JPH03264143A - Continuous casting method and mold thereof - Google Patents

Continuous casting method and mold thereof

Info

Publication number
JPH03264143A
JPH03264143A JP5790290A JP5790290A JPH03264143A JP H03264143 A JPH03264143 A JP H03264143A JP 5790290 A JP5790290 A JP 5790290A JP 5790290 A JP5790290 A JP 5790290A JP H03264143 A JPH03264143 A JP H03264143A
Authority
JP
Japan
Prior art keywords
mold
cooling water
continuous casting
mold material
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5790290A
Other languages
Japanese (ja)
Inventor
Koichi Tozawa
戸澤 宏一
Kenichi Tanmachi
反町 健一
Seiji Itoyama
誓司 糸山
Hideji Takeuchi
秀次 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5790290A priority Critical patent/JPH03264143A/en
Publication of JPH03264143A publication Critical patent/JPH03264143A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously cast a high quality product having little surface crack by maintaining surface temp. of a mold to solidified temp. of mold powder or higher and lower than the solidified point of a casting metal. CONSTITUTION:In the continuous casting using the mold powder, the surface temp. of mold faced to the molten metal is maintained to the solidified temp. of the used mold powder or higher and lower than the solidified temp. of casting metal. In this purpose, the mold quality is made to Ni-Cr-Fe series alloy having low heat conductivity and cooling water is introduced into a built-in cooling water passage 15 from a cooling water supplying passage 17. The surface temp. of mold material is kept to >= about 700 deg.C and the mold powder having the solidified point lower than the surface temp. of mold material, is used. By this method, the mold powder 3 between the mold 1 and the solidified shell 4 eliminates the solid-phase state and keeps the liquid-phase condition and the air gap layer is reduced. Therefore, reduction of uneven solidification can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は連続鋳造方法及びその鋳型に関し、さらに詳し
くは、表面割れの少ない高品質鋳片を製造する連続鋳造
技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a continuous casting method and its mold, and more particularly to a continuous casting technique for producing high quality slabs with few surface cracks.

〔従来の技術〕[Conventional technology]

従来のモールドパウダーを用いた連続鋳造法に使用する
鋳型の説明図を第1O図に示した。浸漬ノズル7を通し
て鋳型に注入された溶鋼は水冷された鋳型材1を介して
抜熱され、凝固シェル4を形成する6形成した凝固シェ
ル4はサポートロール8により形状を保ちつつビンチロ
ール等の引抜装置により下方向に順次引抜かれる。この
時に鋳型・凝固シェル間の焼き付き防止と潤滑特性の向
上を目的としてモールドパウダー5をメニスカス上に散
布して用いている。モールドパウダー5はこの他に浮上
した非金属介在物の吸収除去と溶鋼の保温及び再酸化防
止等の役目も兼ねている。
An explanatory diagram of a mold used in the conventional continuous casting method using mold powder is shown in FIG. 1O. The molten steel injected into the mold through the immersion nozzle 7 is heat removed through the water-cooled mold material 1 to form a solidified shell 4.6 The formed solidified shell 4 is pulled out using a vinyl roll or the like while maintaining its shape with a support roll 8. The device sequentially pulls it out downward. At this time, mold powder 5 is sprinkled on the meniscus for the purpose of preventing seizure between the mold and the solidified shell and improving the lubrication properties. In addition, the mold powder 5 also serves to absorb and remove floating non-metallic inclusions, keep the temperature of the molten steel, and prevent re-oxidation.

