JPH04220140A - Method and mold for continuously casting round billet or beam blank - Google Patents

Method and mold for continuously casting round billet or beam blank

Info

Publication number
JPH04220140A
JPH04220140A JP120191A JP120191A JPH04220140A JP H04220140 A JPH04220140 A JP H04220140A JP 120191 A JP120191 A JP 120191A JP 120191 A JP120191 A JP 120191A JP H04220140 A JPH04220140 A JP H04220140A
Authority
JP
Japan
Prior art keywords
mold
cooling water
casting
temperature
water passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP120191A
Other languages
Japanese (ja)
Inventor
Kenichi Tanmachi
反町 健一
Akira Yamauchi
章 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP120191A priority Critical patent/JPH04220140A/en
Publication of JPH04220140A publication Critical patent/JPH04220140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To directly cast the round billet or beam blank with the continuous casting without generating surface defect. CONSTITUTION:The inner surface temperature of the mold is kept within the temperature over than the solidifying temperature of the mold lubricant and less than solidification point of the casting metal. For this purpose, the cooling water passage whose to the inner surface of the mold is 2-15mm is provided at the back surface by using the Ni-Cr-Fe alloy. For example, the cooling water passage 10 is formed between the back surface of the casting mold material 1 and the back frame 9. This cooling water passage 10 is supplied the cooling water from the cooling water supplying path and it is discharged from the cooling water discharging passage 13. The cooling water passage is sealed with the O-ring 11. The 'Inconel(R)' 718 is used as the mold material 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は断面積が円形又はビーム
ブランク形状の鋳片(丸ビレット又はビームブランク)
を得る連続鋳造方法及びそれらの連鋳鋳型に関し、表面
割れが少なく高品質の鋳片を連続鋳造する技術に関する
[Industrial Application Field] The present invention is a cast slab (round billet or beam blank) with a circular or beam blank cross-sectional area.
The present invention relates to continuous casting methods and continuous casting molds for obtaining the same, and to technology for continuously casting high quality slabs with few surface cracks.

【0002】0002

【従来の技術】近年、省エネルギー、省工程の観点から
、従来はブルーム連続鋳造鋳片から圧延工程を経て丸ビ
レット又はH形鋼を製造していたが、より最終製品に近
似した鋳片を用いて加工工程の省略を図る目的から連続
鋳造により直接的に丸ビレット又はビームブランクを得
ることが試みられつつある。この場合従来法と同等の生
産性を得るために、丸ビレットの鋳込速度をブルームの
鋳込速度の数倍にすることが要求される。ところが包晶
組成鋼のような表面欠陥が生じ易い鋼では、この鋳込速
度の増大に伴い、表面割れ欠陥が助長され、割れに起因
したブレークアウトの発生や、不均一凝固に伴う真円度
不良等の問題が生じていた。
[Prior Art] In recent years, from the viewpoint of energy saving and process saving, conventionally round billets or H-beams have been manufactured from bloom continuous cast slabs through a rolling process, but instead of using slabs that more closely resemble the final product. For the purpose of omitting processing steps, attempts are being made to obtain round billets or beam blanks directly by continuous casting. In this case, in order to obtain productivity equivalent to that of the conventional method, the casting speed of the round billet is required to be several times the casting speed of the bloom. However, in steels that are prone to surface defects, such as peritectic composition steels, this increase in casting speed promotes surface crack defects, resulting in breakouts caused by cracks and roundness problems due to uneven solidification. There were problems such as defects.

