JP3373313B2 - Mold for continuous billet casting - Google Patents

Mold for continuous billet casting

Info

Publication number
JP3373313B2
JP3373313B2 JP34060194A JP34060194A JP3373313B2 JP 3373313 B2 JP3373313 B2 JP 3373313B2 JP 34060194 A JP34060194 A JP 34060194A JP 34060194 A JP34060194 A JP 34060194A JP 3373313 B2 JP3373313 B2 JP 3373313B2
Authority
JP
Japan
Prior art keywords
mold
billet
air gap
meniscus
solidified shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34060194A
Other languages
Japanese (ja)
Other versions
JPH08187550A (en
Inventor
正次 上原
寿樹 佐藤
輝郎 藤永
一時 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34060194A priority Critical patent/JP3373313B2/en
Priority to US08/702,611 priority patent/US6024162A/en
Priority to MYPI95004030A priority patent/MY115456A/en
Priority to TW084113773A priority patent/TW290484B/zh
Priority to PCT/JP1995/002704 priority patent/WO1996020054A1/en
Priority to DE19581547T priority patent/DE19581547C2/en
Priority to KR1019960704705A priority patent/KR100253135B1/en
Priority to CN95191832A priority patent/CN1077818C/en
Publication of JPH08187550A publication Critical patent/JPH08187550A/en
Priority to US09/473,085 priority patent/US6112805A/en
Application granted granted Critical
Publication of JP3373313B2 publication Critical patent/JP3373313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、菱形変形の少ないビレ
ットの連続鋳造方法に使用する鋳型に関する。 【0002】 【従来の技術】ビレットを連続鋳造する場合には、図1
7に示すように内側断面が略四角形で上下方向にオシレ
ーションする鋳型50内に上部のタンディッシュから溶
鋼51を注入し、水冷された前記鋳型50の側面から熱
を吸収させて鋳型内面に凝固シェル52を形成し、徐々
に引き出すと共に芯部の溶鋼も徐々に凝固させ、ビレッ
トとしていた。そして、前記鋳型内面と凝固シェル52
との潤滑を図るために、鋳型50の上部からレプシード
オイル(潤滑油の一例)を少しずつ注入し、このレプシ
ードオイルを炭化させて潤滑剤としていた。 【0003】 【発明が解決しようとする課題】しかしながら、前記ビ
レットの鋳造を高速(例えば、3m/min)で行おう
とすると、ビレットの外周4面に凝固シェル52と鋳型
50との隙間が均一でないことに起因する不均一冷却に
伴う凝固収縮差が生じ、生じた製品の断面に菱形変形が
生じていた。従って、従来のビレットの連続鋳造方法に
おいては、許容された菱形変形が生じる速度の範囲内で
操業を行っていたので、比較的鋳造速度が遅く生産性が
悪いという問題があった。一方、断面長四角形のスラブ
の連続鋳造においては、特公昭57−11735号公報
に示されるように、鋳型内部の全面もしくは一部に均等
に、幅もしくは直径が2.5mm以下の多数の凹部を設
け、鋳片の縦割れ及びノロかみ等の疵を防止することを
目的とする連続鋳造用鋳型が提案されているが、この技
術をビレットの連続鋳造に適用すると、凹部の直径が
2.5mm以下であるので、徐々に凹部に潤滑剤である
炭素粉が詰まってしまい、安定した鋳造を行いにくい問
題があることが分かった。本発明はかかる事情に鑑みて
なされたもので、ビレットに菱形変形を生じることな
く、高速の安定した鋳造が可能なビレットの連続鋳造方
法に使用する鋳型を提供することを目的とする。 【0004】 【課題を解決するための手段】前記目的に沿う請求項1
記載のビレットの連続鋳造方法に使用する鋳型は、上下
方向にオシレートし、上部から溶湯を注入すると共に少
量の潤滑油を注入してビレットの連続鋳造を行う内側断
面が略四角形の鋳型において、内面を下方に向かって徐
々に縮小する直線状テーパーとし、更に、定常操業状態
のメニスカス最下位置より下位置で200mm以内の前
記鋳型の内面4面に、1又は複数の横溝からなるエアギ
ャップ部をそれぞれ設け、しかも、該横溝の平均エアギ
ャップ深さが20μm以上であって、その上下幅(W)
が以下の式を満足している。 3mm≦W≦(鋳型のオシレーション振幅)×2+10mm ・・・(1) 【0005】 【作用】請求項1記載のビレットの連続鋳造方法に使用
する鋳型においては、メニスカス最下位置から200m
m以内の鋳型内面に、1又は2以上の横溝からなるエア
ギャップ部を略均等に設けているので、ビレットと鋳型
の間に強制的に隙間が形成される。そして、鋳型の内面
を下方に向かって徐々に縮小する直線状テーパーとして
いるので、これによって鋳型内でのビレットの偏心を防
止し、更に熱流束が略均等に減少するので、凝固シェル
の特定面のみが鋳型に密接して偏って冷却されることが
なく、結果として凝固シェルが略均等に収縮し、高速鋳
造しても菱形変形の少ないビレットを製造できる。以
下、本発明の作用につき詳しく説明する。 【0006】メニスカス最下位置より下位置200mm
の範囲においては、溶湯から鋳型へ抜熱される熱流束が
最も大きい。この熱流束の大きさは、主に凝固シェルと
鋳型間のエアギャップに依存し、その関係を図2に示
す。さて、従来のビレットの連続鋳造においては、ビレ
ットと鋳型内面の隙間のために、ビレットの偏心が生
じ、これにより鋳型と凝固シェルとの間のエアギャップ
がビレットの面間で不均一になり、このエアギャップ偏
差Δd1 のためにビレット面間の熱流束に偏差ΔQ1
生じる。この結果、ビレット側面の凝固収縮にアンバラ
ンスを生じ、製品に菱形変形が発生する。図1はビレッ
ト面間の熱流束偏差と菱形変形の関係を実験により求め
た結果を示すが、このグラフから菱形変形を3°以内に
するためには、ΔQ≦100万kcal/m2 hrとす
ることが必要となる。ここで、熱流束偏差ΔQを小さく
する手段として、(1)まず、メニスカスの下部に適当
深さ以上のエアギャップ部を均等に設けることによっ
て、熱流束の大きさを、例えば400万kcal/m2
hrから300万kcal/m2 hrに減少させる。
(2)そして、更にモールドテーパーを直線状で適正値
にすることにより、ビレットと鋳型間の隙間を小さくす
る(例えば、平均エアギャップ偏差Δd1 を20μmか
ら10μmに小さくする)手段があるが、(1)及び
(2)の手段を併用することによって、ビレットの面間
熱流束偏差が小さくなるので、ビレットは鋳型によって
均等冷却される。このため、高速(例えば、3.4m/
min)で鋳造しても欠陥の少ないビレットが製造され
る。さて、面間の熱流束偏差を少なくする手段として、
ビレットと鋳型面間の隙間を0とすれば、ΔQを0とす
ることも理論的には可能であるが、このためにはモール
ドテーパーをシェルの凝固収縮プロフィールに沿った複
雑な曲線形状としなければならず、しかもそれでも鋳片
表面のミクロ的な凹凸のために完全にエアギャップを0
とすることは現実的には不可能となる。また、人工的な
エアギャップ部による緩冷却効果だけでも、熱流束偏差
を十分小さくすることができるとも考えられるが、モー
ルドテーパーが不適切(例えば、ストレート)で鋳片の
偏心が大の場合には熱流束偏差を小さくすることはでき
ない。次に、溝部のエアギャップ部による緩冷却効果
は、凹部面積率、溝部深さに応じて、図3に示す如くと
なる。凹部面積率については2〜84%程度が菱形変形
防止に効果がある。この凹部面積率が2%より小さいと
熱流束が大きくなって、従来技術と同様に鋳型内面の温
度偏差が大きくなり、84%をえると凝固シェルが鋳
型に当接する部分が減少し、結果として鋳型内面の摩耗
が増大し、鋳型の寿命が短くなる。また、溝部深さにつ
いては、凹部面積率が数十%以上のものについては、
0.1〜0.2mm以上の深さで、緩冷却度合いが略一
定となるので、これ以上溝部深さを深くしても実質的効
果がない。従来の連続鋳造においては、メニスカス下部
の熱流束がメニスカス下方に行くに従い、急激に減少す
るのに対して、本発明に係る連続鋳造においては、図4
の左側に破線aで示すように略一定レベルとなる。この
結果、凝固シェルの収縮プロフィールも従来は急激な熱
流束の変化に応じて複雑な曲線形状bになるのに対し
て、図4の破線cで示すように単純な直線形状に近づけ
ることができる。それ故に、鋳型内面を適正角度(例え
ば、0.3〜1.2%/m)の直線状のモールドテーパ
ーを形成することによって、容易にビレットと鋳型間の
隙間を小さくし、鋳片(ビレット)の偏心量を小さくす
ることができる。 【0007】そして、前記エアギャップ部を形成する1
又は2以上の横溝は、定常操業状態の上下動するメニス
カスの最下位置から200mmの範囲で形成されている
ので、この部分には凝固シェルが形成され、該凝固シェ
ルを介して溶湯とエアギャップ部が接し、結果として溶
湯の差し込みがなくなり、特公昭57−11735号公
報記載の幅もしくは直径が2.5mm以下の凹部より十
分広い溝を形成することができる。これによって、潤滑
剤である炭素粉による目詰まりも解消する。実際の操業
のデータを図5に示すが、メニスカスの最下位置から約