このモールドパウダー5は鋳型と#固シェル4との間に
流入し、鋳型・凝固シェル間のモールドパウダー3を形
成する。モールドパウダー5の凝固温度は一般に100
0−1100℃前後であり、一方従来の鋳型材1は熱伝
導率の高い銅合金を用いているために、銅合金の高温耐
力を考慮してその表面温度は400℃以下となるように
設計されている。このため−度メニスカス上で溶融して
鋳型から凝固シェル間に流入したモールドパウダー3は
鋳型に接する面の温度がモールドパウダーの凝固温度以
下であることから鋳型材側では固化し、この時モールド
パウダーと鋳型間にエアーギャップ層6を形成する。第
10図では模式的に均一なエアーギャップ層を示してい
るが、実際には同相パウダーと鋳型が接触した部分と離
れた部分が混在しており、その領域が時間的にも空間的
にも変化していると考えられる。なお、2はモールドフ
レームである。
This mold powder 5 flows between the mold and the solidified shell 4, forming mold powder 3 between the mold and the solidified shell. The solidification temperature of mold powder 5 is generally 100
On the other hand, since the conventional mold material 1 uses a copper alloy with high thermal conductivity, the surface temperature is designed to be 400°C or less in consideration of the high-temperature yield strength of the copper alloy. has been done. Therefore, the mold powder 3 that melts on the meniscus and flows from the mold to the solidified shell is solidified on the mold material side because the temperature of the surface in contact with the mold is below the solidification temperature of the mold powder, and at this time, the mold powder 3 is solidified on the mold material side. An air gap layer 6 is formed between the mold and the mold. Although Fig. 10 schematically shows a uniform air gap layer, in reality there is a mixture of areas where the in-phase powder and the mold are in contact and areas where they are apart, and these areas vary in time and space. It is thought that this is changing. Note that 2 is a mold frame.

鋳型の抜熱特性を考慮すると、エアーギャップ層6の生
成により抜熱量の低下を生ずる結果となる。このために
初期凝固層の厚みに大きく影響する。
Considering the heat removal characteristics of the mold, the formation of the air gap layer 6 results in a decrease in the amount of heat removal. This greatly affects the thickness of the initial solidified layer.

すなわち、エアーギャップ層6が厚いところでは凝固が
遅れ、反対にエアーギャップ層6が薄いところでは凝固
が進み、結果的に凝固シェル4の不均一生成となり、熱
応力も加わって鋳片の表面縦割れやブレークアウトが発
生していた。
That is, where the air gap layer 6 is thick, solidification is delayed, whereas where the air gap layer 6 is thin, solidification progresses, resulting in non-uniform formation of the solidified shell 4, and thermal stress is also added to the surface of the slab. Cracks and breakouts were occurring.

[発明が解決しようとする課題] 本発明は上述の問題点を解決し均一なシェル凝固が達成
され、表面割れやブレークアウトがなく安定した鋳造を
可能とする連続鋳造方法及びその鋳型を提供することを
課題とするものである。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems and provides a continuous casting method and mold thereof that achieve uniform shell solidification and enable stable casting without surface cracks or breakouts. This is the issue.

[課題を解決するための手段] 本発明は、上述の課題を解決するものであり、(1)方
法発明は、連続鋳造方法に適用され、次の方法を採った
。すなわち、 溶湯に面する鋳型表面温度を、使用するモールドパウダ
ーの凝固温度以上でかつ鋳造金属の凝固点未満に維持し
て鋳造することを特徴とする連続鋳造方法である。
[Means for Solving the Problems] The present invention solves the above-mentioned problems. (1) The method invention is applied to a continuous casting method and employs the following method. That is, it is a continuous casting method characterized by casting while maintaining the temperature of the surface of the mold facing the molten metal at a temperature higher than the solidification temperature of the mold powder used and lower than the solidification point of the cast metal.

(2)装置発明は、連続鋳造鋳型に適用され、次の技術
手段を採った。すなわち、 ■冷却水通路を内在したNi−Cr−Fe系合金の鋳型
材と冷却水通路に冷却水を導く冷却水供給路を設けたバ
ックフレームとからなることを特徴とする連続鋳造鋳型
である。
(2) The device invention was applied to a continuous casting mold and adopted the following technical means. That is, it is a continuous casting mold characterized by consisting of a Ni-Cr-Fe based alloy mold material that includes a cooling water passage and a back frame provided with a cooling water supply passage that guides cooling water to the cooling water passage. .

鋳型材の冷却水通路から鋳型面までの距離を2〜15m
mとするのが好適である。
The distance from the cooling water passage of the mold material to the mold surface is 2 to 15 m.
It is preferable to set it to m.

鋳型材の冷却水通路から鋳型面までの距離を、鋳造方向
に従い変化させるように構成してもよい。
The distance from the cooling water passage of the mold material to the mold surface may be configured to vary according to the casting direction.