【0003】ビームブランク鋳片はその形状が複雑であ
ることから、スラブ、ビレットブルーム等の単純な鋳造
断面鋳片に比較し、縦割れ等の表面欠陥が生じやすい欠
点があった。この種の縦割れの原因は鋳型内の不均一冷
却に起因することが報告されている(川崎製鉄技報Vo
l9,No.3,p11)。 一般に凝固シェルの不均一化を防止する手段としては鋳
片の冷却を緩和する観点から、 (a)  水冷鋳型内面に溝等の加工を施す手段(特開
昭51−50819号公 報) (b)  水冷銅鋳型内面にセラミックスを溶射して伝
熱を緩和する手段(特開昭59−153550号公報)
等の提案がなされている。しかし上記(a)では緩冷却
効果が不充分で表面欠陥の改善にまで到らない。また(
b)では銅板とセラミックスとの熱膨張差のために銅板
とセラミックス相の接合部に剥離が生じ易く、実際の使
用には堪えないものであった。
Since beam blank slabs have a complicated shape, they have the disadvantage that surface defects such as vertical cracks are more likely to occur than slabs with simple cast cross sections such as slabs and billet blooms. It has been reported that the cause of this type of vertical cracking is due to uneven cooling within the mold (Kawasaki Steel Technical Report Vol.
l9, No. 3, p11). In general, as a means to prevent nonuniformity of the solidified shell, from the viewpoint of relaxing the cooling of the slab, (a) means to process grooves etc. on the inner surface of the water-cooled mold (Japanese Patent Laid-Open No. 51-50819) (b) Means for reducing heat transfer by thermally spraying ceramics on the inner surface of a water-cooled copper mold (Japanese Patent Laid-Open No. 153550/1983)
Other proposals have been made. However, in (a) above, the slow cooling effect is insufficient and the surface defects cannot be improved. Also(
In b), due to the difference in thermal expansion between the copper plate and the ceramic phase, peeling easily occurs at the joint between the copper plate and the ceramic phase, making it unsuitable for actual use.

【0004】本発明者は鋳型潤滑剤を用いた連続鋳造法
の冷却工程を詳細に検討した。その結果、不均一凝固の
主たる原因は以下にあることが判明した。その内容を図
2によって説明する。図2に浸漬ノズル7から鋳型2内
に連続鋳造している断面図を示した。凝固シェル4はサ
ポートロール8に導かれて下降する。メニスカス上の鋳
型潤滑剤5は鋳型2の鋳型材1と凝固シェル4との間に
流入し、鋳型材1と凝固シェル4間の鋳型潤滑剤3を形
成する。鋳型潤滑剤3の凝固温度は一般に1000〜1
100℃前後であり、一方従来の鋳型材1は、熱伝導率
の高い銅合金を用いているために、その高温耐力を考慮
して表面温度は400℃以下となるよう設計されている
。このため鋳型潤滑剤3は鋳型材側では固化し、このと
き鋳型潤滑剤3と鋳型1間にエアギャップ層6を形成す
る。このエアギャップ層6が生成すると鋳型の抜熱量が
大きく低下する。このため凝固の不均一性が生じていた
The present inventor has studied in detail the cooling process of continuous casting using a mold lubricant. As a result, it was found that the main causes of uneven solidification were as follows. The contents will be explained with reference to FIG. FIG. 2 shows a sectional view of continuous casting from the immersion nozzle 7 into the mold 2. The solidified shell 4 is guided down by support rolls 8. The mold lubricant 5 on the meniscus flows between the mold material 1 and the solidified shell 4 of the mold 2, forming a mold lubricant 3 between the mold material 1 and the solidified shell 4. The solidification temperature of the mold lubricant 3 is generally 1000 to 1
On the other hand, since the conventional mold material 1 uses a copper alloy with high thermal conductivity, the surface temperature is designed to be 400° C. or less in consideration of its high temperature yield strength. Therefore, the mold lubricant 3 solidifies on the mold material side, and at this time, an air gap layer 6 is formed between the mold lubricant 3 and the mold 1. When this air gap layer 6 is formed, the amount of heat removed from the mold is greatly reduced. This resulted in non-uniform coagulation.

【0005】[0005]

【発明が解決しようとする課題】包晶組成鋼は凝固時の
収縮量が大きく、エアギャップ層6が発生し易く、かつ
その生成状況が不均一であることから凝固の不均一性が
著しい。このため熱応力も加わって鋳片の表面割れやブ
レークアウト及び丸ビレット鋳片の真円度不良等の問題
が生じた。ビームブランク形状はその形状が複雑である
ことから不均一が生じ易く縦割れ欠陥が生じ易かった。
[Problems to be Solved by the Invention] Peritectal composition steel has a large amount of shrinkage during solidification, tends to generate an air gap layer 6, and is unevenly formed, resulting in significant non-uniform solidification. As a result, thermal stress was added, causing problems such as surface cracking and breakout of the slab, and poor roundness of the round billet slab. Since the shape of the beam blank is complex, non-uniformity tends to occur and vertical cracking defects are likely to occur.