15mm程度(更に、好ましくは図6に示すように、メ
ニスカスから20mm程度)下方で200mmの範囲に
前記エアギャップ部を形成するのが好ましく、これによ
って、二重肌等の表面欠陥、ブレークアウトも解消で
き、更に鋳造速度の増大を図ることができる。なお、エ
アギャップ部がメニスカスから200mmを超えると、
凝固シェルの厚みも厚いので、菱形変形防止の効果は殆
どない。 【0008】特に、請求項1記載のビレットの連続鋳造
方法に使用する鋳型においては、鋳型内面に平均エアギ
ャップ深さが20μm以上の横溝(スリット)を形成し
ている。これは、図7に示すデータからも明らかなよう
に、平均エアギャップ深さが20μmより小さくなると
菱形変形角度が3度以上となるからである。なお、横溝
の深さについては、0.1mm以上であれば、熱流束が
安定し、菱形変形角度も1度以下となるので、この状態
で操業を行うのが好ましい。また、横溝の幅(W)につ
いては、前記(1)式のようにしているが、これは3m
m以下であれば、前記したように定常操業においては横
溝内に潤滑剤である炭素粉が詰まり、結果として横溝が
無くなり、図8に示すように菱形変形角度が3度以上と
なって不良品となる。そして、図9に示すように鋳型1
0は上下にオシレーションをさせているので、横溝11
の部分が上下し、常時横溝が形成されている幅(x)
は、(W−2a)となる。一方、鋳型10の内面に形成
されている横溝11が広いと、凝固シェル13の内側に
充填されている溶湯12によって凝固シェル13が溝内
に押し込まれ、製品に欠陥を生じることになる。更に、
図8からも明らかなように、2倍のオシレ−ションスト
ローク(a)を引いた値が10mmを超えると、菱形変
形角度が3度以上となるので、前記(1)式のように決
定すれば、菱形変形角度が3度以下のビレットを連続鋳
造できることになる。 【0009】なお、エアギャップ部を縦溝によって形成
した場合について検討すると、縦溝は鋳型の内面に凝固
シェルの進行方向に向かって連続的に形成されるので、
溶湯によって押圧される凝固シェルが連続的に差し込む
ことにより、ビレットの表面に縦溝が転写され、その結
果として鋳片表面性状が著しく損なわれ、ビレット鋳片
の表面割れ、又は圧延時の割れといった製品欠陥になり
易い。また、高速鋳造時には、モールド下方で縦溝に対
応した凝固遅れ部よりブレークアウトするという問題が
生じる。一方、請求項1記載のビレットの連続鋳造方法
に使用する鋳型においては、前述のようにエアギャップ
部を横溝によって形成しているので、ビレットの表面に
これらの形状が転写されることがなく、前述のような欠
陥を生じることがない。 【0010】 【実施例】続いて、添付した図面を参照しつつ、本発明
を具体化した実施例につき説明し、本発明の理解に供す
る。ここに、図10は本発明の一実施例に係るビレット
の連続鋳造に使用する鋳型の断面図、図11は同部分斜
視図、図12は同部分詳細図、図13は同部分拡大図、
図14は該実施例に係る鋳型と従来例に係る鋳型の面温
度偏差を示すグラフ、図15は該実施例に係る鋳型と従
来例に係る鋳型のコーナー部の温度偏差を示すグラフ、
図16は本発明の実施例に係る鋳型と従来例の鋳型の使
用可能領域の説明図である。 【0011】本発明の一実施例に係るビレットの連続鋳
造に使用する鋳型15は、図10〜図12に示すよう
に、モールドテーパーは0.6%/m、上部内周は13
3mm×133mmの正方形となって、鋳型15の上端
から定常状態で形成されるメニスカスの最下位置M(以
下、単にメニスカスという)までの距離hは約100m
m程度となっている。そして、メニスカスMから距離g
(=20mm)の位置にピッチp(=25mm)で、幅
W(=12mm)、長さk(=70mm)で、深さd
(=1mm)の3本の横溝16からなるエアギャップ部
17が形成されている(図13参照)。この鋳型15を
用いて、表1に示す成分・性状の溶鋼の連続鋳造を行
い、130mm角のビレットを製造した。 【0012】 【表1】【0013】鋳型15の上端から150mm程度の鋳型
銅板の中央面とコーナー部分の温度偏差(最大温度−最
小温度)を測定した結果を図14、図15に従来例に係
る鋳型(即ち、エアギャップ部が形成されていない鋳
型)と比較した場合について示すが、図に示すように、
本実施例(A)の方が従来例に係る鋳型(B)に比較し
て温度偏差が小さいことが分かる。これによって、図1
0に示すように、鋳型15と凝固シェル18間の隙間の
偏差が減少し、凝固シェル18の4面の不均一冷却が緩
和されて、ビレットの菱形変形が少なく(1度以下)な
った。 【0014】また、エアギャップ部17の部分も十分な
凝固シェル18が形成されているので、溶鋼19によっ
て押されても凝固シェル18が横溝16内に食い込むこ
とがなく、更には長期間使用しても鋳型15の上部から
注入する潤滑油の一例であるレプシードオイルの炭化物
による目詰まりも生じ無かった。表2は、溝深さ
(d)、凹部面積率、溝幅(W)、どて幅(A)、溝ピ
ッチ(p)を種々変えた場合の菱形変形の度数を示して
いるが、何れの場合であっても、良好であることを示し
ている。 【0015】 【表2】【0016】図16は、前記実施例に示す鋳型を用いて
ビレットを製造した場合と、従来例に係る鋳型を用いて
ビレットを製造した場合の比較を示すが、斜線で示すよ
うに、本発明の実施例に係る鋳型を用いた方が、高速鋳
造領域であっても菱形変形角度が1度以下と小さいこと
が分かる。なお、前記実施例においては、直線状のテー
パーは1段であったが、2段テーパーあるいは多段テー
パーであっても、本発明は適用される。 【0017】 【発明の効果】請求項1記載のビレットの連続鋳造方法
に使用する鋳型においては、高速鋳造であっても菱形変
形の少ないビレットを製造できることになり、質の高い
製品の生産性が向上する。また、エアギャップ部を形成
することによる緩冷却のために、鋳型の寿命が大幅に延
長され、更にはディプレッション(窪み変形)の発生も
防止できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a billet having a small rhombus deformation.
The present invention relates to a mold used in a continuous casting method for a cast . 2. Description of the Related Art When a billet is continuously cast, FIG.
As shown in FIG. 7, molten steel 51 is poured from the upper tundish into a mold 50 having an approximately square inner cross section and vertically oscillating, absorbing heat from the water-cooled side of the mold 50 and solidifying on the inner surface of the mold. The shell 52 was formed and gradually pulled out, and the molten steel in the core was gradually solidified to form a billet. The inner surface of the mold and the solidified shell 52
In order to achieve lubrication, repseed oil (an example of lubricating oil) was injected little by little from the top of the mold 50, and the repseed oil was carbonized as a lubricant. However, when the billet is cast at a high speed (for example, 3 m / min), the gap between the solidified shell 52 and the mold 50 is not uniform on the four outer peripheral surfaces of the billet. This caused a difference in solidification shrinkage due to non-uniform cooling, resulting in a rhombic deformation in the cross section of the resulting product. Therefore, in the conventional method for continuous casting of billets, since the operation is performed within the range of the speed at which the diamond-shaped deformation is allowed, there is a problem that the casting speed is relatively low and the productivity is poor. On the other hand, in continuous casting of a slab having a rectangular cross section, as shown in Japanese Patent Publication No. 57-11735, a large number of concave portions having a width or a diameter of 2.5 mm or less are uniformly formed on the entire surface or a part of the inside of a mold. Provision is made for a continuous casting mold aimed at preventing defects such as vertical cracks and sticking of the slab, but when this technology is applied to continuous casting of billets, the diameter of the concave portion becomes 2.5 mm. Because of the following, it was found that there was a problem that carbon powder as a lubricant gradually clogged in the concave portions, making it difficult to perform stable casting. The present invention has been made in view of such circumstances, and a method of continuous casting of a billet capable of high-speed stable casting without causing rhombic deformation of the billet.
