JPH04305339A - Method for continuously casting copper alloy - Google Patents

Method for continuously casting copper alloy

Info

Publication number
JPH04305339A
JPH04305339A JP8914691A JP8914691A JPH04305339A JP H04305339 A JPH04305339 A JP H04305339A JP 8914691 A JP8914691 A JP 8914691A JP 8914691 A JP8914691 A JP 8914691A JP H04305339 A JPH04305339 A JP H04305339A
Authority
JP
Japan
Prior art keywords
ingot
zone
copper alloy
continuous casting
cooling zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8914691A
Other languages
Japanese (ja)
Inventor
Takahiro Ishikawa
貴浩 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP8914691A priority Critical patent/JPH04305339A/en
Publication of JPH04305339A publication Critical patent/JPH04305339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To present a continuous casting method of copper alloy that the continuous casting is executed without generating the surface defect on the coiling time and the annealing time for cast billet without problem. CONSTITUTION:On a horizontal continuous casting method that a molten copper alloy 2 is passed through a casting mold 3 composed of a solidifying zone 3a and a spare solidifying zone and a cast billet 4 is obtained, the obtained cast billet 4 is coiled via a natural air cooling zone 5 and a water cooling zone 6, this is the continuous casting method for the copper alloy that the surface defect caused on the intergranular crack on the time for coiling and annealing the cast billet by forcibly heating the cast billet 4 went out from the spare solidifying zone 3b of the cast mold 3 to the molten metal temperature range, keeping the temperature of copper alloy to be cast in the molten body state until just before entering to the water cooling zone 6, and reducing the hardness.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、時効硬化型もしくはス
ピノールダル分解型の銅合金溶湯を、凝固ゾーンと予備
凝固ゾーンとよりなる鋳造モールドを通して鋳塊を得、
得られた鋳塊を溶体化温度域加熱ゾーン、水冷ゾーンを
経由して巻き取る水平連続鋳造方法に関するものである
[Industrial Application Field] The present invention involves passing an age-hardening type or spinoldal decomposition type molten copper alloy through a casting mold consisting of a solidification zone and a pre-solidification zone to obtain an ingot.
This invention relates to a horizontal continuous casting method in which the obtained ingot is rolled up via a solution temperature range heating zone and a water cooling zone.

【0002】0002

【従来の技術】図2は従来の時効硬化型銅合金の連続鋳
造方法を実施する装置の一例の構成を示す図である。図
2において、21は溶湯22を保持するための溶湯保持
炉、23は溶湯保持炉21の溶湯22の出口側に設けた
凝固ゾーン23aと予備凝固ゾーン23bを有する鋳造
モールド、24は鋳造モールド23から連続的に出てく
る鋳塊、25は鋳塊24を空冷するための自然空冷ゾー
ン、26は自然空冷ゾーン25の後方側に設けた水冷ゾ
ーン、27は鋳塊24を鋳造モールド23から引き出す
ための引き出し装置、28は鋳塊24の面削装置、29
は鋳塊24の切断装置、30は鋳塊24の巻き取り装置
である。
2. Description of the Related Art FIG. 2 is a diagram showing the structure of an example of an apparatus for carrying out a conventional continuous casting method for age-hardening copper alloys. In FIG. 2, 21 is a molten metal holding furnace for holding the molten metal 22, 23 is a casting mold having a solidification zone 23a and a pre-solidification zone 23b provided on the outlet side of the molten metal 22 of the molten metal holding furnace 21, and 24 is a casting mold 23. 25 is a natural air cooling zone for air cooling the ingot 24; 26 is a water cooling zone provided on the rear side of the natural air cooling zone 25; 27 is the ingot 24 pulled out from the casting mold 23. 28 is a facing device for the ingot 24, 29
3 is a cutting device for the ingot 24, and 30 is a winding device for the ingot 24.