鋳型材の冷却水通路の穴径を5〜15mm、それぞれの
穴ピッチを7〜2.5 m mにするのが好適である。
It is preferable that the hole diameter of the cooling water passage in the mold material is 5 to 15 mm, and the hole pitch is 7 to 2.5 mm.

■Ni−Cr−Fe系合金の鋳型材と鋳型材の背面に複
数の矩形形状の冷却水通路を設けたバックフレームとか
らなることを特徴とする連続鋳造鋳型である。
(2) This is a continuous casting mold characterized by consisting of a Ni-Cr-Fe alloy mold material and a back frame in which a plurality of rectangular cooling water passages are provided on the back surface of the mold material.

Ni−Cr−Fe系合金の鋳型材厚みを2〜15mmと
することができる。
The thickness of the Ni-Cr-Fe based alloy mold material can be 2 to 15 mm.

さらに、Ni−Cr−Fe系合金の鋳型材厚みを鋳造方
向に従い変化させるように構成してもよい。
Furthermore, the thickness of the Ni-Cr-Fe based alloy mold material may be changed according to the casting direction.

冷却水通路幅を5〜15mmとし、そのピッチを7〜2
5 m mとすれば更に好適である。
The cooling water passage width is 5 to 15 mm, and the pitch is 7 to 2.
5 mm is even more suitable.

さらに、冷却水通路は丸穴以外に第9図に示すようなス
リット方式を■、■の装置に採用してもよい。
Furthermore, instead of round holes, a slit system as shown in FIG. 9 may be used for the cooling water passage in the apparatuses (1) and (2).

[作用〕 本発明は上述の鋳型・モールドパウダー間のエアギャッ
プ層の低減を目的として行われたものである。
[Function] The present invention was carried out for the purpose of reducing the above-mentioned air gap layer between the mold and the mold powder.

本発明の鋳型の作用を第7図を用いて説明する。本発明
の特徴は鋳型材質を銅合金から熱伝導の低い(約1 /
 20 ) N i −Cr −F e系合金とし、鋳
型材の表面温度を700℃以上に保ちつつ、かつ鋳型材
の表面温度以下の凝固点を有するモールドパウダーを使
用することにある。すなわち鋳型材表面温度をモールド
パウダーの凝固温度以上に保ちつつ鋳造を行うため、鋳
型lと凝固シェル4間のモールドパウダー3は固相状態
が消失し、液相状態に保たれる。このため第10図に示
されるようなエアーギャップ層6が従来方法に比較して
著しく減少する。このため不均一凝固の減少を実現する
ことが可能となる。
The function of the mold of the present invention will be explained using FIG. 7. The feature of the present invention is that the mold material is made of copper alloy with low thermal conductivity (approximately 1 /
20) The purpose is to use a molding powder made of a Ni-Cr-Fe alloy, which maintains the surface temperature of the mold material at 700° C. or higher, and has a solidification point below the surface temperature of the mold material. That is, since casting is carried out while keeping the surface temperature of the mold material higher than the solidification temperature of the mold powder, the mold powder 3 between the mold 1 and the solidified shell 4 loses its solid state and is maintained in a liquid state. Therefore, the air gap layer 6 as shown in FIG. 10 is significantly reduced compared to the conventional method. This makes it possible to reduce uneven solidification.

なお、冷却水通路の穴径、穴ピッチの数値を限定する理
由は、 ■ 穴径が5mm以下であると、芯がぶれ精度がでない
ので深い穴の加工は不可能である。
The reasons for limiting the numerical values of the hole diameter and hole pitch of the cooling water passage are as follows: (1) If the hole diameter is less than 5 mm, it is impossible to machine a deep hole because the center runout accuracy is poor.

また、穴ピッチも7mm以下では隣接する穴と接する恐
れがある。また、穴径、穴ピッチとも小さくなる捏和工
費が高くなる。
Furthermore, if the hole pitch is 7 mm or less, there is a risk that the holes will come into contact with adjacent holes. In addition, the kneading cost increases as both the hole diameter and hole pitch become smaller.

