JPS63123550A - Continuous cast block for berylium-copper alloy and its continuous casting method - Google Patents

Continuous cast block for berylium-copper alloy and its continuous casting method

Info

Publication number
JPS63123550A
JPS63123550A JP27051286A JP27051286A JPS63123550A JP S63123550 A JPS63123550 A JP S63123550A JP 27051286 A JP27051286 A JP 27051286A JP 27051286 A JP27051286 A JP 27051286A JP S63123550 A JPS63123550 A JP S63123550A
Authority
JP
Japan
Prior art keywords
mold
copper alloy
ingot
cast block
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27051286A
Other languages
Japanese (ja)
Inventor
Koji Iwatate
岩立 孝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP27051286A priority Critical patent/JPS63123550A/en
Publication of JPS63123550A publication Critical patent/JPS63123550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To continuously cast a cast block of berylium-copper alloy having excellent cold workability by making a thickness of inverse segregation layer at outer circumferential part of the cast block the specific value or lower and the ratio of unidirectional solidified structure extending parallel to the cast block drawing direction to the whole cast block, the specific value or more. CONSTITUTION:The desirable continuously cant block of the berylium-copper alloy has 0-0.05 mm thickness of inverse segregation layer at the outer circumferential part of the cast block and >=80% unidirectional solidified structure extending parallel to the cast block drawing direction to with respect the whole cast block. At the time of casting, while the molten berylium-copper alloy in the holding furnace 1 is continuously drawn by pinch rolls 3 from a mold 2 holding to the temp. condition of inner wall thereof, which the molten metal is not solidified, the cast block 20 is rapidly cooled by cooling water nozzle 4 at the outlet of mold 2. Thus, while forming the temp. gradient as parallel to the drawing direction in the inner part of cast block 20, the unidirectional solidification is executed near the outlet of mold 2. In this way, the continuously cast block of berylium-copper alloy having excellent cold workability is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はベリリウム銅合金の連続鋳塊及びその連続鋳造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a continuous ingot of beryllium copper alloy and a continuous casting method thereof.

(従来の技術) ベリリウム銅合金は0.1〜1.0fl程度の板材に加
工されて導電ばね材料として用いられることが多いが、
その製造にあたっては先ず水冷銅鋳型を用いたDCキャ
スティングと呼ばれる半連続鋳造法により大断面積の鋳
塊を製造し、その表面の厚い逆偏析層を削り落としたう
えでこれに熱間加工を加えて小断面積の板とし、更に冷
間加工、焼鈍を繰返して肉薄のばね材とする工程が必要
とされていた。このような煩雑な工程を必要とするのは
、第1にベリリウム銅合金ば逆偏析挙動が激しく、凝固
時に不純物を含んだ溶湯が表面に押出されて形成される
逆偏析層の厚みが極めて厚くなるためであり、このため
に鋳塊表面を厚く削り落して逆偏析層を除去する必要が
あるので歩留りが悪くなる欠点があった。また水冷銅鋳
型内でその内壁面からの冷却を受けて凝固した鋳塊中に
は壁面に垂直方向に延びる多くの柱状晶が含まれ、これ
が鋳塊の塑性加工性を著しく低下させるために上記のよ
うな複雑な工程が必要とされるうえ、このような工程に
よってもなお圧延時に柱状晶の粒界から亀裂を生ずるこ
とがあった。
(Prior art) Beryllium copper alloy is often processed into a plate material of about 0.1 to 1.0 fl and used as a conductive spring material.
To manufacture it, first, an ingot with a large cross-sectional area is produced by a semi-continuous casting method called DC casting using a water-cooled copper mold, and after the thick reverse segregation layer on the surface is removed, it is hot worked. This required the process of making a plate with a small cross-sectional area, and then repeating cold working and annealing to make a thin spring material. This complicated process is necessary because, first, beryllium-copper alloys exhibit severe reverse segregation behavior, and the reverse segregation layer that is formed when molten metal containing impurities is extruded to the surface during solidification is extremely thick. For this reason, it is necessary to remove the reverse segregation layer by scraping off the surface of the ingot thickly, which has the disadvantage of lowering the yield. In addition, the ingot solidified by cooling from the inner wall surface in a water-cooled copper mold contains many columnar crystals extending perpendicularly to the wall surface, which significantly reduces the plastic workability of the ingot. In addition to requiring complicated steps, cracks may still occur at the grain boundaries of columnar crystals during rolling.

