on the inner wall surface of the mold extending from the position of 5 mm to the position of 20 mm or more above the meniscus
The gist is that a heat insulating layer made of metal or ceramics having a thermal conductivity of / 10 is formed.

【0011】[0011]

【作用】まず本発明者らは、従来技術において倒れ込み
現象が発生する原因について、検討した。従来の鋳造装
置における鋳造用鋳型は、銅または銅合金製(以下、銅
で代表することがある)であるのが一般的である。しか
しながら、この様に熱伝導率が大きな物質(銅の熱伝導
率は、3.8J/cm・s・k)で構成された鋳型を用
いて大きい断面鋳片を鋳造すると、鋳造速度が遅いこと
とも相俟って、順次供給されてくる溶鋼が鋳型との接触
部分に至るまでに、先に供給された溶鋼が鋳型で冷却さ
れることによって、溶鋼のメニスカス部と鋳型との接触
部分において、凝固シェルが比較的厚肉に形成され、こ
れによって前記の様な倒れ込み現象が発生するものと考
えられた。
First, the present inventors examined the cause of the collapse phenomenon in the prior art. A casting mold in a conventional casting apparatus is generally made of copper or a copper alloy (hereinafter, may be represented by copper). However, the casting speed is slow when casting a large cross-section slab using a mold made of such a material with high thermal conductivity (copper thermal conductivity is 3.8 J / cm · s · k). Together with this, by the time the molten steel sequentially supplied reaches the contact portion with the mold, the molten steel previously supplied is cooled by the mold, so that the contact portion between the meniscus portion of the molten steel and the mold, It was considered that the solidified shell was formed to have a relatively thick wall, which caused the collapse phenomenon as described above.

【0012】上記の様な倒れ込み現象を低減するには、
溶鋼の鋳込み温度を上げることも考えられるが、鋳込み
温度を必要以上に上げることは、偏析の増大等の鋳片品
質の劣化を却って招くことになり、限度がある。そこで
本発明者らは、鋳型内溶鋼におけるメニスカス部の冷却
強さを適切に制御してやれば、前記倒れ込み現象を防止
できるのではないかと考え、その具体的な構成につい
て、様々な角度から検討した。その結果、溶鋼のメニス
カス部に相当する鋳型内壁面部分の所定の領域に、銅の
1/3〜1/10の熱伝導率を有する物質(金属または
セラミックス)からなる保温層を形成した鋳造用鋳型を
用いて操業してやれば、前記倒れ込み現象の発生を効果
的に防止しつつ、表面品質に優れた大断面鋳片が製造で
きることを見出し、本発明を完成した。
In order to reduce the above-mentioned collapse phenomenon,
Although it is conceivable to raise the casting temperature of the molten steel, raising the casting temperature more than necessary leads to deterioration of the slab quality such as increased segregation, which is limited. Therefore, the present inventors considered that the above-mentioned collapse phenomenon could be prevented by appropriately controlling the cooling strength of the meniscus portion in the molten steel in the mold, and examined its specific configuration from various angles. As a result, for casting, a heat insulating layer made of a substance (metal or ceramics) having a thermal conductivity of 1/3 to 1/10 that of copper is formed in a predetermined region of the inner wall surface of the mold corresponding to the meniscus portion of molten steel. The present invention has been completed based on the finding that it is possible to manufacture a large-section cast slab having excellent surface quality while effectively preventing the occurrence of the collapse phenomenon by operating using a mold.

【0013】図1は、本発明を実施する為の鋳造装置の
一構成例の鋳型付近を示す概略説明図であり、図中1は
矩形状の銅製鋳型、2はNiめっき層からなる保温層、
3はメニスカスレベル、4は発熱性モールドフラックス
を夫々示す。この様に、溶鋼のメニスカス部に相当する
鋳型内壁面部分の所定の領域に、銅の1/3〜1/10
の熱伝導率を有する物質(Niの熱伝導率は、0.9J
/cm・s・k)からなる保温層を形成した鋳造用鋳型
を用いることによって、メニスカス部において比較的厚
肉の凝固シェルが形成されるのが防止され、前記倒れ込
み現象の発生が効果的に防止されるのである。しかも本
発明方法は、比較的簡単な装置構成によって実施するこ
とができる。
FIG. 1 is a schematic explanatory view showing the vicinity of a mold of a constitutional example of a casting apparatus for carrying out the present invention. In the figure, 1 is a rectangular copper mold and 2 is a heat insulating layer composed of a Ni plating layer. ,
Reference numeral 3 indicates a meniscus level, and 4 indicates an exothermic mold flux. Thus, in a predetermined region of the inner wall surface of the mold corresponding to the meniscus portion of molten steel, 1/3 to 1/10 of copper
A substance having a thermal conductivity of (Ni has a thermal conductivity of 0.9 J
/ Cm · s · k) by using a casting mold in which a heat retaining layer is formed, it is possible to prevent a relatively thick solidified shell from being formed in the meniscus portion, and to effectively cause the collapse phenomenon. It is prevented. Moreover, the method of the present invention can be implemented with a relatively simple device configuration.