It is intended to provide a template for use in the method . [0004] A first aspect of the present invention is to meet the above object.
The mold used for the continuous casting method of the billet described above is vertically oscillated, the molten metal is injected from the top and a small amount of lubricating oil is injected to continuously cast the billet. Is a linear taper that gradually decreases downward, and an air gap portion formed of one or a plurality of lateral grooves is formed on four inner surfaces of the mold within 200 mm below the lowermost position of the meniscus in a steady operation state. Each of the lateral grooves has an average air gap depth of 20 μm or more, and has a vertical width (W).
Satisfies the following equation. 3 mm ≦ W ≦ (oscillation amplitude of mold) × 2 + 10 mm (1) The method according to claim 1 is used for the continuous casting method of billets.
200m from the bottom of the meniscus
Since the air gap portion comprising one or more lateral grooves is provided substantially uniformly on the inner surface of the mold within m, a gap is forcibly formed between the billet and the mold. Since the inner surface of the mold has a linear taper that gradually decreases downward, the eccentricity of the billet in the mold is prevented, and the heat flux is reduced substantially evenly. Only the mold is in close contact with the mold and is not unevenly cooled. As a result, the solidified shell shrinks substantially uniformly, and a billet with less rhombus deformation can be produced even at high speed casting. Hereinafter, the operation of the present invention will be described in detail. A position 200 mm below the lowermost position of the meniscus
In the range, the heat flux extracted from the molten metal to the mold is the largest. The magnitude of this heat flux mainly depends on the air gap between the solidified shell and the mold, and the relationship is shown in FIG. By the way, in the conventional continuous casting of billets, due to the gap between the billet and the inner surface of the mold, eccentricity of the billet occurs, whereby the air gap between the mold and the solidified shell becomes uneven between the faces of the billet, Due to the air gap deviation Δd 1 , a deviation ΔQ 1 occurs in the heat flux between billet surfaces. As a result, imbalance occurs in the solidification shrinkage of the billet side surface, and a diamond-shaped deformation occurs in the product. FIG. 1 shows the result of an experiment to determine the relationship between the heat flux deviation between billet surfaces and the rhombus deformation. From this graph, in order to keep the rhombus deformation within 3 °, ΔQ ≦ 1,000,000 kcal / m 2 hr. It is necessary to do. Here, as means for reducing the heat flux deviation ΔQ, (1) First, an air gap portion having an appropriate depth or more is uniformly provided below the meniscus to reduce the heat flux size to, for example, 4 million kcal / m. Two
hr to 3 million kcal / m 2 hr.
(2) Further, there is a means for reducing the gap between the billet and the mold (for example, reducing the average air gap deviation Δd 1 from 20 μm to 10 μm) by making the mold taper a linear and appropriate value. By using the means (1) and (2) together, the heat flux deviation between the faces of the billet is reduced, so that the billet is uniformly cooled by the mold. Therefore, high speed (for example, 3.4 m /
min), a billet with few defects is produced. By the way, as means to reduce the heat flux deviation between surfaces,
If the gap between the billet and the mold surface is set to 0, it is theoretically possible to set ΔQ to 0, but for this purpose, the mold taper must be a complex curved shape along the solidification shrinkage profile of the shell. The air gap must be completely zero due to the microscopic irregularities on the slab surface.