【0003】図2に示す従来の時効硬化型銅合金の連続
鋳造装置では、凝固ゾーン23aで形成された鋳塊24
は、予備凝固ゾーン23b、自然空冷ゾーン25を通っ
た後、水冷ゾーン26に入り常温まで冷却され巻き取ら
れる。ここで、予備凝固ゾーン23bは、凝固ゾーン2
3aと一体構造で明確には分解されていないが、溶湯温
度及び鋳造モールド冷却用流体の流量や温度変化、引き
出し速度の変動により、凝固ゾーン23aが出口側にず
れた場合、凝固しないで溶湯がモールド23の出口より
吹き出してくるのを防ぐために必要であり、かつ凝固ゾ
ーン23aで凝固した鋳塊より熱をうばい鋳塊を一定温
度にまで降温する効果も有する。また、自然空冷ゾーン
25は、水冷ゾーン26の水が何らかの理由で鋳造モー
ルド23内に進入するのを防ぐために必要で、通常2〜
3mに設定されている。さらに、水冷ゾーン26は、鋳
塊24が引き出し装置27に入る時、高温であると引き
出し装置27の劣化がひどくなることを防止し、また鋳
塊24を扱い易くする目的で使用されるが、この水冷ゾ
ーン26はない場合もある。
In the conventional age-hardening copper alloy continuous casting apparatus shown in FIG. 2, the ingot 24 formed in the solidification zone 23a
After passing through the pre-coagulation zone 23b and the natural air cooling zone 25, it enters the water cooling zone 26 where it is cooled to room temperature and wound up. Here, the pre-coagulation zone 23b is the coagulation zone 2
3a and is not clearly decomposed, but if the solidification zone 23a shifts toward the exit side due to changes in the temperature of the molten metal, the flow rate and temperature of the casting mold cooling fluid, and fluctuations in the drawing speed, the molten metal will not solidify and will not solidify. This is necessary to prevent the ingot from blowing out from the outlet of the mold 23, and also has the effect of absorbing heat from the ingot solidified in the solidification zone 23a and lowering the temperature of the ingot to a certain temperature. Further, the natural air cooling zone 25 is necessary to prevent the water in the water cooling zone 26 from entering the casting mold 23 for some reason, and usually 2~
It is set to 3m. Furthermore, the water cooling zone 26 is used to prevent the deterioration of the drawing device 27 from worsening if the ingot 24 enters the drawing device 27 at high temperatures, and to make the ingot 24 easier to handle. This water cooling zone 26 may not exist.

【0004】0004

【発明が解決しようとする課題】ところで、時効硬化性
銅合金の連続鋳造において現在実用化されている鋳塊の
引き出し速度は0.001m/sから0.008m/s
であり、最も遅い場合は水冷ゾーン26に入るまでに2
000秒、最も速い場合でも250秒かかる。一方、予
備凝固ゾーン23bを通った直後の鋳塊24の温度は5
00〜700℃程度が一般的であり、空冷ゾーン25に
おいては350〜600℃の温度となるので、そのため
時効硬化性が進行する温度域に鋳塊が250〜2000
秒間保持されることとなり、そのため時効硬化型もしく
はスピノールダル分解型の銅合金の鋳塊は硬化を起こし
、巻き取り時及びその後の焼鈍時に表面欠陥を生じる問
題があった。
[Problems to be Solved by the Invention] Incidentally, the ingot withdrawal speed currently in practical use in continuous casting of age-hardenable copper alloys is from 0.001 m/s to 0.008 m/s.
In the slowest case, it takes 2 hours before entering the water cooling zone 26.
000 seconds, even the fastest case takes 250 seconds. On the other hand, the temperature of the ingot 24 immediately after passing through the pre-solidification zone 23b is 5
Generally, the temperature is about 00 to 700 degrees Celsius, and the temperature in the air cooling zone 25 is 350 to 600 degrees Celsius.
As a result, the age hardening type or spinoldal decomposition type copper alloy ingots harden, causing surface defects during winding and subsequent annealing.

【0005】本発明の目的は上述した課題を解消して、
鋳塊の巻き取り時及び焼鈍時に表面欠陥が生じず、良好
な連続鋳造を行うことが出来る銅合金の連続鋳造方法を
提供しようとするものである。
[0005] The purpose of the present invention is to solve the above-mentioned problems,
The object of the present invention is to provide a method for continuous casting of copper alloys, which does not cause surface defects during winding and annealing of an ingot and allows good continuous casting.

【0006】[0006]