(発明が解決しようとする問題点) 本発明は上記のような従来の問題点を解消して、逆偏析
挙動の激しいベリリウム銅合金から成るにもかかわらず
冷間加工性に優れ、内部から表層部に至まで均一なm織
を持つベリリウム銅合金の連続鋳塊及びその連続鋳造法
を目的として完成されたものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional problems and has excellent cold workability despite being made of a beryllium-copper alloy with severe reverse segregation behavior. This was completed with the aim of creating a continuous ingot of beryllium copper alloy that has a uniform m-weave throughout, and a continuous casting method for the same.

(問題点を解決するための手段) 本発明は鋳塊外周部の逆偏析層の厚さが0〜0゜050
であり、かつ鋳塊全体の80%以上が鋳塊引出し方向に
平行に延びる一方向凝固組織であることを直接水冷する
ベリリウム銅合金の連続鋳塊に関する第1の発明と、ベ
リリウム銅合金の溶湯を、内壁面が溶湯を凝固させない
温度条件に保たれた鋳型から連続的に引出しつつ鋳型出
口において急速に冷却することにより、鋳塊内部にその
引出方向に平行な温度勾配を形成しつつ鋳型の出口付近
で一方向凝固を行わせることを直接水冷するベリリウム
銅合金の連続鋳造法に関する第2の発明とからなるもの
である。
(Means for solving the problems) The present invention is characterized in that the thickness of the reverse segregation layer on the outer periphery of the ingot is 0 to 0°050.
A first invention relating to a continuous ingot of beryllium copper alloy which is directly water-cooled, and in which 80% or more of the entire ingot has a unidirectional solidification structure extending parallel to the ingot drawing direction, and a molten metal of beryllium copper alloy. The ingot is continuously pulled out of a mold whose inner wall surface is maintained at a temperature that does not solidify the molten metal, and is rapidly cooled at the mold outlet, thereby creating a temperature gradient inside the ingot parallel to the direction of withdrawal. This invention consists of a second invention relating to a continuous casting method for beryllium copper alloy in which unidirectional solidification is performed near the outlet and direct water cooling is performed.

逆偏析は液相線と固相線との間の凝固範囲の広い合金が
凝固する際、溶融温度が低く不純物を多く含んだ内部の
液体がすでに凝固収縮している外部結晶の間隙を通って
外周部に押し出されて凝固する現象であり、ベリリウム
銅合金は凝固温度範囲が広くまた収縮率も大きいために
多くの合金中でも特に著しい逆偏析挙動を示す、このた
め例えば断面が200鶴中程度の鋳塊を従来法により半
連続鋳造した場合には表層部の逆偏析層の厚みは1〜3
龍に達する0本願第1の発明のベリリウム銅合金の連続
鋳塊は本願第2の発明の連続鋳造法を採用することによ
り鋳塊全体の80%以上を鋳塊引出し方向に平行に延び
る一方向凝固組織としたもので、この場合には鋳塊の壁
面に垂直な断面内部では凝固は同時に進行し、従って表
層部と内部との間に凝固の時間差は生じないので鋳塊の
表層部の逆偏析層の厚さはO〜0.05tmとなる。こ
の結果、本願第1の発明の連続鋳塊は従来のベリリウム
銅合金の鋳塊のように表層部を厚く削り落とす必要がな
く、製品歩留まりを著しく向上させることができる。
Reverse segregation occurs when an alloy with a wide solidification range between the liquidus and solidus solidifies, and the internal liquid, which has a low melting temperature and contains many impurities, passes through the gaps in the external crystals that have already solidified and shrunk. This is a phenomenon in which the beryllium-copper alloy is extruded to the outer periphery and solidified, and because the beryllium copper alloy has a wide solidification temperature range and a high shrinkage rate, it exhibits particularly remarkable reverse segregation behavior among many alloys. When an ingot is semi-continuously cast by the conventional method, the thickness of the reverse segregation layer at the surface layer is 1 to 3.
By adopting the continuous casting method of the second invention, the continuous ingot of the beryllium-copper alloy of the first invention of the present application is formed such that more than 80% of the entire ingot is cast in one direction extending parallel to the ingot drawing direction. In this case, solidification progresses simultaneously inside the section perpendicular to the wall surface of the ingot, and there is no solidification time difference between the surface layer and the inside, so the surface layer of the ingot is reversed. The thickness of the segregation layer is 0 to 0.05 tm. As a result, unlike the conventional ingot of beryllium copper alloy, the continuous ingot of the first invention of the present application does not require thickly scraping off the surface layer, and the product yield can be significantly improved.