Is impossible in practice. It is also considered that the heat flux deviation can be sufficiently reduced only by the slow cooling effect of the artificial air gap portion. However, when the mold taper is inappropriate (for example, straight) and the eccentricity of the slab is large, Cannot reduce the heat flux deviation. Next, the slow cooling effect of the air gap portion of the groove portion is as shown in FIG. 3 according to the concave area ratio and the groove depth. About 2 to 84% of the concave area ratio is effective in preventing rhombic deformation. The recess area ratio is increased 2% less than the heat flux, as in the prior art increases the temperature deviation of the mold inner surface, 84% is exceeded and the solidified shell is reduced portion contacting the mold, the result As a result, wear on the inner surface of the mold increases, and the life of the mold is shortened. Regarding the groove depth, when the recess area ratio is several tens% or more,
At a depth of 0.1 to 0.2 mm or more, the degree of slow cooling becomes substantially constant, so that even if the groove depth is further increased, there is no substantial effect. In the conventional continuous casting, the heat flux at the lower portion of the meniscus sharply decreases as it goes below the meniscus, whereas in the continuous casting according to the present invention, FIG.
The level is substantially constant as shown by the broken line a on the left side of FIG. As a result, while the shrinkage profile of the solidified shell conventionally has a complicated curved shape b according to a rapid change in heat flux, it can be approximated to a simple linear shape as shown by a broken line c in FIG. . Therefore, by forming a linear mold taper at an appropriate angle (for example, 0.3 to 1.2% / m) on the inner surface of the mold, the gap between the billet and the mold can be easily reduced, and the slab (billet) can be formed. ) Can be reduced. [0007] The air gap 1 is formed.
Alternatively, since the two or more transverse grooves are formed within a range of 200 mm from the lowermost position of the meniscus which moves up and down in a steady operation state, a solidified shell is formed in this portion, and the molten metal and the air gap are formed through the solidified shell. As a result, the molten metal is no longer inserted, and a groove sufficiently wider than a concave portion having a width or a diameter of 2.5 mm or less described in Japanese Patent Publication No. 57-11735 can be formed. This also eliminates clogging due to carbon powder as a lubricant. FIG. 5 shows actual operation data. The air gap is formed in a range of about 15 mm from the lowermost position of the meniscus (more preferably, about 20 mm from the meniscus as shown in FIG. 6) and in a range of 200 mm. It is preferable to eliminate surface defects such as double skin and breakout, and to further increase the casting speed. When the air gap exceeds 200 mm from the meniscus,
Since the thickness of the solidified shell is large, there is almost no effect of preventing rhombic deformation. [0008] In particular, continuous casting of the billet according to claim 1
In the mold used in the method, a lateral groove (slit) having an average air gap depth of 20 μm or more is formed on the inner surface of the mold. This is because, as is clear from the data shown in FIG. 7, when the average air gap depth is smaller than 20 μm, the rhombus deformation angle becomes 3 degrees or more. When the depth of the lateral groove is 0.1 mm or more, the heat flux is stable and the rhombus deformation angle is also 1 degree or less. Therefore, it is preferable to operate in this state. The width (W) of the lateral groove is as shown in the above equation (1).
m or less, carbon powder as a lubricant is clogged in the lateral groove in the normal operation as described above, and as a result, the lateral groove disappears, and the diamond-shaped deformation angle becomes 3 degrees or more as shown in FIG. Becomes Then, as shown in FIG.
0 is oscillated up and down.
Width where the horizontal groove is always formed (x)
Becomes (W-2a). On the other hand, if the lateral groove 11 formed on the inner surface of the mold 10 is wide, the solidified shell 13 is pushed into the groove by the molten metal 12 filled inside the solidified shell 13, causing defects in the product. Furthermore,
As is clear from FIG. 8, if the value obtained by subtracting the double oscillation stroke (a) exceeds 10 mm, the rhombus deformation angle becomes 3 degrees or more, so that it is determined as in the above equation (1). For example, a billet having a rhombus deformation angle of 3 degrees or less can be continuously cast. Considering the case where the air gap portion is formed by a vertical groove, the vertical groove is formed continuously on the inner surface of the mold in the direction of travel of the solidified shell.