穴径が15mm以上では均一な冷却ができない。また、
穴ピッチが25mm以上で6均一な冷却ができない。
If the hole diameter is 15 mm or more, uniform cooling cannot be achieved. Also,
6 Uniform cooling is not possible when the hole pitch is 25 mm or more.

■ 冷却水通路幅についても上記と同様な理由による。■ The same reason applies to the width of the cooling water passage.

[実施例〕 実施例−1 第1図〜第3図は本発明の鋳型の第1の実施例の説明図
であり、第1図は横断面図、第2図は第1図の○印部の
拡大図、第3図は縦断面図を示している。
[Example] Example-1 Figures 1 to 3 are explanatory diagrams of a first example of the mold of the present invention, where Figure 1 is a cross-sectional view and Figure 2 is a cross-sectional view of the mold in Figure 1. FIG. 3 shows a longitudinal sectional view.

なお、図中、11は長辺側鋳型材、12は短辺側鋳型材
、13は長辺側バックフレーム、■4は短辺側バックフ
レーム、15は冷却水通路、16は0リング、17は冷
却水供給路、17aは排水路、17bは冷却水ヘッダで
ある。
In the figure, 11 is the long side mold material, 12 is the short side mold material, 13 is the long side back frame, 4 is the short side back frame, 15 is the cooling water passage, 16 is the 0 ring, 17 17a is a cooling water supply path, 17a is a drainage path, and 17b is a cooling water header.

鋳型材1にはインコネル718を使用した。また第2図
に示すように、冷却水通路15は孔径   a=10m
m 孔ピッチ b= 15mm としたものである。
Inconel 718 was used as the mold material 1. Further, as shown in Fig. 2, the cooling water passage 15 has a hole diameter a = 10 m.
m hole pitch b = 15 mm.

さらに、第3図に示すように冷却水通路から鋳型材表面
までの距離は上部で4mm、下部で12mmとし、鋳造
方向に従いその距離を大きくしたものである。これにつ
いて詳細に説明する。
Furthermore, as shown in FIG. 3, the distance from the cooling water passage to the surface of the mold material was 4 mm at the top and 12 mm at the bottom, and the distance was increased according to the casting direction. This will be explained in detail.

鋳型材表面温度    Ts(℃) 冷却水通路〜鋳型材表面間の距離(板厚)t  (m) 鋳型材熱伝導率    1. (Kcal/m hr 
℃)冷却水〜鋳型間熱伝達係数 bw(Kcal/+w2hr ’C) 冷却水温度      Tw(’C) 熱流束        q (Kcal/m2hr℃)
とすると、 T s = (t / l +1 / h w ) q
+ T wここで、 Tw=30 ℃ h W :20. 000   Kcal/m2hr℃
λ  = 1 6   Kcal/m hr ℃として
、tによるqとTsとの関係を図示すると第8図となる
Mold material surface temperature Ts (℃) Distance between cooling water passage and mold surface (plate thickness) t (m) Mold material thermal conductivity 1. (Kcal/m hr
°C) Heat transfer coefficient between cooling water and mold bw (Kcal/+w2hr 'C) Cooling water temperature Tw ('C) Heat flux q (Kcal/m2hr °C)
Then, T s = (t / l +1 / h w ) q
+ T w Here, T w = 30 ° C. h W : 20. 000 Kcal/m2hr℃
When λ = 1 6 Kcal/m hr °C, the relationship between q and Ts according to t is illustrated in Fig. 8.

鋳造速度1.8m/minでメニスカス部における熱流
束は約240 X I O’ Kcal/m2hr”c
であり、4m/min程度の高速鋳造では400×10
’ Kcal/m2hr℃が予測される。また鋳型出口
部における熱流束は鋳造速度1.0m/minで70 
X 10 ’ Kcal/m2hr’c程度である。
At a casting speed of 1.8 m/min, the heat flux at the meniscus is approximately 240 X I O'Kcal/m2hr"c
In high-speed casting of about 4m/min, the casting speed is 400×10
' Kcal/m2hr°C is predicted. In addition, the heat flux at the mold outlet is 70 m/min at a casting speed of 1.0 m/min.
It is approximately X 10'Kcal/m2hr'c.