【0006】本発明は上述の問題点を解決し、均一な凝
固シェルが形成され、表面欠陥がなく、高速鋳造が可能
な丸ビレット又はビームブランクの連続鋳造方法及びそ
の鋳型を提供することを課題とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a method for continuous casting of round billets or beam blanks, in which a uniform solidified shell is formed, there are no surface defects, and high-speed casting is possible, and a mold thereof. That is.

【0007】[0007]

【課題を解決するための手段】本発明方法は、丸ビレッ
ト又はビームブランクを連続鋳造するに当り、鋳型の内
表面温度を、使用する鋳型潤滑剤の凝固温度以上でかつ
鋳造金属の凝固点未満に維持して鋳造することを特徴と
する。上記本発明方法を好適に実施することのできる本
発明装置は、鋳型材として高温耐力に優れたNi−Cr
−Fe系合金を使用し、鋳型の背面に冷却水通路を設け
たことを特徴とする。またこの場合、鋳型材の厚みを2
mm〜15mmとすると好適である。
[Means for Solving the Problems] The method of the present invention, when continuously casting round billets or beam blanks, keeps the inner surface temperature of the mold above the solidification temperature of the mold lubricant used and below the freezing point of the cast metal. Characterized by maintaining and casting. The apparatus of the present invention which can suitably carry out the method of the present invention described above uses Ni-Cr, which has excellent high-temperature yield strength, as a mold material.
-Fe-based alloy is used, and a cooling water passage is provided on the back side of the mold. In this case, the thickness of the mold material is 2
It is suitable to set it to mm - 15 mm.

【0008】[0008]

【作用】本発明は鋳型と鋳型潤滑剤間のエアギャップ層
の低減を目的としてなされたものである。本発明の特徴
は鋳型材の材質を銅合金ではなく、熱伝導率が低く(約
1/20)、高温耐力の大きいNi−Cr−Fe系合金
とし、鋳型材の表面温度を700℃以上に保ち、かつこ
の鋳型材の表面温度以下の凝固点を有する鋳型潤滑剤を
使用することにある。このため、鋳型1と凝固シェル4
間の鋳型潤滑剤3は固相状態が消失し液相状態に保たれ
るために、凝固に伴う鋳片の収縮が生じてもエアギャッ
プ相6が従来方法に比較して著しく減少する。このため
不均一凝固による各種の不具合点の解決が可能となった
[Operation] The present invention has been made for the purpose of reducing the air gap layer between the mold and the mold lubricant. The feature of the present invention is that the material of the mold material is not a copper alloy but a Ni-Cr-Fe alloy with low thermal conductivity (approximately 1/20) and high high temperature strength, and the surface temperature of the mold material is raised to 700℃ or higher. The objective is to use a mold lubricant that has a freezing point below the surface temperature of the mold material. Therefore, the mold 1 and the solidified shell 4
Since the mold lubricant 3 in between disappears from a solid state and is kept in a liquid state, even if the slab shrinks due to solidification, the air gap phase 6 is significantly reduced compared to the conventional method. This has made it possible to solve various problems caused by uneven solidification.

【0009】   次に、本発明の鋳型の厚みについて説明する。     鋳型材表面温度:Ts(℃)     鋳型材の厚み:t(m)     鋳型材熱伝導率:λ(kcal/mhr℃) 
   冷却水と鋳型材間熱伝達係数:hw(kcal/
mhr℃)    冷却水温度:Tw(℃)     熱流束:q(kcal/m2 hr)とすると   Ts=(t/λ+1/hw)q+Twここで、   Tw=30℃   hw=20,000kcal/m2 hr℃   
 λ=16kcal/mhr℃ として鋳型材の厚みtによる熱流束qと鋳型材表面温度
Tsの関係を図示すると図3となる。
Next, the thickness of the mold of the present invention will be explained. Mold material surface temperature: Ts (°C) Mold material thickness: t (m) Mold material thermal conductivity: λ (kcal/mhr°C)
Heat transfer coefficient between cooling water and mold material: hw (kcal/
mhr℃) Cooling water temperature: Tw (℃) Heat flux: q (kcal/m2 hr) Ts=(t/λ+1/hw)q+Tw where, Tw=30℃ hw=20,000kcal/m2 hr℃
FIG. 3 shows the relationship between the heat flux q depending on the thickness t of the mold material and the surface temperature Ts of the mold material, assuming λ=16 kcal/mhr°C.