またこのように鋳塊全体の80%以上を鋳塊引出し方向
に平行に延びる一方向凝固組織としたものは、壁面に垂
直な柱状晶を含まないのみならず1個の金属結晶の鋳塊
引出し方向の長さが数mあるいは数十m以上の実質的に
無限大の長さとなるため、加工時にも結晶粒界に起因す
る亀裂発生のおそれがほとんどなく、冷間加工性が極め
て優れたものとなる。
In addition, when 80% or more of the entire ingot has a unidirectional solidification structure extending parallel to the ingot drawing direction, it not only does not contain columnar crystals perpendicular to the wall surface, but also contains only one metal crystal. Since the length in the direction is several meters or several tens of meters or more, which is virtually infinite, there is almost no risk of cracking caused by grain boundaries during processing, and it has extremely excellent cold workability. becomes.

本願第2の発明は上記のようなベリリウム銅合金の連続
鋳塊を得るための連続鋳造法に関するもので、第1図に
示すようにベリリウム銅合金の保持炉(11の出口に断
熱鋳型又は加熱鋳型のような内壁面がベリリウム銅合金
の溶湯を凝固させない温度条件に保たれた鋳型(2)を
取付け、連続鋳塊(20)をピンチロール(3)によっ
て連続的に引出しつつ鋳型(2)の出口において連続鋳
塊(20)の上下に冷却水ノズル(4)、(5)から冷
却水を直接噴射して冷却し、鋳塊内部にその引出方向に
平行な温度勾配を形成しつつ鋳型(2)の出口付近で凝
固を行わせる。このとき、引出速度と冷却速度を適切に
制御し、凝固界面を鋳型(2)の出口から80m以内の
位置に保つようにする。このように凝固条件を維持すれ
ば溶湯は引出方向にのみ一方向にのみ凝固し、引出方向
に実質的に無限長さに延びた結晶からなる一方向凝固組
織が得られる。
The second invention of the present application relates to a continuous casting method for obtaining a continuous ingot of beryllium copper alloy as described above, and as shown in FIG. A mold (2) whose inner wall surface is maintained at a temperature that does not solidify the molten beryllium copper alloy is installed, and the continuous ingot (20) is continuously pulled out by pinch rolls (3) while the mold (2) is heated. Cooling water is directly injected from the cooling water nozzles (4) and (5) above and below the continuous ingot (20) at the outlet of the continuous ingot to cool the ingot, forming a temperature gradient inside the ingot parallel to the drawing direction. Solidification is performed near the exit of mold (2). At this time, the withdrawal speed and cooling rate are appropriately controlled to keep the solidification interface within 80 m from the exit of mold (2). If the conditions are maintained, the molten metal will solidify only in one direction in the drawing direction, and a unidirectionally solidified structure consisting of crystals extending to a substantially infinite length in the drawing direction will be obtained.