By the continuous insertion of the solidified shell pressed by the molten metal, the longitudinal grooves are transferred to the billet surface, and as a result, the surface properties of the slab are significantly impaired, and the surface cracks of the billet slab, or cracks during rolling, etc. Prone to product defects. Further, at the time of high-speed casting, there is a problem that a breakout occurs from a solidification delay portion corresponding to the vertical groove below the mold. On the other hand, the method for continuously casting billets according to claim 1
In the mold used in (1) , since the air gap is formed by the lateral groove as described above, these shapes are not transferred to the billet surface, and the above-described defects do not occur. Next, an embodiment of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 10 is a cross-sectional view of a mold used for continuous casting of a billet according to one embodiment of the present invention, FIG. 11 is a partial perspective view of the same, FIG. 12 is a detailed view of the same part, FIG.
14 is a graph showing the surface temperature deviation between the mold according to the embodiment and the conventional mold, FIG. 15 is a graph showing the temperature deviation between the mold according to the embodiment and the corner according to the conventional example,
FIG. 16 is an explanatory diagram of usable areas of the mold according to the embodiment of the present invention and the mold of the conventional example. As shown in FIGS. 10 to 12, a mold 15 used for continuous casting of a billet according to one embodiment of the present invention has a mold taper of 0.6% / m and an upper inner periphery of 13%.
It is a square of 3 mm × 133 mm, and the distance h from the upper end of the mold 15 to the lowermost position M of the meniscus formed in a steady state (hereinafter, simply referred to as meniscus) is about 100 m.
m. And the distance g from the meniscus M
(= 20 mm) at a pitch p (= 25 mm), a width W (= 12 mm), a length k (= 70 mm), and a depth d
An air gap portion 17 composed of three (= 1 mm) lateral grooves 16 is formed (see FIG. 13). Using this mold 15, continuous casting of molten steel having the components and properties shown in Table 1 was performed to produce a billet of 130 mm square. [Table 1] FIG. 14 and FIG. 15 show the results of measuring the temperature deviation (maximum temperature-minimum temperature) between the central surface and the corner portion of the mold copper plate about 150 mm from the upper end of the mold 15. (A mold with no part formed), as shown in the figure,
It can be seen that the temperature deviation of the embodiment (A) is smaller than that of the mold (B) according to the conventional example. As a result, FIG.
As shown in FIG. 0, the deviation of the gap between the mold 15 and the solidified shell 18 was reduced, the uneven cooling of the four surfaces of the solidified shell 18 was alleviated, and the rhombic deformation of the billet was reduced (1 degree or less). Also, since the solidified shell 18 is sufficiently formed in the air gap portion 17, even when the solidified shell 18 is pushed by the molten steel 19, the solidified shell 18 does not bite into the lateral groove 16 and can be used for a long time. However, no clogging occurred due to carbide of repseed oil, which is an example of the lubricating oil injected from the upper part of the mold 15. Table 2 shows the frequency of rhombic deformation when the groove depth (d), the concave area ratio, the groove width (W), the width (A), and the groove pitch (p) are variously changed. Even in the case of, it shows that it is good. [Table 2] FIG. 16 shows a comparison between a case where a billet is manufactured using the mold shown in the above-mentioned embodiment and a case where a billet is manufactured using the mold according to the conventional example. It can be seen that the use of the mold according to the example has a smaller rhombus deformation angle of 1 degree or less even in the high-speed casting region. In the above embodiment, the linear taper is one step, but the present invention is applicable to a two-step taper or a multi-step taper. The method for continuously casting billets according to claim 1
In the mold used in the above method, a billet with less rhombus deformation can be manufactured even by high-speed casting, and the productivity of high-quality products is improved. In addition, due to the slow cooling by forming the air gap portion, the service life of the mold is greatly extended, and the occurrence of depression (dent deformation) can be prevented.