従って、鋳型材の冷却水路からの距離tは2〜15mm
程度必要となる。
Therefore, the distance t from the cooling channel of the mold material is 2 to 15 mm.
degree is required.

一般に熱流束はメニスカス近傍で大きく鋳型の下部で小
さくなっているため、鋳造方向に均一な鋳型材表面温度
を得るためには、tをメニスカス部で薄く、鋳型下部で
厚くすればさらに好適である。
Generally, the heat flux is large near the meniscus and small at the bottom of the mold, so in order to obtain a uniform surface temperature of the mold material in the casting direction, it is more preferable to make t thinner at the meniscus and thicker at the bottom of the mold. .

この鋳型材を使用した場合の鋳型の温度プロフィールを
伝熱数値解析した結果、鋳型表面温度は冷却水孔の間の
位置で最高825℃となっていた。本鋳造条件では鋳型
の抜熱量(鋳型冷却水流量×冷却水温度上昇)は従来の
銅合金の鋳型に比較して約30%の増加が認められ前述
のようなエアーギャップ層の減少が確認された。また鋳
造中のFeS添加テストにより幅方向の凝固シェル厚の
不均一度も改善されていることが認められた。
As a result of numerical heat transfer analysis of the temperature profile of the mold when this mold material was used, the mold surface temperature reached a maximum of 825° C. at the position between the cooling water holes. Under these casting conditions, the amount of heat removed from the mold (mold cooling water flow rate x cooling water temperature rise) was increased by approximately 30% compared to the conventional copper alloy mold, and the reduction in the air gap layer as described above was confirmed. Ta. Furthermore, it was found that the non-uniformity of the solidified shell thickness in the width direction was also improved by the FeS addition test during casting.

以上の理由から、鋳型抜熱量が均一でありかつ抜熱量の
増大が得られるので鋳造速度の増大時にも鋳型下端での
凝固シェル層が増し、ブレークアウトの危険性が減少す
るものと推定される。
For the above reasons, it is presumed that since the amount of heat removed from the mold is uniform and the amount of heat removed is increased, the solidified shell layer at the lower end of the mold increases even when the casting speed increases, reducing the risk of breakout. .

なお鋳型材1にインコネル718を使用した場合には、
700℃における高温強度(0,2%耐力)も95kg
/mrr?と十分大きいため、鋳造前後の熱変形もなく
、長時間使用が可能であった。
In addition, when Inconel 718 is used as the mold material 1,
High temperature strength (0.2% proof stress) at 700℃ is also 95kg
/mrr? Because it was large enough, there was no thermal deformation before or after casting, and it could be used for a long time.

実施例−2 幅1200mmX厚さ220mmの中炭素鋼を、 鋳造速度         1.2m/minオシレー
ションサイクル  130cpmオシレーションストロ
ーク 6mmで 鋳型材M1.M2 (組成は第1表参照)は第2図に示
す型式で、 孔径10mm   孔ピッチ15mm の鋳型を使用し、鋳型材M3 (組成は第1表参照)は
、第9図に示すように冷却水通路15aをスリット型式
とした従来鋳型を用いた。
Example-2 Medium carbon steel with a width of 1200 mm and a thickness of 220 mm was cast as a mold material M1. with a casting speed of 1.2 m/min, an oscillation cycle of 130 cpm, and an oscillation stroke of 6 mm. M2 (for composition, see Table 1) is of the type shown in Figure 2, using a mold with a hole diameter of 10 mm and a hole pitch of 15 mm, and mold material M3 (for composition, see Table 1) is cooled as shown in Figure 9. A conventional mold with a slit-type water passage 15a was used.

本実施例の鋳型材の成分、熱伝導率、高温0.2%耐力
を第1表に、モールドパウダーの成分、粘度、凝固点を
第2表に示した。また、第3表は実施結果を示したもの
である。
The components, thermal conductivity, and high temperature 0.2% yield strength of the mold material of this example are shown in Table 1, and the components, viscosity, and freezing point of the molding powder are shown in Table 2. Furthermore, Table 3 shows the implementation results.

実施例−3 第4図〜第6図は本発明の鋳型の第3の実施例の説明図
であり、第4図は横断面の部分拡大図、第5図は第4図
のA−A矢視断面図、第6図は縦断面図を示している。
Example-3 Figures 4 to 6 are explanatory diagrams of a third example of the mold of the present invention, with Figure 4 being a partially enlarged cross-sectional view, and Figure 5 taken from A-A in Figure 4. A sectional view taken in the direction of arrows, and FIG. 6 shows a longitudinal sectional view.

鋳型材18にはインコネル718を採用した。Inconel 718 was used as the mold material 18.

なお、図中、19は本箱、20は鋳型材取付ボルト、2
0aはナツト、21は冷却水通路、22は冷却水ヘッダ
、23は冷却水供給路、24は排水路、25はOリング
である。
In addition, in the figure, 19 is a bookcase, 20 is a mold material mounting bolt, 2
0a is a nut, 21 is a cooling water passage, 22 is a cooling water header, 23 is a cooling water supply passage, 24 is a drainage passage, and 25 is an O-ring.

鋳型材18の板厚は5mmであり、鋳型長さは700 
m mとしている。背面の水箱19は鋼鉄製でその冷却
水通路21は15mmX 10mmの矩形形状でピッチ
は20mmとした例である。
The plate thickness of the mold material 18 is 5 mm, and the mold length is 700 mm.
It is set as mm. In this example, the water box 19 on the back is made of steel, and its cooling water passages 21 are rectangular in shape, measuring 15 mm x 10 mm, and have a pitch of 20 mm.

すなわち、第4図において d、e=5mm   c=15mm とした。That is, in Figure 4 d, e=5mm c=15mm And so.

鋳型材18と水箱19は鋳型材18に溶接したポルト2
0とナツト20aによりしっかりと固定されている。
The mold material 18 and the water box 19 are connected to the port 2 welded to the mold material 18.
0 and a nut 20a.

この実施例は鋳型材18が熱応力により反ろうとする力
を極力小さくするために、板厚を薄くシた点が特徴であ
る。
This embodiment is characterized in that the plate thickness is made thin in order to minimize the force that tends to cause the mold material 18 to warp due to thermal stress.

本実施例も前例と同様鋳型表面温度はモールドパウダー
の凝固温度以上に高くすることができ、モールド表面側
の固相状態のモールドパウダーが皆無となり、凝固シェ
ルとモールドの間は液相状態のモールドパウダーが充填
されエアーギャップ層を皆無にすることができた。
In this example, as in the previous example, the mold surface temperature can be made higher than the solidification temperature of the mold powder, so that there is no mold powder in the solid phase on the mold surface side, and there is no mold powder in the liquid phase between the solidified shell and the mold. Filled with powder, we were able to completely eliminate the air gap layer.