なお本発明においてベリリウム銅合金とは0.1重量%
以上のベリリウムを含むすべての銅合金を意味するもの
である。また鋳塊引出方向は第1図のように水平方向と
するほか、鉛直方向としてもよい。更にまた鋳型(2)
の引出し側出口部分に水冷カーボン鋳型を備えたものを
使用し、その出口から出た連続鋳塊を直接水冷すること
もでき、この場合には万一凝固界面が断熱鋳型又は加熱
鋳型の出口より外側へ移動した場合にも水冷カーボン鋳
型により速やかに固化されるので、溶湯が飛散する危険
なブレークアウトを防止することができる、更にこのほ
か、後記する第2の実施例にも示すように、鋳型(2)
として水冷カーボン鋳型を用いることもできる。但しこ
の場合にはその冷却量をコントロールして、鋳型の内壁
面をベリリウム銅の溶湯が凝固することのない温度条件
に保つことが必要である。
In the present invention, beryllium copper alloy is 0.1% by weight.
This refers to all copper alloys containing beryllium. Further, the ingot drawing direction may be in the horizontal direction as shown in FIG. 1, or may be in the vertical direction. Yet another mold (2)
It is also possible to use a model with a water-cooled carbon mold at the outlet on the drawer side and directly water-cool the continuous ingot that comes out of that outlet. Even if the molten metal moves outward, it is quickly solidified by the water-cooled carbon mold, which prevents the dangerous breakout of the molten metal from scattering.Furthermore, as shown in the second example below, Mold (2)
A water-cooled carbon mold can also be used. However, in this case, it is necessary to control the amount of cooling to maintain the inner wall surface of the mold at a temperature that does not allow the molten beryllium copper to solidify.

以下に本発明の好ましい実施例を示す。Preferred embodiments of the present invention are shown below.

(実施例) 実施例1 容150kgの保持炉にCu−1,85%Be−0,2
5%COのベリリウム鋼合金の溶湯を入れ1200℃に
保持する、この保持炉の下部に外表面が酸化防止用セラ
ミック塗料で保護され、内寸が巾100 tm、高さ1
5mである非水冷カーボン鋳型を鉛直に取付け、まずダ
ミーパーを鋳型内部に差込んだ0次に鋳型出口から50
mmに位置した噴射式水冷ノズルから流量301/分の
冷却水を噴射しつつダミーパーをピンチロールにより5
0mm/分の速度で連続的に引出し、連続鋳造を行った
。得られた連続鋳塊を顕微鏡で調べたところ全体の90
%が引出方向に平行な一方向凝固組織からなり、逆偏析
層の厚さは0.02m程度であった。
(Example) Example 1 Cu-1, 85% Be-0,2 was placed in a holding furnace with a capacity of 150 kg.
A molten beryllium steel alloy with 5% CO is placed in the holding furnace and maintained at 1200°C.The outer surface is protected with anti-oxidation ceramic paint at the bottom of this holding furnace, and the inner dimensions are 100 tm wide and 1 tm high.
A non-water-cooled carbon mold with a length of 5 m was installed vertically, and a dummy par was first inserted into the mold.
While injecting cooling water at a flow rate of 301/min from the water cooling nozzle located at 5 mm, the dummy par was
Continuous casting was performed by drawing continuously at a speed of 0 mm/min. When the obtained continuous ingot was examined under a microscope, the overall result was 90.
% was composed of a unidirectional solidified structure parallel to the drawing direction, and the thickness of the reverse segregation layer was about 0.02 m.

鋳造後に鋳型を解体して凝固ラインの位置を調べたとこ
ろ鋳型出口から約81−前後のところに維持されていた
。また連続鋳塊を1mの長さに切断し、厚さが15璽寵
から2.5鶴となるまでそのまま冷間圧延を行ったが、
表面割れや耳割れは全く生じなかった。一方、連続鋳塊
に800℃で2時間の焼鈍を施した後に冷間圧延を行っ
たところ、15mmから0.6 mまで表面割れや耳割
れを生ずることなく冷間圧延が可能であった。
After casting, the mold was dismantled and the position of the solidification line was examined, and it was found to be maintained at approximately 81 mm from the mold outlet. In addition, the continuous ingot was cut into lengths of 1 m and cold-rolled as they were until the thickness ranged from 15 mm to 2.5 mm.
No surface cracks or edge cracks occurred at all. On the other hand, when a continuous ingot was annealed at 800° C. for 2 hours and then cold rolled, cold rolling was possible from 15 mm to 0.6 m without producing surface cracks or edge cracks.