【課題を解決するための手段】本発明の銅合金の連続鋳
造方法は、時効硬化型もしくはスピノーダル分解型銅合
金の溶湯を、凝固ゾーンと予備凝固ゾーンとよりなる鋳
造モールドを通して鋳塊を得、得られた鋳塊を自然空冷
ゾーン、水冷ゾーンを経由して巻き取る水平連続鋳造方
法において、鋳造モールドの予備凝固ゾーンを出た後巻
き取り機に入る直前までのいずれかの位置において、鋳
塊を当該銅合金固有の溶体化温度域に30秒以上20分
以下保持した後直ちに水冷することにより溶体化状態を
保持し、該鋳塊を素材とする圧延製品の表面欠陥を低減
することを特徴とするものである。
[Means for Solving the Problems] The continuous casting method for copper alloys of the present invention includes passing a molten age-hardening type or spinodal decomposition type copper alloy through a casting mold comprising a solidification zone and a pre-solidification zone to obtain an ingot. In a horizontal continuous casting method in which the obtained ingot is rolled up via a natural air-cooling zone and a water-cooled zone, the ingot is rolled up at any position after leaving the pre-solidification zone of the casting mold and just before entering the winding machine. The copper alloy is maintained in a solution temperature range specific to the copper alloy for 30 seconds or more and 20 minutes or less, and then immediately cooled with water to maintain the solutionized state and reduce surface defects in rolled products made from the ingot. That is.

【0007】[0007]

【作用】上述した構成において、鋳造モールドの予備凝
固ゾーンを出た後巻き取り機に入る直前までのいずれか
の位置において、鋳塊を溶体化温度域に一定時間保持し
た後直ちに水冷して溶体化状態とした鋳塊は、伸びが大
となっているので、巻き取り機により曲げて巻き取った
際の微小割れが効率的に抑止できる。また、降伏点が低
下することにより巻き取られた鋳塊内部の転位密度も低
減されるため、焼鈍時における転位の集積に起因する気
孔の形成が抑止され、気孔形成による粒界の脆化ないし
破壊を効率的に押えることができる。本発明において、
加熱に用いる加熱装置としては従来から公知の種々の装
置を用いることができるが、誘導加熱は効率と効果より
最適の加熱手段である。また、加熱の雰囲気も大気中で
の加熱で1分である。また、溶体化温度域での加熱ゾー
ンは巻き取り機に入るまでのいずれの位置でもよいが、
鋳塊が常温まで冷却してから再加熱することはエネルギ
ーロスが多いので、図2に図示するとおり鋳造モールド
と引出し装置との間に設けるのが最も効率的である。な
お、溶体化温度域での保持時間を30秒以上とするのは
、30秒未満では鋳塊を溶体化状態とすることが不十分
であり、又20分以上は設備的に大型となり不経済とな
るからである。
[Function] In the above-mentioned configuration, the ingot is held in the solution temperature range for a certain period of time at any position after leaving the pre-solidification zone of the casting mold and just before entering the winder, and then immediately cooled with water to melt the ingot. Since the ingot that has been made into a carbonized state has a large elongation, it is possible to efficiently prevent micro-cracks when it is bent and rolled up using a winding machine. In addition, as the yield point is lowered, the dislocation density inside the coiled ingot is also reduced, which prevents the formation of pores due to the accumulation of dislocations during annealing, thereby preventing grain boundary embrittlement or embrittlement due to pore formation. Destruction can be suppressed efficiently. In the present invention,
Although various conventionally known devices can be used as the heating device used for heating, induction heating is the most suitable heating means due to its efficiency and effectiveness. Further, the heating time is 1 minute in the air. In addition, the heating zone in the solution temperature range may be at any position before entering the winder,
Since cooling the ingot to room temperature and then reheating it involves a lot of energy loss, it is most efficient to provide it between the casting mold and the drawing device as shown in FIG. Note that holding the ingot in the solution temperature range for more than 30 seconds is insufficient because if it is held for less than 30 seconds, it is insufficient to bring the ingot to a solution state, and if it is held for more than 20 minutes, the equipment becomes large and uneconomical. This is because.

【0008】[0008]