【図面の簡単な説明】 【図1】ビレット面間熱流束偏差と菱形変形角度の関係
を示すグラフである。 【図2】平均エアギャップ深さと熱流束の関係を示すグ
ラフである。 【図3】横溝と熱流束の関係を示すグラフである。 【図4】凝固シェルの生成状況の説明図である。 【図5】溝の形成開始位置と鋳片表面欠陥発生率との関
係を示すグラフである。 【図6】エアギャップ部(凹部)付加位置を示す説明図
である。 【図7】平均エアギャップ深さと菱形変形角度の関係を
示すグラフである。 【図8】溝幅と菱形変形角度の関係を示すグラフであ
る。 【図9】鋳型のオシレ−ションの説明図である。 【図10】本発明の一実施例に係るビレットの連続鋳造
に使用する鋳型の断面図である。 【図11】同部分斜視図である。 【図12】同部分詳細図である。 【図13】同部分拡大図である。 【図14】該実施例に係る鋳型と従来例に係る鋳型の面
温度偏差を示すグラフである。 【図15】該実施例に係る鋳型と従来例に係る鋳型のコ
ーナー部の温度偏差を示すグラフである。 【図16】本発明の実施例に係る鋳型と従来例の鋳型の
使用可能領域の説明図である。 【図17】従来例に係る鋳型の説明図である。 【符号の説明】 15:ビレットの連続鋳造に使用する鋳型、16:横
溝、17:エアギャップ部、18:凝固シェル、19:
溶鋼、M:メニスカス
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a relationship between a heat flux deviation between billet surfaces and a rhombus deformation angle. FIG. 2 is a graph showing a relationship between an average air gap depth and a heat flux. FIG. 3 is a graph showing a relationship between a lateral groove and a heat flux. FIG. 4 is an explanatory diagram of a generation state of a solidified shell. FIG. 5 is a graph showing a relationship between a groove formation start position and a slab surface defect occurrence rate. FIG. 6 is an explanatory view showing an air gap (recess) adding position; FIG. 7 is a graph showing a relationship between an average air gap depth and a rhombus deformation angle. FIG. 8 is a graph showing a relationship between a groove width and a rhombus deformation angle. FIG. 9 is an explanatory view of oscillation of a mold. FIG. 10 is a sectional view of a mold used for continuous casting of a billet according to one embodiment of the present invention. FIG. 11 is a partial perspective view of the same. FIG. 12 is a detailed view of the same part. FIG. 13 is an enlarged view of the same part. FIG. 14 is a graph showing the surface temperature deviation between the mold according to the example and the mold according to the conventional example. FIG. 15 is a graph showing the temperature deviation between the corners of the mold according to the embodiment and the mold according to the conventional example. FIG. 16 is an explanatory diagram of usable areas of a mold according to an embodiment of the present invention and a mold of a conventional example. FIG. 17 is an explanatory view of a mold according to a conventional example. [Description of Signs] 15: Mold used for continuous casting of billet, 16: lateral groove, 17: air gap, 18: solidified shell, 19:
Molten steel, M: meniscus