また同じ鋳造装置を用い、引出速度と冷却水流量とを変
えて結晶の一方向性を変化させた数種類の連続鋳塊を試
作し、冷間圧延による耳割れを生ずる圧延限界を調べ、
同時に逆偏析層の厚さも測定して第1表に示した。
In addition, using the same casting equipment, we prototyped several types of continuous ingots with varying crystal unidirectionality by changing the withdrawal speed and cooling water flow rate, and investigated the rolling limit that causes edge cracking due to cold rolling.
At the same time, the thickness of the reverse segregation layer was also measured and shown in Table 1.

第1表 ※1 涛魂厚さ  15m ※26S寿塊厚さ   15Q  埴シヒ闘牛 800
℃×211m実施例2 容150 kgの保持炉にCu −0,42%Be −
1,83%Niの溶湯を入れ1230℃に保持した。こ
の保持炉下部に水平方向に取付けた内径40鶴、外径1
80鶴、長さ100 nの円筒形であってその外表面に
純銅水冷クーラーを密着させた水冷カーボン鋳型を取付
け、ダミーパーをピンチロールにより間歇的に引出しつ
つ鋳型出口から80龍の位置にある噴射式水冷ノズルか
ら201/分の割合で冷却水を噴射して連続鋳造を行っ
た。純銅水冷クーラーの冷却水量を30!/分の一定値
に維持したまま間歇引出しのパラメータを変化させて一
方向凝固度の異なる棒材を作成した。各棒材について逆
偏析層の厚さと割れを生ずることなく鋳塊のまま直接ス
ェージング、線引き可能な径を評価し、第2表に示した
Table 1 *1 Thickness of the ball 15m *26 Thickness of the Shoutama 15Q Hanashihi bullfighting 800
°C x 211 m Example 2 Cu −0,42%Be − was placed in a holding furnace with a capacity of 150 kg.
A molten metal of 1,83% Ni was added and maintained at 1230°C. The inner diameter is 40mm and the outer diameter is 1mm installed horizontally at the bottom of this holding furnace.
A cylindrical water-cooled carbon mold with a length of 80 mm and a length of 100 nm is installed, and a pure copper water cooler is tightly attached to the outer surface of the water-cooled carbon mold.The dummy par is intermittently pulled out using pinch rolls, and an injection is made at a position of 80 mm from the mold outlet. Continuous casting was performed by injecting cooling water from a type water-cooled nozzle at a rate of 201/min. Cooling water amount of pure copper water cooler is 30! Bars with different degrees of unidirectional solidification were created by varying the intermittent drawing parameters while maintaining a constant value of /min. For each bar, the thickness of the reverse segregation layer and the diameter that could be directly swaged and drawn as an ingot without cracking were evaluated, and the results are shown in Table 2.

第2表 実施例3 容量50にぎの保持炉の下部に5iJaからなる断熱鋳
型とその出口側に位置する水冷カーボン鋳型とからなる
鋳型を水平に取付け、保持炉内にCu−0゜50%Be
 −2,63%Coからなるベリリウム銅合金の溶湯を
入れて1200℃に保持しつつ前記の実施例と同様にピ
ンチロールによる連続的な引き出しを行わせた。この際
、鋳型出口から20mの位置に取付けた水冷シャワーの
流量を2017分に固定し、引出速度と水冷カーボン鋳
型の冷却水量を変化させて種々の凝固組織を持つ連続鋳
塊を得た。なお鋳塊の断面形状は幅100 tx高さ2
0mの平板状であり、5isN4 の断熱鋳型は肉厚3
0朋、長さ50m、水冷カーボン鋳型は肉厚3(1m、
長さ50mである。得られた各連続鋳塊の凝固組織と、
直接冷間圧延限界の関係は第3表に示されるとおりであ
った。
Table 2 Example 3 A mold consisting of an adiabatic mold made of 5iJa and a water-cooled carbon mold located on the outlet side was installed horizontally at the bottom of a holding furnace with a capacity of 50.
A molten metal of a beryllium copper alloy consisting of -2.63% Co was charged and kept at 1200° C., and continuously drawn out using pinch rolls in the same manner as in the previous example. At this time, the flow rate of the water-cooled shower installed at a position 20 m from the mold outlet was fixed at 2017 minutes, and the withdrawal speed and the amount of cooling water in the water-cooled carbon mold were varied to obtain continuous ingots with various solidification structures. The cross-sectional shape of the ingot is width 100t x height 2
0m flat plate shape, 5isN4 insulation mold has a wall thickness of 3
0 mm, length 50 m, water-cooled carbon mold wall thickness 3 (1 m,
It is 50m long. Solidification structure of each continuous ingot obtained,
The relationship between direct cold rolling limits was as shown in Table 3.