【0014】本発明においては、前述の如く、保温層を
構成する物質は銅の1/3〜1/10の熱伝導率を有す
るものとする必要がある。この物質の熱伝導率が、銅の
熱伝導率の1/3よりも大きいと、凝固シェルが成長が
早くなり、倒れ込み現象による鋳片表面品質の悪化が発
生する。またこの物質の熱伝導率が、銅の熱伝導率の1
/10よりも小さくなると、凝固シェルの成長が遅くな
り、上記した様なブレークアウト等の弊害が発生する。
尚保温層を構成する為の具体的な物質としては、前記し
たNiの他、Fe等の金属、またはボロンナイトライド
(BN)等のセラミックスが挙げられる。
In the present invention, as described above, the substance forming the heat retaining layer must have a thermal conductivity of 1/3 to 1/10 that of copper. If the thermal conductivity of this material is greater than 1/3 of the thermal conductivity of copper, the solidified shell will grow faster and the slab surface quality will deteriorate due to the phenomenon of collapse. Also, the thermal conductivity of this material is less than that of copper.
When it is smaller than / 10, the growth of the solidified shell is delayed, and the above-mentioned problems such as breakout occur.
Specific materials for forming the heat insulating layer include metals such as Fe and ceramics such as boron nitride (BN), in addition to Ni described above.

【0015】上記保温層を形成する領域は、前述の如
く、鋳型内溶鋼におけるメニスカス部の下部35〜45
mmの位置よりメニスカス部の上部20mm以上の位置
までの領域に亘る鋳型内壁面部分とする必要がある。保
温層の下端部をメニスカス部の下部35〜45mmの位
置としたのは、メニスカス部の下部35mm未満になる
と、鋳型の影響が大きくなって冷却が強くなり、凝固シ
ェルの倒れ込みが大きくなり、メニスカス部の下部45
mmを超えると、凝固シェルの成長が遅くなり、ブレー
クアウトが発生し易くなる。保温層の上端部をメニスカ
ス部の上部20mm以上の位置としたのは、20mm未
満であると、鋳型の影響が大きくなって冷却が強くな
り、凝固シェルの倒れ込みが大きくなるからである。尚
上記保温層を上記の領域で形成する手段については、特
に限定するものではなく、前記しためっきの他、鋳型の
所定の位置に上記物質を嵌め込める様な構成であっても
良い。また保温層の厚さについても、特に限定するもの
ではないが、保温層としての機能を発揮させる為には、
3mm以上であることが好ましく、また熱負荷を考慮す
ると、10mm以下であることが好ましい。
As described above, the region for forming the heat retaining layer is the lower portion 35 to 45 of the meniscus portion in the molten steel in the mold.
It is necessary to form the inner wall surface of the mold extending from the position of mm to the position of 20 mm or more above the meniscus portion. The lower end of the heat retaining layer is located at the lower portion 35 to 45 mm of the meniscus portion, because when the lower portion of the meniscus portion is less than 35 mm, the influence of the mold becomes large, cooling becomes strong, the collapse of the solidification shell becomes large, and the meniscus becomes large. Lower part 45
If it exceeds mm, the growth of the solidified shell is slowed and breakout is likely to occur. The reason why the upper end of the heat retaining layer is located at a position 20 mm or more above the meniscus is that if it is less than 20 mm, the influence of the mold becomes large, cooling becomes strong, and collapse of the solidified shell becomes large. The means for forming the heat retaining layer in the above region is not particularly limited, and other than the above-described plating, a structure that allows the above substance to be fitted into a predetermined position of the mold may be used. The thickness of the heat insulating layer is not particularly limited, but in order to exert the function as the heat insulating layer,
The thickness is preferably 3 mm or more, and considering the heat load, it is preferably 10 mm or less.