[発明の効果] 本発明は、均一なシェル凝固が達成され従来に比べ表面
割れの少ない高品質な鋳片をブレークアウトすることな
く安定して鋳造することができるようになった。
[Effects of the Invention] According to the present invention, it has become possible to stably cast a high-quality slab with uniform shell solidification and fewer surface cracks than before without breakout.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の鋳型の第1の実施例の説明図
であり、第1図は横断面図、第2図は第1図の部分拡大
図、第3図は縦断面図を示し、第4図〜第6図は本発明
の鋳型の第3の実施例の説明図であり、第4図は横断面
の部分拡大図、第5図は第4図のA−A矢視断面図、第
6図は縦断面図を示し、第7図は本発明の作用説明図、
第8図は板厚をパラメータとした場合の熱流束と鋳型材
表面温度との関係グラフ、第9図は本発明に使用してい
る冷却水通路をスリット型式とした従来鋳型、第1O図
は従来の連続鋳造鋳型の縦断面の説明図である。 ■・・−鋳型材     2−バックフレーム3・−鋳
型−凝固シエル間のモールドパウダー4・・・凝固シェ
ル 5−・メニスカス上の溶融モールドパウダー6−・・エ
アーギャップ層 7−・−浸漬ノズル   8・・・サポートロール11
−・−長辺側鋳型材 12・−・短辺側鋳型材13−長
辺側バックフレーム 14・・−短辺側バックフレーム 15.15a・・・冷却水通路(鋳型材内)16・・・
0リング 17−・−冷却水供給路(バックフレーム内)17a・
・−排水路(バックフレーム内)7b−・・冷却水へラ
ダ 8・・−鋳型材 0−ボルト 1−−一冷却水通路 3−・−冷却水供給路 5−0リング a、b、c、d、e・−寸法 19・−木箱 20a・・・ナツト 22・−・冷却水へラダ 24−・排水路 出 代 願 理 人 人 川崎製鉄株式会社
Figures 1 to 3 are explanatory diagrams of a first embodiment of the mold of the present invention, with Figure 1 being a cross-sectional view, Figure 2 being a partially enlarged view of Figure 1, and Figure 3 being a longitudinal cross-section. 4 to 6 are explanatory diagrams of a third embodiment of the mold of the present invention, FIG. 4 is a partially enlarged cross-sectional view, and FIG. 5 is A-A in FIG. 4. 6 shows a longitudinal sectional view, FIG. 7 is a diagram illustrating the operation of the present invention,
Figure 8 is a graph of the relationship between heat flux and mold material surface temperature when plate thickness is taken as a parameter, Figure 9 is a conventional mold with a slit type cooling water passage used in the present invention, and Figure 1O is It is an explanatory view of a longitudinal section of a conventional continuous casting mold. - Mold material 2 - Back frame 3 - Mold powder between mold and solidified shell 4 - Solidified shell 5 - Molten mold powder on meniscus 6 - Air gap layer 7 - Immersion nozzle 8 ...Support role 11
- - Long side mold material 12 - Short side mold material 13 - Long side back frame 14 - Short side back frame 15.15a... Cooling water passage (inside mold material) 16...・
0 ring 17--Cooling water supply path (inside the back frame) 17a-
- Drainage channel (inside the back frame) 7b - Ladder to cooling water 8 - Mold material 0 - Bolt 1 - Cooling water passage 3 - Cooling water supply passage 5 - 0 rings a, b, c , d, e - Dimensions 19 - Wooden box 20a... Nut 22 - Cooling water ladder 24 - Drainage route application agent Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 1 連続鋳造するにあたり、溶湯に面する鋳型表面温度
を、使用するモールドパウダーの凝固温度以上でかつ鋳
造金属の凝固点未満に維持して鋳造することを特徴とす
る連続鋳造方法。 2 連続鋳造鋳型において、冷却水通路を内在したNi
−Cr−Fe系合金の鋳型材と該冷却水通路に冷却水を
導く冷却水供給路を設けたバックフレームとからなるこ
とを特徴とする連続鋳造鋳型。 3 該鋳型材の冷却水通路から鋳型面までの距離が2〜
15mmである請求項2記載の連続鋳造鋳型。 4 該鋳型材の冷却水通路から鋳型面までの距離を、鋳
造方向に従い変化させたことを特徴とする請求項2又は
3記載の連続鋳造鋳型。 5 該鋳型材の冷却水通路の穴径が5〜15mmであり
、それぞれの穴ピッチが7〜25mmである請求項2、
3又は4記載の連続鋳造鋳型。 6 連続鋳造鋳型において、Ni−Cr−Fe系合金の
鋳型材と該鋳型材の背面に複数の矩形形状の冷却水通路
を設けたバックフレームとからなる連続鋳造鋳型。 7 該Ni−Cr−Fe系合金の鋳型材厚みが2〜15
mmである請求項6記載の連続鋳造鋳型。 8 該Ni−Cr−Fe系合金の鋳型材厚みを鋳造方向
に従い変化させたことを特徴とする請求項6又は7記載
の連続鋳造鋳型。 9 該冷却水通路幅が5〜15mmであり、そのピッチ
が7〜25mmである請求項6、7又は8記載の連続鋳
造鋳型。
[Claims] 1. A continuous casting method characterized in that during continuous casting, the temperature of the surface of the mold facing the molten metal is maintained at a temperature higher than the solidification temperature of the mold powder used and lower than the solidification point of the cast metal. . 2 In continuous casting molds, Ni with internal cooling water passages
- A continuous casting mold comprising a mold material of a Cr-Fe alloy and a back frame provided with a cooling water supply path for guiding cooling water to the cooling water passage. 3 The distance from the cooling water passage of the mold material to the mold surface is 2 to
The continuous casting mold according to claim 2, which has a diameter of 15 mm. 4. The continuous casting mold according to claim 2 or 3, wherein the distance from the cooling water passage of the mold material to the mold surface is varied according to the casting direction. 5. Claim 2, wherein the hole diameter of the cooling water passage of the mold material is 5 to 15 mm, and the pitch of each hole is 7 to 25 mm.
Continuous casting mold according to 3 or 4. 6. A continuous casting mold comprising a Ni-Cr-Fe based alloy mold material and a back frame provided with a plurality of rectangular cooling water passages on the back surface of the mold material. 7 The thickness of the mold material of the Ni-Cr-Fe alloy is 2 to 15
The continuous casting mold according to claim 6, which has a diameter of mm. 8. The continuous casting mold according to claim 6 or 7, wherein the thickness of the mold material of the Ni-Cr-Fe alloy is varied according to the casting direction. 9. The continuous casting mold according to claim 6, 7 or 8, wherein the cooling water passage has a width of 5 to 15 mm and a pitch of 7 to 25 mm.
JP5790290A 1990-03-12 1990-03-12 Continuous casting method and mold thereof Pending JPH03264143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5790290A JPH03264143A (en) 1990-03-12 1990-03-12 Continuous casting method and mold thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5790290A JPH03264143A (en) 1990-03-12 1990-03-12 Continuous casting method and mold thereof