第3表 (発明の効果) 本発明は以上の説明からも明らかなように、冷間加工性
が極めて良好なベリリウム銅合金の連続鋳塊を歩留り良
く連続鋳造することができるものであるから、従来のこ
の種ベリリウム銅合金鋳塊製造上の問題点を解消したも
のとして、産業の発展に寄与するところは極めて大であ
る。
Table 3 (Effects of the Invention) As is clear from the above description, the present invention is capable of continuously casting a continuous ingot of beryllium copper alloy with extremely good cold workability with a high yield. It will greatly contribute to the development of industry as it solves the problems of conventional production of this type of beryllium copper alloy ingot.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の連続鋳造法の一例を示す断面図である
。 (1):保持炉、(2):鋳型、(3):ピンチロール
、(4):冷却ノズル。
FIG. 1 is a sectional view showing an example of the continuous casting method of the present invention. (1): Holding furnace, (2): Mold, (3): Pinch roll, (4): Cooling nozzle.

Claims (1)

【特許請求の範囲】 1、鋳塊外周部の逆偏析層の厚さが0〜0.05mmで
あり、かつ鋳塊全体の80%以上が鋳塊引出し方向に平
行に延びる一方向凝固組織であることを特徴とするベリ
リウム銅合金の連続鋳塊。 2、ベリリウム銅合金の溶湯を、内壁面が溶湯を凝固さ
せない温度条件に保たれた鋳型から連続的に引出しつつ
鋳型出口において急速に冷却することにより、鋳塊内部
にその引出方向に平行な温度勾配を形成しつつ鋳型の出
口付近で一方向凝固を行わせることを特徴とするベリリ
ウム銅合金の連続鋳造法。 3、鋳型として断熱鋳型又は加熱鋳型を用い、鋳型出口
の鋳片を直接水冷する特許請求の範囲第2項記載のベリ
リウム銅合金の連続鋳造法。 4、出口に水冷カーボン鋳型を連続させた断熱鋳型又は
加熱鋳型を用い、水冷カーボン鋳型出口の鋳塊を直接水
冷する特許請求の範囲第2項又は第3項記載のベリリウ
ム銅合金の連続鋳造法。
[Claims] 1. The thickness of the reverse segregation layer on the outer periphery of the ingot is 0 to 0.05 mm, and 80% or more of the entire ingot has a unidirectional solidification structure extending parallel to the ingot drawing direction. A continuous ingot of beryllium copper alloy characterized by the following. 2. By continuously drawing molten beryllium copper alloy from a mold whose inner wall surface is maintained at a temperature that does not solidify the molten metal and rapidly cooling it at the mold outlet, a temperature parallel to the drawing direction is created inside the ingot. A continuous casting method for beryllium copper alloy characterized by unidirectional solidification near the exit of the mold while forming a gradient. 3. The continuous casting method for beryllium copper alloy according to claim 2, wherein an adiabatic mold or a heating mold is used as the mold, and the slab at the exit of the mold is directly cooled with water. 4. Continuous casting method for beryllium copper alloy according to claim 2 or 3, which uses an adiabatic mold or a heating mold with a continuous water-cooled carbon mold at the outlet and directly cools the ingot at the outlet of the water-cooled carbon mold with water. .
JP27051286A 1986-11-13 1986-11-13 Continuous cast block for berylium-copper alloy and its continuous casting method Pending JPS63123550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27051286A JPS63123550A (en) 1986-11-13 1986-11-13 Continuous cast block for berylium-copper alloy and its continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27051286A JPS63123550A (en) 1986-11-13 1986-11-13 Continuous cast block for berylium-copper alloy and its continuous casting method

Publications (1)

Publication Number Publication Date
JPS63123550A true JPS63123550A (en) 1988-05-27

Family

ID=17487269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27051286A Pending JPS63123550A (en) 1986-11-13 1986-11-13 Continuous cast block for berylium-copper alloy and its continuous casting method

Country Status (1)

Country Link
JP (1) JPS63123550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080025858A (en) * 2006-09-19 2008-03-24 영일특수금속 주식회사 Method for continuous casting berilium-cooper alloy
JP2010172903A (en) * 2009-01-27 2010-08-12 Nec Schott Components Corp Thermosensitive material and method for manufacturing the same, thermal fuse, and circuit protection element
CN102343424A (en) * 2011-09-23 2012-02-08 大连理工大学 Horizontal continuous casting device and method for high-conductivity and high-strength copper alloy round bar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072646A (en) * 1983-09-29 1985-04-24 O C C:Kk Method and device for horizontal and continuous casting of metallic molding consisting of unidirectionally solidified structure
JPS6087963A (en) * 1983-10-21 1985-05-17 O C C:Kk Method and device for continuous casting of metallic casting ingot having smooth surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072646A (en) * 1983-09-29 1985-04-24 O C C:Kk Method and device for horizontal and continuous casting of metallic molding consisting of unidirectionally solidified structure
JPS6087963A (en) * 1983-10-21 1985-05-17 O C C:Kk Method and device for continuous casting of metallic casting ingot having smooth surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080025858A (en) * 2006-09-19 2008-03-24 영일특수금속 주식회사 Method for continuous casting berilium-cooper alloy
JP2010172903A (en) * 2009-01-27 2010-08-12 Nec Schott Components Corp Thermosensitive material and method for manufacturing the same, thermal fuse, and circuit protection element
CN102343424A (en) * 2011-09-23 2012-02-08 大连理工大学 Horizontal continuous casting device and method for high-conductivity and high-strength copper alloy round bar

Similar Documents

Publication Publication Date Title
CA2864226C (en) In-situ homogenization of dc cast metals with additional quench
JP4193171B2 (en) Method for producing Ti-containing copper alloy sheet or ingot for producing strip with excellent workability
JP2008018467A (en) CONTINUOUS CASTING METHOD OF Al-Si-BASED ALUMINUM ALLOY
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
KR20190120303A (en) Continuous casting method of steel
JPH07113142B2 (en) Manufacturing method of phosphor bronze sheet
JPS63123550A (en) Continuous cast block for berylium-copper alloy and its continuous casting method
JPS58103941A (en) Production of metallic material having specular surface
JP5689669B2 (en) Continuous casting method of Al-Si aluminum alloy
JP3000371B2 (en) Continuous casting method
JPH03294043A (en) Method for continuously casting beryllium copper alloy
JP2003071546A (en) Aluminum ingot, and continuous casting method therefor, and manufacturing method for aluminum foil for electrode of electrolytic capacitor using the aluminum ingot
KR100721924B1 (en) Cooling apparatus for Wheel mold continuous casting of aluminum alloy
JPH0112579B2 (en)
JPH11750A (en) Manufacture of copper shape memory alloy
Jones et al. Microstructural evolution in intensively melt sheared direct chill cast Al-alloys
Moustafa et al. Current Advances in Mechanical Design & Production, Fourth Cairo University MDP Conference
JPH0324297B2 (en)
JPH05237604A (en) Production of dual phase stainless steel ingot
JPH01271039A (en) Manufacture of thin berylium-copper sheet
Ohno Grain growth control by solidification technology
JPH03264143A (en) Continuous casting method and mold thereof
JPS58157552A (en) Continuous casting method of metallic material
JPH04305339A (en) Method for continuously casting copper alloy
JPH06304712A (en) Production of phosphorus bronze cast slab by twin roll type continuous casting