【0010】鋳造速度1.8m/minでメニスカス部
における熱流速qは約240×104 kcal/m2
 hrであり、鋳造速度4m/min程度の高速鋳造で
は熱流束qは400×104 kcal/m2 hrが
予測される。また、鋳型出口部における熱流束qは鋳造
速度1.0m/minで100×104 kcal/m
2 hr程度である。したがって、鋳型材表面の冷却水
通路からの距離すなわち鋳型材の厚みtは2mm〜15
mm程度必要となる。一般に熱流束はメニスカス近傍で
大きく鋳型の下部で小さくなっているため、鋳造方向に
均一な鋳型材表面温度を得るためには、鋳型材の厚みt
をメニスカス部で薄く、鋳型下部で厚くする必要がある
[0010] At a casting speed of 1.8 m/min, the heat flow rate q in the meniscus part is approximately 240 x 104 kcal/m2.
hr, and in high-speed casting at a casting speed of about 4 m/min, the heat flux q is predicted to be 400 x 104 kcal/m2 hr. In addition, the heat flux q at the mold outlet is 100 x 104 kcal/m at a casting speed of 1.0 m/min.
It takes about 2 hours. Therefore, the distance from the cooling water passage to the surface of the mold material, that is, the thickness t of the mold material is 2 mm to 15 mm.
About mm is required. Generally, the heat flux is large near the meniscus and small at the bottom of the mold, so in order to obtain a uniform surface temperature of the mold material in the casting direction, the thickness of the mold material t
must be thinner at the meniscus and thicker at the bottom of the mold.

【0011】[0011]

【実施例】〔実施例1〕図1は本発明の鋳型の縦断面図
を示している。鋳型材1の背面とバッククレーム9との
間に冷却水通路10を形成している。この冷却水通路1
0は冷却水供給路12から冷却水を供給し、冷却水排水
路13から排水する。冷却水通路はOリング11でシー
ルされている。鋳型材1にはインコネル718を使用し
た。この鋳型材を使用した場合の鋳型の温度プロフィー
ルを伝熱数値解析した結果、鋳型表面温度は最高825
℃となっていた。この鋳造条件では鋳型の抜熱量は従来
の銅合金の鋳型に比較して30%の増加が認められ、前
述のようなエアギャップ層の減少が確認された。また鋳
造中のFeS添加テストにより、円周方向の凝固シェル
厚の不均一度の改善及び、丸ビレット材の真円度の向上
が認められた。
[Example 1] Fig. 1 shows a longitudinal sectional view of a mold of the present invention. A cooling water passage 10 is formed between the back surface of the mold material 1 and the back claim 9. This cooling water passage 1
0 supplies cooling water from a cooling water supply path 12 and drains it from a cooling water drainage path 13. The cooling water passage is sealed with an O-ring 11. Inconel 718 was used as the mold material 1. As a result of numerical heat transfer analysis of the temperature profile of the mold when this mold material is used, the mold surface temperature reaches a maximum of 825.
It was ℃. Under these casting conditions, the amount of heat removed from the mold was increased by 30% compared to the conventional copper alloy mold, and the aforementioned reduction in the air gap layer was confirmed. Furthermore, in the FeS addition test during casting, it was observed that the non-uniformity of the solidified shell thickness in the circumferential direction was improved and the roundness of the round billet material was improved.

【0012】鋳型材の厚みの選定は、鋳造時の熱流束に
応じて行い、鋳型表面温度が使用する鋳型潤滑剤の凝固
温度以上になるように設計することが大切である。鋳型
の熱流束値は鋳造速度、鋳型潤滑剤により変化するが、
Ni−Cr−Fe系合金の場合には2mm〜15mmが
必要となる。鋳型材にインコネル718を使用した場合
には700℃における高温強度(0.2%耐力)も95
kg/mm2 と十分大きいため、鋳造前後の熱変形も
なく長時間使用が可能であった。
[0012] The thickness of the mold material is selected in accordance with the heat flux during casting, and it is important to design the mold material so that the mold surface temperature is equal to or higher than the solidification temperature of the mold lubricant used. The heat flux value of the mold changes depending on the casting speed and mold lubricant, but
In the case of Ni-Cr-Fe alloy, 2 mm to 15 mm is required. When Inconel 718 is used as the mold material, the high temperature strength (0.2% proof stress) at 700℃ is also 95.
kg/mm2, which is sufficiently large, so it could be used for a long time without thermal deformation before or after casting.