Publications (1)

Publication Number Publication Date
JPH03264143A true JPH03264143A (en) 1991-11-25

Family

ID=13068924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5790290A Pending JPH03264143A (en) 1990-03-12 1990-03-12 Continuous casting method and mold thereof

Country Status (1)

Country Link
JP (1) JPH03264143A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585946A1 (en) * 1992-09-04 1994-03-09 Kawasaki Steel Corporation Apparatus and method for continuous casting of steel
JP2015168000A (en) * 2014-03-10 2015-09-28 Jfeスチール株式会社 Casting mold for continuous casting and continuous casting method of steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585946A1 (en) * 1992-09-04 1994-03-09 Kawasaki Steel Corporation Apparatus and method for continuous casting of steel
JP2015168000A (en) * 2014-03-10 2015-09-28 Jfeスチール株式会社 Casting mold for continuous casting and continuous casting method of steel

Similar Documents

Publication Publication Date Title
US5564491A (en) Method and apparatus for twin belt casting of strip
CA2127859C (en) Nozzle for continuous caster
US5074353A (en) Method for horizontal continuous casting of metal strip and apparatus therefor
US4715428A (en) Method and apparatus for direct casting of crystalline strip by radiant cooling
TW201813739A (en) Continuous steel casting method in which the inner wall surface of a mold copper plate of the casting mold filled with hetero-thermally conductive metal filling portion and the area ration is 10% or more and 80% or less
JP2727887B2 (en) Horizontal continuous casting method
US4911226A (en) Method and apparatus for continuously casting strip steel
US4678719A (en) Method and apparatus for continuous casting of crystalline strip
JPH03264143A (en) Continuous casting method and mold thereof
FI78250C (en) FARING EQUIPMENT FOR DIRECTIVE PROCESSING OF SMALL METAL.
EP0174767B1 (en) Method and apparatus for direct casting of crystalline strip by radiantly cooling
US5299627A (en) Continuous casting method
JPS609553A (en) Stopping down type continuous casting machine
KR102179558B1 (en) Mold, apparatus and method for casting
JPH07115131B2 (en) Twin roll casting machine
KR960004416B1 (en) Horizontal continuous casting method and its device
JPH07116783A (en) Mold for continuous casting and cooling method of cast slab using it
JP3398608B2 (en) Continuous casting method and mold for continuous casting
JPH04220140A (en) Method and mold for continuously casting round billet or beam blank
JPS63123550A (en) Continuous cast block for berylium-copper alloy and its continuous casting method
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JPS6087956A (en) Continuous casting method of metal
JPH02299748A (en) Roll for producing twin roll type rapid cooled strip and method for using this
JPS60234740A (en) Continuous casting method of copper ingot having mirror finished surface
JPH1034286A (en) Method and device for continuous casting