【実施例】図1は本発明の銅合金の水平連続鋳造方法を
実施する装置の一例の構成を示す図である。図1に示す
例において、1は溶湯2を保持するための溶湯保持炉、
3は溶湯保持炉1の溶湯2の出口側に設けた凝固ゾーン
3aと予備凝固ゾーン3bを有する鋳造モールド、4は
鋳造モールド3から連続的に出てくる鋳塊、5は鋳塊4
を空冷するための自然空冷ゾーン、6は自然空冷ゾーン
5の後方側に設けた水冷ゾーン、7は鋳塊4を鋳造モー
ルド3から引き出すための引き出し装置、8は鋳塊4の
面削装置、9は鋳塊4の切断装置、10は鋳塊4の巻き
取り装置であって、これらの構成は従来の装置と同じ構
成をとっている。本発明の水平連続鋳造方法を実施する
装置では、鋳造モールド3の予備凝固ゾーン3aの後方
の水冷ゾーン6に入る直前までの従来の自然空冷ゾーン
5の一部に鋳塊を溶体化温度域に保持加熱するための加
熱ゾーン12に加熱装置11を設けた点に特徴がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the construction of an example of an apparatus for carrying out the method for horizontal continuous casting of copper alloys of the present invention. In the example shown in FIG. 1, 1 is a molten metal holding furnace for holding molten metal 2;
3 is a casting mold having a solidification zone 3a and a pre-solidification zone 3b provided on the outlet side of the molten metal 2 of the molten metal holding furnace 1; 4 is an ingot continuously coming out from the casting mold 3; 5 is an ingot 4
a natural air cooling zone for air cooling, 6 a water cooling zone provided on the rear side of the natural air cooling zone 5, 7 a drawing device for drawing out the ingot 4 from the casting mold 3, 8 a facing device for the ingot 4, 9 is a cutting device for the ingot 4, and 10 is a winding device for the ingot 4, and these structures are the same as those of conventional devices. In the apparatus for carrying out the horizontal continuous casting method of the present invention, the ingot is heated to a solution temperature range in a part of the conventional natural air cooling zone 5 immediately before entering the water cooling zone 6 behind the pre-solidification zone 3a of the casting mold 3. A feature is that a heating device 11 is provided in a heating zone 12 for holding and heating.

【0009】図1に示す装置においても、連続鋳造の方
法の基本は従来のものと同様であり、その説明は省略す
る。時効硬化性銅合金の場合、通常凝固ゾーン3aの長
さは0.05〜0.3m、予備凝固ゾーン3bの長さは
0.1〜0.4m、自然空冷ゾーン5の長さは0.3〜
1.0m、加熱ゾーン11の長さは0.1〜1.0m程
度である。また、鋳造モールド3中には冷却用の水など
の流体を流している。本発明では、加熱装置11により
当該銅合金の加熱温度を溶体化温度域とし、直ちに水冷
することにより溶体化状態を保持し、鋳塊硬度をさげる
ことにより、巻き取り時及びその後の焼鈍時の表面欠陥
をなくしている。
In the apparatus shown in FIG. 1 as well, the basic continuous casting method is the same as that of the conventional apparatus, and its explanation will be omitted. In the case of age-hardenable copper alloys, the length of the normal solidification zone 3a is 0.05 to 0.3 m, the length of the pre-solidification zone 3b is 0.1 to 0.4 m, and the length of the natural air cooling zone 5 is 0.3 m. 3~
The length of the heating zone 11 is about 0.1 to 1.0 m. Further, a fluid such as water for cooling is flowing through the casting mold 3. In the present invention, the heating temperature of the copper alloy is set in the solution temperature range by the heating device 11, and the solution state is maintained by immediately cooling with water, and the ingot hardness is lowered, so that the copper alloy is heated at the time of winding and subsequent annealing. Eliminates surface defects.

【0010】以下、実際の例について説明する。 実施例 上述の図1に図示した装置を用いて表1に示す種々の組
成のベリリウム銅合金を連続鋳造し、鋳造モールドの予
備凝固ゾーン3bを出た後水冷ゾーン6に入る直前まで
加熱装置11により表1に示す条件で加熱を行った本発
明例と加熱を行わず自然空冷した従来例と加熱温度が溶
体化温度以下の比較例について、鋳塊の硬度を測定する
とともに、実際の板材の製造工程で顕在化する表面欠陥
の発生状況を再現するため、巻き取られた鋳塊を800
℃4時間の均質化焼鈍をし、後加工率80%の圧延を加
えた板材の表面欠陥数を測定した。なお、表面欠陥数は
目視により、単位面積(m2 )当たりの個数を算出し
た。又、本発明の鋳塊を溶体化温度域に加熱後水冷した
溶体化状態を保持した鋳塊の硬度はほぼ150以下の軟
らかいものであった。結果を表1に示す。
An actual example will be explained below. EXAMPLE Beryllium copper alloys having various compositions shown in Table 1 are continuously cast using the apparatus shown in FIG. In addition to measuring the hardness of the ingots, we measured the hardness of the ingots for the inventive example in which heating was performed under the conditions shown in Table 1, the conventional example in which natural air cooling was performed without heating, and the comparative example in which the heating temperature was below the solution temperature. In order to reproduce the occurrence of surface defects that become apparent during the manufacturing process, the rolled ingot was
The number of surface defects of the plate material was measured after homogenization annealing for 4 hours at °C and rolling with a post-processing rate of 80%. The number of surface defects was calculated by visual observation per unit area (m2). Further, the ingot of the present invention was heated to a solution temperature range and then cooled in water, and the ingot that maintained the solutionized state had a soft hardness of about 150 or less. The results are shown in Table 1.

【0011】[0011]

【表1】[Table 1]

【0012】表1の結果から、銅合金固有の溶体化温度
域に加熱後水冷を行った本発明例は加熱を行わず自然空
冷の従来例および本発明の範囲外の比較例と比べて鋳塊
硬度が低く焼鈍後の表面欠陥の数が少ないことが確認さ
れた。なお、実施例においては加熱保持時間を4分とし
たが、30秒〜20分以内であればほぼ同様の傾向で得
られる。
[0012] From the results in Table 1, it can be seen that the example of the present invention in which water cooling was performed after heating to the solution temperature range specific to copper alloys had a higher casting performance than the conventional example in which no heating was performed and natural air cooling was performed, and the comparative example outside the scope of the present invention. It was confirmed that the lump hardness was low and the number of surface defects after annealing was small. In addition, although the heating holding time was set to 4 minutes in the example, substantially the same tendency can be obtained as long as the heating holding time is within 30 seconds to 20 minutes.

【0013】[0013]

【発明の効果】以上の説明から明らかなように、本発明
によれば、鋳造モールドの予備凝固ゾーンを出た後巻き
取り機に入る直前までのいずれかの位置において鋳塊を
強制的に溶体化温度域に加熱後直ちに水冷することによ
り、溶体化状態の軟らかい状態を保持させ、鋳塊の巻き
取り時及び焼鈍時の表面欠陥をなくすことができる。
As is clear from the above description, according to the present invention, the ingot is forcibly melted at any position after exiting the pre-solidification zone of the casting mold and immediately before entering the winder. Immediately cooling with water after heating to a solution temperature range allows the ingot to maintain its soft state and eliminate surface defects during winding and annealing of the ingot.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の水平連続鋳造方法を実施する装置の一
例の構成を示す図である。
FIG. 1 is a diagram showing the configuration of an example of an apparatus for carrying out the horizontal continuous casting method of the present invention.

【図2】従来の水平連続鋳造方法を実施する装置の一例
の構成を示す図である。
FIG. 2 is a diagram showing the configuration of an example of an apparatus for implementing a conventional horizontal continuous casting method.

【符号の説明】[Explanation of symbols]

1  溶湯保持炉 2  溶湯 3  鋳造モールド 3a  凝固ゾーン 3b  予備凝固ゾーン 4  鋳塊 5  加熱ゾーン 6  水冷ゾーン 7  引き出し装置 8  面削装置 9  切断装置 10  巻き取り装置 11  加熱装置 12  加熱ゾーン 1 Molten metal holding furnace 2 Molten metal 3 Casting mold 3a Coagulation zone 3b Pre-coagulation zone 4 Ingot 5 Heating zone 6 Water cooling zone 7 Drawer device 8 Facing device 9 Cutting device 10 Winding device 11 Heating device 12 Heating zone

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  時効硬化型もしくはスピノーダル分解
型銅合金の溶湯を、凝固ゾーンと予備凝固ゾーンとより
なる鋳造モールドを通して鋳塊を得、得られた鋳塊を自
然空冷ゾーン、水冷ゾーンを経由して巻き取る水平連続
鋳造方法において、鋳造モールドの予備凝固ゾーンを出
た後巻き取り機に入る直前までのいずれかの位置におい
て、鋳塊を当該銅合金固有の溶体化温度域に30秒以上
20分以下保持した後直ちに水冷することにより溶体化
状態を保持し、該鋳塊を素材とする圧延製品の表面欠陥
を低減することを特徴とする銅合金の連続鋳造方法。
Claim 1: A molten age hardening or spinodal decomposition type copper alloy is passed through a casting mold consisting of a solidification zone and a pre-solidification zone to obtain an ingot, and the obtained ingot is passed through a natural air cooling zone and a water cooling zone. In the horizontal continuous casting method, the ingot is heated to a solution temperature range specific to the copper alloy for at least 30 seconds at any position after exiting the pre-solidification zone of the casting mold and just before entering the winder. 1. A continuous casting method for a copper alloy, characterized by maintaining a solutionized state by cooling with water immediately after holding the ingot for less than a minute, thereby reducing surface defects in rolled products made from the ingot.
【請求項2】  銅合金の組成が、Be:0.1〜0.
6wt%、Ni+Co:0.3〜3.0wt%、Al+
Si:0〜0.6wt%、残部不可避的不純物と銅であ
り、溶体化温度が750℃以上である請求項1記載の銅
合金の連続鋳造方法。
2. The composition of the copper alloy is Be: 0.1 to 0.
6wt%, Ni+Co: 0.3-3.0wt%, Al+
2. The method for continuous casting of a copper alloy according to claim 1, wherein Si: 0 to 0.6 wt%, the balance being unavoidable impurities and copper, and the solution temperature is 750°C or higher.
JP8914691A 1991-03-29 1991-03-29 Method for continuously casting copper alloy Pending JPH04305339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8914691A JPH04305339A (en) 1991-03-29 1991-03-29 Method for continuously casting copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8914691A JPH04305339A (en) 1991-03-29 1991-03-29 Method for continuously casting copper alloy