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 寿樹 福岡県北九州市戸畑区大字中原46−59 新日本製鐵株式会社 機械・プラント事 業部内 (72)発明者 藤永 輝郎 佐賀県杵島郡山内町大字鳥海字椿原 11125番地九州製鋼株式会社 佐賀工場 内 (72)発明者 中尾 一時 佐賀県杵島郡山内町大字鳥海字椿原 11125番地九州製鋼株式会社 佐賀工場 内 (56)参考文献 特開 平6−297103(JP,A) 特開 平6−304710(JP,A) 特開 平6−297101(JP,A) 特開 平2−70358(JP,A) 特開 平2−20645(JP,A) 特開 昭51−50819(JP,A) 特開 昭57−124555(JP,A) 特開 昭61−92756(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/04 311 B22D 11/16 105 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiki Sato 46-59, Ohara Nakahara, Tobata-ku, Kitakyushu-shi, Fukuoka Nippon Steel Corporation Machinery & Plant Business Department (72) Inventor Teruo Fujinaga Yamauchi-machi, Kishima-gun, Saga Prefecture 11125, Tsubakihara, Kojiyu, Kyushu Steel Co., Ltd. (72) Inventor Nakao Temporary, Tsubakihara, Kunishima, Kyushu Steel Co., Ltd. (125) Reference: JP-A-6-297103 (JP, A) JP-A-6-304710 (JP, A) JP-A-6-297101 (JP, A) JP-A-2-70358 (JP, A) JP-A-2-20645 (JP, A) JP-A-51-50819 (JP, A) JP-A-57-124555 (JP, A) JP-A-61-92756 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11 / 04 311 B22D 11/16 105