【0016】本発明を実施するに当たり、図1に示した
様に、鋳型に供給された溶鋼の表面に、発熱性モールド
フラックスを被覆して操業することも有効である。この
様な発熱性モールドフラックスとしては、通常のモール
ドフラックスに金属Siや金属Al等を含有させたもの
が挙げられる。即ち、鋳型に供給された溶鋼の表面に、
上記の様な発熱性モールドフラックスを被覆して操業す
ることによって、それらの酸化反応によって生成する熱
が溶鋼のメニスカス部分に付与され、鋳片の表面品質は
更に良好なものとなる。
In carrying out the present invention, as shown in FIG. 1, it is also effective to coat the surface of the molten steel supplied to the mold with an exothermic mold flux for operation. An example of such an exothermic mold flux is a normal mold flux containing metal Si, metal Al, or the like. That is, on the surface of the molten steel supplied to the mold,
By coating and operating the above exothermic mold flux, the heat generated by the oxidation reaction is applied to the meniscus portion of the molten steel, and the surface quality of the cast slab is further improved.

【0017】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples. However, the following examples are not intended to limit the present invention, and any modification of the present invention can be made without departing from the spirit of the preceding and following paragraphs. It is included in the technical scope.

【0018】[0018]

【実施例】図1に示した構成の鋳造装置を用いて本発明
を実施し、断面が700mm×1400mmの大断面鋳
片を製造し、その表面欠陥の発生状況を調査した。この
とき、Niめっき層からなる保温層の形成領域は、鋳型
内溶鋼におけるメニスカス部の下部40mmの位置より
メニスカス部の上部20mmの位置までの領域に亘る鋳
型内壁面部分とし、鋳造速度を0.1m/minとし、
発熱性モールドフラックスを被覆した場合と被覆しない
場合について実施した。また比較例として、保温層を形
成していない鋳型を備えた従来の鋳造装置で製造した同
一断面形状の鋳片の表面欠陥の発生状況についても調査
した。尚表面欠陥の発生状況については、表面疵発生数
について測定した。
EXAMPLE The present invention was carried out by using the casting apparatus having the structure shown in FIG. 1, a large-section cast slab having a section of 700 mm × 1400 mm was manufactured, and the occurrence of surface defects was investigated. At this time, the formation region of the heat insulation layer made of the Ni plating layer was the inner wall surface of the mold extending from the position of 40 mm below the meniscus to the position of 20 mm above the meniscus in the molten steel in the mold, and the casting speed was set to 0. 1m / min,
The test was performed with and without the exothermic mold flux. In addition, as a comparative example, the occurrence of surface defects in a slab having the same cross-sectional shape produced by a conventional casting apparatus equipped with a mold having no heat insulation layer was also investigated. Regarding the occurrence of surface defects, the number of occurrences of surface defects was measured.

【0019】その結果を、図2に示す。尚表面疵発生数
は、各方法で製造された鋳片を圧延した後に表面疵発生
数を測定し、従来法で製造した鋳片の表面疵発生数を1
00としたときの指数で表した。この結果から明らかな
様に、本発明方法では従来法に比べて鋳片表面の凹凸は
小さくなり、圧延後の表面疵発生数においても著しく改
善されていることがわかる。
The results are shown in FIG. In addition, the number of surface defects generated is 1 after the number of surface defects generated by the conventional method is measured by measuring the number of surface defects generated after rolling the slab manufactured by each method.
It was expressed as an index when 00 was set. As is clear from these results, the method of the present invention has smaller irregularities on the surface of the slab than the conventional method, and the number of surface defects after rolling is remarkably improved.

【0020】[0020]

【発明の効果】本発明は以上の様に構成されており、大
断面鋳片を連続的に鋳造するに際し、倒れ込み現象に起
因する表面疵の発生を効果的に防止することができる様
になり、しかもより簡略な装置構成によってそれを達成
することができた。
EFFECT OF THE INVENTION The present invention is configured as described above, and when continuously casting a large-section slab, it is possible to effectively prevent the occurrence of surface flaws due to the phenomenon of collapse. Moreover, it was possible to achieve it with a simpler device configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する為の鋳造装置の一構成例の鋳
型付近を示す平面図である。
FIG. 1 is a plan view showing the vicinity of a mold of a structural example of a casting apparatus for carrying out the present invention.

【図2】圧延後の表面疵発生指数を本発明方法と従来法
を比較して示した棒グラフである。
FIG. 2 is a bar graph showing a surface flaw generation index after rolling, comparing the method of the present invention with the conventional method.