【0013】〔実施例2〕表1に示す鋳型材M1,M2
(以上実施例)及びM3(比較例)を用いて中炭素鋼(
C/0.14%、Si/0.24%、Mn/1.36%
、P/0.018%、S/0.002%、Al/0.0
37%)の丸ビレットを鋳造速度3.0m/minで鋳
造した。丸ビレットサイズは直径210mmである。 鋳型潤滑剤として表2に示すP1,P2,P3,P4を
用いオシーレーションサイクル200cpm、オシレー
ションストローク6mmで連続鋳造を行った。結果を表
3に示した。表3において表面割れ指数は鋳片長1メー
トル当りの縦割れ総長さ(cm)、真円度指数はビレッ
ト断面の(最小直径)/(最大直径)である。本発明の
要件に合致するNo.1、No.2、No.5は表面割
れ、真円度とも好成績を示している。
[Example 2] Mold materials M1 and M2 shown in Table 1
(the above examples) and M3 (comparative example) were used to prepare medium carbon steel (
C/0.14%, Si/0.24%, Mn/1.36%
, P/0.018%, S/0.002%, Al/0.0
A round billet of 37%) was cast at a casting speed of 3.0 m/min. The round billet size is 210 mm in diameter. Continuous casting was performed using mold lubricants P1, P2, P3, and P4 shown in Table 2 at an oscillation cycle of 200 cpm and an oscillation stroke of 6 mm. The results are shown in Table 3. In Table 3, the surface crack index is the total length of vertical cracks (cm) per meter of slab length, and the roundness index is (minimum diameter)/(maximum diameter) of the billet cross section. No. which meets the requirements of the present invention. 1.No. 2.No. No. 5 shows good results in terms of surface cracking and roundness.

【0014】〔実施例3〕表1に示した鋳型材を用い、
表2に示す鋳型潤滑剤を用いてビームブランクを鋳造し
た。鋳造は中炭素鋼(C/0.14%、Si/0.15
%、Mn/1.40%、P/0.010%、S/0.0
10%、Al/0.035%)を鋳造速度1.2m/m
inで鋳造した。鋳型サイズはフランジ高さ400mm
、幅460mm、ウエブ厚120mmのビームブランク
断面形状である。オシレーション条件は150サイクル
/分、ストローク6mmで鋳造した。表4に鋳造実験結
果を示す。表4においてウェブ縦割れは鋳片長1m当り
の縦割れ長さmmを示す。実験No.10,No.11
,No.14では好成績である。
[Example 3] Using the mold materials shown in Table 1,
Beam blanks were cast using the mold lubricants shown in Table 2. Casting is medium carbon steel (C/0.14%, Si/0.15
%, Mn/1.40%, P/0.010%, S/0.0
10%, Al/0.035%) at a casting speed of 1.2 m/m
It was cast in. Mold size is flange height 400mm
, a beam blank cross-sectional shape with a width of 460 mm and a web thickness of 120 mm. Casting was performed under oscillation conditions of 150 cycles/min and a stroke of 6 mm. Table 4 shows the results of the casting experiments. In Table 4, longitudinal web cracking indicates the longitudinal crack length mm per 1 m of slab length. Experiment No. 10, No. 11
, No. 14 is a good result.

【0015】[0015]

【表1】[Table 1]

【0016】[0016]

【表2】[Table 2]

【0017】[0017]

【表3】[Table 3]

【0018】[0018]

【表4】[Table 4]

【0019】[0019]

【発明の効果】本発明によれば、丸ビレットの連続鋳造
において、均一なシェル凝固が達成され、表面割れが少
なく真円度が高い高品質の丸ビレットをブレークアウト
することなく安定して鋳造することが可能となった。
[Effects of the Invention] According to the present invention, uniform shell solidification is achieved in continuous casting of round billets, and high-quality round billets with few surface cracks and high roundness are stably cast without breakout. It became possible to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の鋳型の縦断面図である。FIG. 1 is a longitudinal cross-sectional view of a mold of the present invention.

【図2】従来の鋳型の縦断面図である。FIG. 2 is a longitudinal cross-sectional view of a conventional mold.

【図3】板厚と熱流束との関係を示すグラフである。FIG. 3 is a graph showing the relationship between plate thickness and heat flux.