Publications (1)

Publication Number Publication Date
JPH04305339A true JPH04305339A (en) 1992-10-28

Family

ID=13962727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8914691A Pending JPH04305339A (en) 1991-03-29 1991-03-29 Method for continuously casting copper alloy

Country Status (1)

Country Link
JP (1) JPH04305339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100611081B1 (en) * 1998-07-11 2006-08-10 카엠 오이로파 메탈 악티엔 게젤샤프트 Method for the manufacturing of a metal strip to be wound into a coil and a horizontal continuous strip casting apparatus for performing the method
CN102343424A (en) * 2011-09-23 2012-02-08 大连理工大学 Horizontal continuous casting device and method for high-conductivity and high-strength copper alloy round bar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125648A (en) * 1986-11-13 1988-05-28 Ngk Insulators Ltd Production of beryllium copper alloy
JPH01319653A (en) * 1988-06-17 1989-12-25 Fujikura Ltd Manufacture of copper-alloy material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125648A (en) * 1986-11-13 1988-05-28 Ngk Insulators Ltd Production of beryllium copper alloy
JPH01319653A (en) * 1988-06-17 1989-12-25 Fujikura Ltd Manufacture of copper-alloy material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100611081B1 (en) * 1998-07-11 2006-08-10 카엠 오이로파 메탈 악티엔 게젤샤프트 Method for the manufacturing of a metal strip to be wound into a coil and a horizontal continuous strip casting apparatus for performing the method
CN102343424A (en) * 2011-09-23 2012-02-08 大连理工大学 Horizontal continuous casting device and method for high-conductivity and high-strength copper alloy round bar

Similar Documents

Publication Publication Date Title
JP5041029B2 (en) Method for producing high manganese steel
JP4193171B2 (en) Method for producing Ti-containing copper alloy sheet or ingot for producing strip with excellent workability
JP2007237237A (en) Method for producing aluminum alloy cast plate
JP2009242882A (en) Titanium copper suitable for precise press working
JP4820572B2 (en) Manufacturing method of heat-resistant aluminum alloy wire
JP2798842B2 (en) Manufacturing method of high strength rolled aluminum alloy sheet
JP3657217B2 (en) Method for producing magnesium alloy slab for hot rolling and method for hot rolling magnesium alloy
JPH04305339A (en) Method for continuously casting copper alloy
CN116445757A (en) Aluminum alloy rod and preparation method thereof
JP2011063884A (en) Heat-resistant aluminum alloy wire
JP5689669B2 (en) Continuous casting method of Al-Si aluminum alloy
JP2011012300A (en) Copper alloy and method for producing copper alloy
JP3925697B2 (en) Ti-containing Fe-Cr-Ni steel excellent in surface properties and casting method thereof
CN115637361A (en) High-damping Al-Zn-Mg-Cu-Mn-Ce-Zr aluminum alloy and preparation method thereof
RU2160648C2 (en) Casting mold
JPH03294043A (en) Method for continuously casting beryllium copper alloy
JPS58212839A (en) Cu alloy for continuous casting mold
US3290742A (en) Grain refining process
JP2007007721A (en) Horizontal continuous casting method and horizontal continuous casting apparatus
JPS63168260A (en) Hot working method for continuously cast billet
JPS63313635A (en) Production of high strength al pipe stock for heat exchanger
JP4238950B2 (en) Method for producing B-containing austenitic stainless steel continuous casting slab
US1752474A (en) Method of treating metals
JP2003071546A (en) Aluminum ingot, and continuous casting method therefor, and manufacturing method for aluminum foil for electrode of electrolytic capacitor using the aluminum ingot
JP4466335B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980414