【符号の説明】[Explanation of symbols]

1 銅製鋳型 2 保温層 3 メニスカスレベル 4 発熱性モールドフラックス 1 Copper mold 2 Heat insulation layer 3 Meniscus level 4 Exothermic mold flux

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上下が開放された銅または銅合金製鋳型
に溶鋼を供給すると共に、鋳型下部から鋳片を連続的に
引き抜いて大断面鋳片を鋳造するに当たり、鋳型内溶鋼
におけるメニスカス部の下部35〜45mmの位置より
メニスカス部の上部20mm以上の位置までの領域に亘
る鋳型内壁面部分に、銅の1/3〜1/10の熱伝導率
を有する金属またはセラミックスからなる保温層を形成
して操業することを特徴とする大断面鋳片の連続鋳造方
法。
1. A molten steel is supplied to a copper or copper alloy mold whose upper and lower sides are opened, and a slab is continuously drawn from the lower part of the mold to cast a large-section slab. A heat insulating layer made of metal or ceramics having a thermal conductivity of 1/3 to 1/10 that of copper is formed on the inner wall surface of the mold extending from the lower portion 35 to 45 mm to the upper portion 20 mm or more of the meniscus portion. A continuous casting method of a large-section slab, which is characterized in that
【請求項2】 鋳型に供給された溶鋼の表面に、発熱性
モールドフラックスを被覆して操業する請求項1に記載
の連続鋳造方法。
2. The continuous casting method according to claim 1, wherein the molten steel supplied to the mold is coated with an exothermic mold flux for operation.
【請求項3】 上下が開放された銅または銅合金製鋳型
であって、鋳型内溶鋼におけるメニスカス部の下部35
〜45mmの位置よりメニスカス部の上部20mm以上
の位置までの領域に亘る鋳型内壁面部分に、銅の1/3
〜1/10の熱伝導率を有する金属またはセラミックス
からなる保温層が形成されたものであることを特徴とす
る鋳造用鋳型。
3. A copper or copper alloy mold having open upper and lower parts, the lower part 35 of the meniscus portion of molten steel in the mold.
1/3 of copper on the inner wall surface of the mold extending from the position of ~ 45 mm to the position of 20 mm or more above the meniscus.
A casting mold, wherein a heat insulating layer made of metal or ceramics having a thermal conductivity of 1/10 is formed.
JP1925695A 1995-02-07 1995-02-07 Continuous casting method of slab of large section and mold for casting Withdrawn JPH08206787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1925695A JPH08206787A (en) 1995-02-07 1995-02-07 Continuous casting method of slab of large section and mold for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1925695A JPH08206787A (en) 1995-02-07 1995-02-07 Continuous casting method of slab of large section and mold for casting

Publications (1)

Publication Number Publication Date
JPH08206787A true JPH08206787A (en) 1996-08-13

Family

ID=11994359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1925695A Withdrawn JPH08206787A (en) 1995-02-07 1995-02-07 Continuous casting method of slab of large section and mold for casting

Country Status (1)

Country Link
JP (1) JPH08206787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020004087A (en) * 2000-07-01 2002-01-16 이구택 Complex material mold for soft cooling meniscus-part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020004087A (en) * 2000-07-01 2002-01-16 이구택 Complex material mold for soft cooling meniscus-part

Similar Documents

Publication Publication Date Title
CA1220606A (en) Refractory coating of edge-dam blocks for the purpose of preventing longitudinal bands of sinkage in the product of a continuous casting machine
JPH026037A (en) Method for continuously casting steel
JPH08206787A (en) Continuous casting method of slab of large section and mold for casting
JP4451798B2 (en) Continuous casting method
JP3817188B2 (en) Thin slab manufacturing method using twin drum type continuous casting machine having scum weir and scum weir
JP2950152B2 (en) Continuous casting mold for slab
JPS609553A (en) Stopping down type continuous casting machine
KR101159598B1 (en) Method for estimating mold powder&#39;s viscosity
JP3390606B2 (en) Steel continuous casting method
JP3283746B2 (en) Continuous casting mold
JPH0399757A (en) Twin roll type strip continuous casting method
JPH06339754A (en) Method for continuously casting thin sheet
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JP3687547B2 (en) Secondary cooling method in continuous casting
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JP2024004032A (en) Continuous casting method
JPH08206794A (en) Continuous casting method of slab of large section and continuous casting equipment
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JPS6167543A (en) Casting method of steel
JP3398608B2 (en) Continuous casting method and mold for continuous casting
JP2740507B2 (en) Continuous casting method for metal ribbon
JP3356094B2 (en) Manufacturing method of round billet slab by continuous casting
KR100732119B1 (en) Continuous casting machine of steel
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
JP2001347353A (en) Method for continuously casting steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507