【符号の説明】[Explanation of symbols]

1    鋳型材 2    鋳型 3    鋳型潤滑剤 4    凝固シェル 5    鋳型潤滑剤 6    エアギャップ層 7    浸漬ノズル 8    サポートロール 9    バックフレーム 10    冷却水通路 11    Oリング 12    冷却水供給路 13    冷却水排水路 1 Mold material 2 Mold 3 Mold lubricant 4 Solidified shell 5 Mold lubricant 6 Air gap layer 7 Immersion nozzle 8 Support role 9 Back frame 10 Cooling water passage 11 O-ring 12 Cooling water supply path 13 Cooling water drain

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  断面積が円形またはビームブランク形
状の鋳片を連続鋳造するにあたり、鋳型の内表面温度を
溶鋼の湯面を覆う鋳型潤滑剤の凝固温度以上でかつ鋳造
金属の凝固点未満の温度に維持して鋳造することを特徴
とする丸ビレットまたはビームブランクの連続鋳造方法
Claim 1: When continuously casting slabs with a circular or beam blank cross-sectional area, the temperature of the inner surface of the mold is set to a temperature higher than the solidification temperature of the mold lubricant covering the surface of the molten steel and lower than the solidification point of the cast metal. A method for continuous casting of round billets or beam blanks, which is characterized by maintaining and casting the blanks.
【請求項2】  鋳型内面の鋳型材としてNi−Cr−
Fe系合金を使用し、該鋳型材の背面に冷却水通路を設
けたことを特徴とする丸ビレットまたはビームブランク
の連鋳鋳型。
[Claim 2] Ni-Cr- as the mold material for the inner surface of the mold.
A round billet or beam blank continuous casting mold made of an Fe-based alloy and characterized in that a cooling water passage is provided on the back side of the mold material.
【請求項3】  該冷却水通路から鋳型内表面までの距
離が2mm〜15mmである請求項2記載の丸ビレット
またはビームブランクの連鋳鋳型。
3. The continuous casting mold for a round billet or beam blank according to claim 2, wherein the distance from the cooling water passage to the inner surface of the mold is 2 mm to 15 mm.
JP120191A 1990-06-25 1991-01-09 Method and mold for continuously casting round billet or beam blank Pending JPH04220140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP120191A JPH04220140A (en) 1990-06-25 1991-01-09 Method and mold for continuously casting round billet or beam blank

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16426490 1990-06-25
JP2-164264 1990-06-25
JP120191A JPH04220140A (en) 1990-06-25 1991-01-09 Method and mold for continuously casting round billet or beam blank

Publications (1)

Publication Number Publication Date
JPH04220140A true JPH04220140A (en) 1992-08-11

Family

ID=26334383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP120191A Pending JPH04220140A (en) 1990-06-25 1991-01-09 Method and mold for continuously casting round billet or beam blank

Country Status (1)

Country Link
JP (1) JPH04220140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175115A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Template for continuous casting, and continuous casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175115A (en) * 2015-03-20 2016-10-06 新日鐵住金株式会社 Template for continuous casting, and continuous casting method

Similar Documents

Publication Publication Date Title
JPH0647501A (en) Method and device for continuous casting of metal
FI101944B (en) Casting of steel strips
JP2727887B2 (en) Horizontal continuous casting method
JPS5577962A (en) Continuous casting method of steel
JPH0255642A (en) Method and device for continuously casting strip steel
CA1241178A (en) Method and apparatus for continuous casting of crystalline strip
JPH04220140A (en) Method and mold for continuously casting round billet or beam blank
JPS609553A (en) Stopping down type continuous casting machine
JPS58103941A (en) Production of metallic material having specular surface
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
JP3405490B2 (en) Method for improving slab quality in continuous casting
JPH0263647A (en) Method for continuously casting metal
JP2001001111A (en) Core for casting hollow billet and hot-top type continuous casting method of hollow billet using this core
JPH05293597A (en) Continuous casting mold for hollow round cast billet
JPH03264143A (en) Continuous casting method and mold thereof
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JP3398608B2 (en) Continuous casting method and mold for continuous casting
JPS6087956A (en) Continuous casting method of metal
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JP2770691B2 (en) Steel continuous casting method
Pehlke Steel continuous casting
JPS63180351A (en) Cast slab casting method
JP3356094B2 (en) Manufacturing method of round billet slab by continuous casting
JPS58103940A (en) Continuous casting method for cast ingot
JPH0938751A (en) Mold device for continuous casting