Claims (1)

(57)【特許請求の範囲】【請求項1】 上下方向にオシレートし、上部から溶湯
を注入すると共に少量の潤滑油を注入してビレットの連
続鋳造を行う内側断面が略四角形の鋳型において、 内面を下方に向かって徐々に縮小する直線状テーパーと
し、更に、定常操業状態のメニスカス最下位置より下位
置で200mm以内の前記鋳型の内面4面に、1又は複
数の横溝からなるエアギャップ部をそれぞれ設け、しか
も、該横溝の平均エアギャップ深さが20μm以上であ
って、その上下幅(W)が以下の式を満足することを特
徴とするビレットの連続鋳造に使用する鋳型。 3mm≦W≦(鋳型のオシレーション振幅)×2+10mm
(57) [Claim 1] In a mold having an approximately square inner cross section, which is vertically oscillated, injects a molten metal from an upper portion and injects a small amount of lubricating oil to continuously cast a billet. The inner surface is a linear taper that gradually decreases downward, and further, an air gap portion formed of one or a plurality of lateral grooves on four inner surfaces of the mold within 200 mm below the lowermost position of the meniscus in a steady operation state. And an average air gap depth of the lateral groove is 20 μm or more, and a vertical width (W) thereof satisfies the following expression. 3mm ≦ W ≦ (oscillation amplitude of mold) × 2 + 10mm
JP34060194A 1994-12-28 1994-12-28 Mold for continuous billet casting Expired - Fee Related JP3373313B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP34060194A JP3373313B2 (en) 1994-12-28 1994-12-28 Mold for continuous billet casting
US08/702,611 US6024162A (en) 1994-12-28 1995-01-26 Continuous casting method for billet
TW084113773A TW290484B (en) 1994-12-28 1995-12-22
MYPI95004030A MY115456A (en) 1994-12-28 1995-12-22 Continuous casting method of billet and casting mold for said method
PCT/JP1995/002704 WO1996020054A1 (en) 1994-12-28 1995-12-26 Method of continuous casting of billet and casting mold therefor
DE19581547T DE19581547C2 (en) 1994-12-28 1995-12-26 Continuous casting process for billets and mold therefor
KR1019960704705A KR100253135B1 (en) 1994-12-28 1995-12-26 Method of continuous casting of billet and casting mold therefor
CN95191832A CN1077818C (en) 1994-12-28 1995-12-26 Method of continuous casting billet and casting mold thereof
US09/473,085 US6112805A (en) 1994-12-28 1999-12-28 Continuous casting mold for billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34060194A JP3373313B2 (en) 1994-12-28 1994-12-28 Mold for continuous billet casting

Publications (2)

Publication Number Publication Date
JPH08187550A JPH08187550A (en) 1996-07-23
JP3373313B2 true JP3373313B2 (en) 2003-02-04

Family

ID=18338548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34060194A Expired - Fee Related JP3373313B2 (en) 1994-12-28 1994-12-28 Mold for continuous billet casting

Country Status (1)

Country Link
JP (1) JP3373313B2 (en)

Also Published As

Publication number Publication date
JPH08187550A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
US4023612A (en) Continuous casting mold and process of casting
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
KR100253135B1 (en) Method of continuous casting of billet and casting mold therefor
US4519439A (en) Method of preventing formation of segregations during continuous casting
US3520352A (en) Continuous casting mold having insulated portions
JP3373313B2 (en) Mold for continuous billet casting
EP0909597A1 (en) Crystalliser for the continuous casting of thin slabs
JP3100541B2 (en) Continuous casting method of round billet and mold used in the method
US20120186772A1 (en) Thermal management system for a continuous casting molten metal mold
CA1061986A (en) Method and apparatus for continuously casting a slab
JPH026037A (en) Method for continuously casting steel
JP3389449B2 (en) Continuous casting method of square billet
JP2950152B2 (en) Continuous casting mold for slab
JPS6234461B2 (en)
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
JP2024047886A (en) Continuous casting mold and method of manufacturing the same
JP3465578B2 (en) Method of manufacturing rectangular slab by continuous casting
JPH08206786A (en) Mold for continuous casting
JP3082834B2 (en) Continuous casting method for round slabs
JP2024047887A (en) Continuous casting mold, manufacturing method for continuous casting mold, and continuous casting method for steel
CN116710217A (en) Aluminum strip casting without parting agent
JP2845706B2 (en) Molding equipment for continuous casting equipment
KR20040097142A (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
JPH07266002A (en) Continuous casting method and mold for continuous casting
JP2004042128A (en) Casting roll in twin roll type continuous casting machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021022

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees