JPH0539807Y2 - - Google Patents

Info

Publication number
JPH0539807Y2
JPH0539807Y2 JP1988006034U JP603488U JPH0539807Y2 JP H0539807 Y2 JPH0539807 Y2 JP H0539807Y2 JP 1988006034 U JP1988006034 U JP 1988006034U JP 603488 U JP603488 U JP 603488U JP H0539807 Y2 JPH0539807 Y2 JP H0539807Y2
Authority
JP
Japan
Prior art keywords
belt
casting
metal
belts
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988006034U
Other languages
Japanese (ja)
Other versions
JPH01114141U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1988006034U priority Critical patent/JPH0539807Y2/ja
Publication of JPH01114141U publication Critical patent/JPH01114141U/ja
Application granted granted Critical
Publication of JPH0539807Y2 publication Critical patent/JPH0539807Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、一対の無端状金属ベルトを用いて薄
鋳片を連続的に製造する鋳造装置における前記ベ
ルトの改良に関するものである。 (従来の技術) 従来、薄鋼板は銅製鋳型に溶鋼を連続的に注湯
し、冷却・凝固して厚さ200〜300mmのスラブを製
造し、このスラブを熱間圧延機及び冷間圧延機に
よつて圧延して製造していた。 ところが近年、熱間圧延工程を極力省略するた
め、厚さ50mm以下の薄鋳片を鋳造する方法が検討
されている。そして、その一つに無端ベルト式の
連続鋳造機がある。 この無端ベルト式の連続鋳造機は、駆動ローラ
ーにより循環される無端状金属ベルトを所定の間
隔をなすごとく対向配置し、これら金属ベルトの
両端部近傍で両ベルトに挟持されベルトと共に循
環するダムブロツクとによつて形成された鋳造空
間に溶鋼を注湯し、該注湯した溶鋼を前記両金属
ベルト及び両ダムブロツク内で冷却して順次凝固
せしめて鋳片とし、この鋳片を下方に引き抜くも
のであり、前記金属ベルトとして、従来は炭素含
有量が0.01〜1.0重量%の低合金鋼が用いられて
いるのが現状である。 (考案が解決しようとする課題) ところで、上記した連続鋳造装置を用いて鋳片
を製造する場合、溶鋼中の炭素量が0.09〜0.30重
量%の範囲内にあるいわゆる中炭素鋼では、鋳造
時に鋳片に縦割れが発生しやすいものであつた。
このような鋳片表面の割れが発生すると、圧延工
程に送るに先立つて表面疵取り作業を必要とする
ため、本来熱経済的に優れている直送圧延適用の
阻害要因となつている。 このような鋳片の表面割れ、つまり縦割れの発
生機構については、従来より種々研究がなされて
おり、特にCが0.09〜0.30重量%の範囲は、包晶
反応域であり、凝固反応が不均一に進行する結
果、凝固シエル厚さの不均一度が大きく、これが
原因で縦割れ等が発生しやすいことが知られてい
る(第6図参照)。しかして、その発生機構は未
だ完全には明らかにされていないが、このような
縦割れ発生機構は次のように考えられている。 すなわち、連続鋳造に際しては、溶鋼がベルト
間に供給され、凝固シエルが生成するのである
が、その場合、ベルトによる抜熱量が大きいた
め、少しでも抜熱量にムラがあると凝固シエル厚
さは不均一となり、凝固シエル厚さの薄い部分に
収縮による熱応力やベルトの変動による衝撃力が
作用する結果、縦割れが発生するというものであ
る。 従つて、このような極薄の連続鋳造鋳片におけ
る縦割れ発生を防止するためには、メニスカス近
傍で生成するいわゆる初期凝固シエルの厚さを均
一にすればよいわけである。 また、この種の連続鋳造機においては、金属ベ
ルトの一方の面が溶鋼に接し、他方の面が冷却水
に接するという条件下において運転されるもので
あるため、金属ベルトの厚さ方向に急勾配の温度
差が生じ、ここに熱膨張による歪が発生し、第7
図イに示すように幅方向、および同図ロに示すよ
うに鋳込み方向に変形し波打ちが生ずる。そし
て、その変形量は第8図に示すように金属ベルト
1の熱膨張率に大きく影響される。その結果、金
属ベルト1に接している溶鋼A側の鋳片表層部の
冷却速度が不均一になり、これに起因して鋳片の
凝固シエルCの形成も均一性を欠き、下側の金属
ベルト1では、第9図に示すように、注湯直後
(イ図)から凝固が進行するにつれて凝固シエル
Cと金属ベルト1が局部的に離反するため均等な
冷却が行われず、凹みを成した不均一厚さの凝固
シエルCが形成される(ロ図)。一方、上側の金
属ベルト1も第10図に示すように下側と同様に
注湯直後(イ図)から凝固が進むにつれて凹みを
有する不均一厚さの凝固シエルCが形成される
(ロ図)。すなわち、中炭素鋼以外の不均一凝固の
生じにくい組成の鋼でも鋳片の凝固シエルCの形
成が不均一となり、金属ベルト1側に凹みが生じ
るのである。この凹み部Eの凝固シエルCは薄い
ために、熱応力による引張力が生じ凝固シエルC
内部の固液界面あるいは凝固シエル表面から割れ
が発生し、表面性状の良好な極薄鋳片が得られな
いという問題があつた。 従つて、このような連続鋳造鋳片で生じる割れ
を防止するためには、金属ベルトが溶鋼から奪う
抜熱量を低減させ、金属ベルトの温度上昇による
熱変形を抑制すればよいわけである。 本考案は、このように連続鋳造される薄鋳片に
おける縦割れを防止すべく、メニスカス近傍で生
成するいわゆる初期凝固シエルの厚さを均一化す
るとともに、ベルトが溶鋼から奪う抜熱量を低減
させ、ベルトの温度上昇による熱変形を抑制する
ことができる薄鋳片連続鋳造装置用ベルトを提供
するものである。 (課題を解決するための手段) 本考案の薄鋳片連続鋳造装置用ベルトは、駆動
ローラーにより循環される無端状金属ベルトを所
定の間隔となすごとく対向配置し、これら金属ベ
ルトの両端部近傍で両ベルトに挟持されベルトと
共に循環するダムブロツクを備え、これら金属ベ
ルトとダムブロツクで囲繞された鋳造空間に溶鋼
を供給して連続的に薄鋳片を製造する連続鋳造装
置の前記ベルトにおいて、該ベルトに、幅が250
〜750μmで高さ又は深さが60〜300μmの鋳込み
方向と平行な山部と谷部を連続させた溝を形成し
たものである。 本考案において、鋳込み方向と平行な溝を形成
する山部と谷部の幅bを250〜750μmとしたの
は、次の理由からである。 すなわち、微細な溝を設ける理由が、金属ベル
トに対する溶鋼の接触部を少なくして抜熱量を低
下させることにあるから、溶鋼Aが微細溝の谷部
に容易に流入してはならない。そこで、まず、メ
ニスカス位置付近における溶鋼の圧力と、溶鋼流
入限界の前記谷部の幅bとの関係を第2図に示す
が、通常、溶鋼層には、10g/cm2程度の圧力が金
属ベルトと凝固シエル間に働く。第2図に示す結
果から10g/cm2の溶鋼圧力がある場合、溶鋼流入
のない谷部の幅bは、750μm以下となる。また、
谷部の幅bを250μm以上とした理由は、これ未
満の幅では加工が困難となるからである。 また、本考案において、鋳込み方向と平行な溝
を形成する山部と谷部の高さ(深さ)aを60〜
300μmとしたのは、次の理由からである。 まず、本考案において、谷部の深さaの下限を
60μmとしたのは、深さaが60μm未満では、本
考案で意図している空気による断熱効果が十分で
ないためである。 ここに、第3図にメニスカス位置から20mm下方
の位置における熱流束を測定した結果を示すが、
通常、緩冷却化により、凝固シエル厚さの均一化
を図るため、熱流束を20%以上低下させる必要が
ある。この第3図に示す結果から谷部の深さ
a60μm以上が必要となることが分かる。一方、
谷部の深さaを300μm以下としたのは、それを
超えても効果が殆ど変わらないためである。 (作用) 本考案は上述したように、金属ベルトに、幅が
250〜750μmで高さ又は深さが60〜300μmの鋳込
み方向と平行な山部と谷部を連続させた溝を形成
したので、金属ベルトの溶鋼に接する面が少なく
なつて金属ベルトによる抜熱量が低減するため、 メニスカス近傍が緩冷却されて凝固シエル厚
さが均一に成長し、 更に、金属ベルトの温度上昇による熱変形を
軽減して不均一凝固を抑制でき、 もつて前記、より鋳片表層部の凝固シエル
を均一に成長させることができる。 (実施例) 以下本考案の実施例の薄鋳片連続鋳造装置用ベ
ルトについて、図面を参照しながら説明する。第
1図イはその鋳造装置の構成図を示し、同図ロは
ベルトの概略斜視図、ハはベルトの横断面図を示
すものである。 図において、1は無端状の一対の金属ベルトで
あり、駆動ローラー2に案内されて、所定の間隔
を維持しながら、鋳造面は溶鋼A及び鋳片Bを保
持し、背面は常時冷却水Dで冷却されながら矢印
方向に循環移動するものである。3はダムブロツ
クであり、ガイドローラー4によつて案内され、
上下一対の前記金属ベルト1間の両端部に配置さ
れ、これら金属ベルト1と同調循環すべく配設さ
れている。また、5は給湯用樋であり、上下一対
の金属ベルト1と両ダムブロツク3とによつて形
成される鋳造空間に溶鋼Aを供給するものであ
る。以上のように薄鋳片連続鋳造装置が構成され
るが、本考案では、前記無端状金属ベルト1が第
1図ロ及びハに示すように形成される。 すなわち、金属ベルト1の表面に、鋳込み方向
と平行な山部7と谷部6を連続させた微細な溝に
加工したものである。この溝は好ましくは規則的
に設けられ、その断面形状は溶鋼Aの流入を阻止
する一方空気の流入を許す程度とし、山部7が溶
鋼A(及び鋳片B)との接触部を構成してこの部
分を経て抜熱される。ところで、この微細な溝を
形成する山部7あるいは谷部6の幅bと高さ又は
深さaについては、b=250〜750μm、a=60〜
300μmとなるように形成する。 以上のように、本考案にあつては山部7あるい
は谷部6の幅bを250〜750μm、高さ又は深さa
を60〜300μmとし、この加工範囲を金属ベルト
1に使用することにより、本考案が目的とする緩
冷却の効果が得られる。 また、前述のように、中炭素鋼の初期凝固シエ
ル厚を均一に生成させるには、抜熱量の低減が有
効であるが、第4図に示すように、微細溝加工を
施していない通常ベルトの抜熱量の70%以下に減
少させることにより、その効果が現れる。従つ
て、30%以上の抜熱量低減が必要であるが、第1
図ロに示すように、金属ベルト1に鋳込み方向と
平行に微細溝加工を施すことにより、金属ベルト
1の内表面が溶鋼Aと接触する部分の面積率を低
下させ、全体として緩冷却を行うことができる。 また、通常の湾曲型あるいは垂直型の水冷銅盤
使用の連続鋳造機では、中炭素鋼以外の鋼を鋳造
しても不均一凝固せず、割れは発生しないが、無
端ベルト式の連続鋳造機で鋳造すると、金属ベル
ト1の熱変形により金属ベルト1の波打ちの振幅
が大きくなり、これが原因となつて凝固シエル厚
さの不均一を招き、割れが発生する(第5図参
照)。 しかし、微細な溝加工を施した金属ベルト1を
使用することにより、鋳片Bと金属ベルト1との
接触面積率が減少し、鋳片Bから金属ベルト1へ
の抜熱量が低減する結果、金属ベルト1内表面の
温度上昇が軽減され、しかも微細溝加工による変
形抵抗の上昇により、金属ベルト1の熱変形が抑
制されるため、割れが大幅に減少する。 具体例として、第1図イに示す装置を用い、金
属ベルト1として従来の軟鋼ベルト及び下記第1
表に示す微細溝加工を施した金属ベルトを使用し
て、下記第2表に示す化学組成の溶鋼から極薄鋳
片を鋳造した。
(Industrial Application Field) The present invention relates to an improvement of a pair of endless metal belts in a casting apparatus that continuously produces thin slabs. (Prior art) Conventionally, thin steel sheets are produced by continuously pouring molten steel into a copper mold, cooling and solidifying it to produce a slab with a thickness of 200 to 300 mm, and then rolling this slab into a hot rolling mill and a cold rolling mill. It was manufactured by rolling. However, in recent years, methods of casting thin slabs with a thickness of 50 mm or less have been studied in order to eliminate the hot rolling process as much as possible. One of these is an endless belt type continuous casting machine. This endless belt type continuous casting machine has endless metal belts that are circulated by drive rollers and are arranged facing each other at a predetermined interval, and a dam block that is sandwiched between both belts near both ends of these metal belts and circulates with the belts. Molten steel is poured into the casting space formed by the casting process, the poured molten steel is cooled in both metal belts and both dam blocks, and sequentially solidified into slabs, which are then pulled out downward. Conventionally, low alloy steel with a carbon content of 0.01 to 1.0% by weight has been used as the metal belt. (Problem to be solved by the invention) By the way, when producing slabs using the above-mentioned continuous casting equipment, so-called medium carbon steel in which the carbon content in the molten steel is within the range of 0.09 to 0.30% by weight, Vertical cracks were likely to occur in the slab.
When such cracks occur on the surface of a slab, it is necessary to remove surface defects before sending it to the rolling process, which is a factor that hinders the application of direct rolling, which is originally excellent in terms of thermoeconomics. Various studies have been conducted on the generation mechanism of such surface cracks, that is, longitudinal cracks, in slabs. In particular, the range of 0.09 to 0.30% by weight of C is the peritectic reaction region, where no solidification reaction occurs. It is known that as a result of uniform progress, the thickness of the solidified shell is highly non-uniform, which is likely to cause vertical cracks, etc. (see Fig. 6). Although the mechanism by which such vertical cracks occur has not yet been completely clarified, the mechanism by which such vertical cracks occur is thought to be as follows. In other words, during continuous casting, molten steel is supplied between the belts and a solidified shell is generated, but in this case, the amount of heat removed by the belt is large, so if there is even a slight unevenness in the amount of heat removed, the thickness of the solidified shell will be unstable. When the thickness of the solidified shell becomes uniform, thermal stress due to shrinkage and impact force due to belt fluctuations act on the thinner part of the solidified shell, resulting in vertical cracking. Therefore, in order to prevent the occurrence of vertical cracks in such ultra-thin continuously cast slabs, it is sufficient to make the thickness of the so-called initial solidification shell formed near the meniscus uniform. In addition, this type of continuous casting machine is operated under conditions where one side of the metal belt is in contact with molten steel and the other side is in contact with cooling water, so there is a sudden change in the thickness direction of the metal belt. A gradient temperature difference occurs, and strain due to thermal expansion occurs, and the seventh
Deformation occurs in the width direction, as shown in Figure A, and in the casting direction, as shown in Figure B, resulting in waving. The amount of deformation is greatly influenced by the coefficient of thermal expansion of the metal belt 1, as shown in FIG. As a result, the cooling rate of the surface layer of the slab on the molten steel A side that is in contact with the metal belt 1 becomes uneven, and as a result, the formation of the solidified shell C of the slab also lacks uniformity, and the lower metal In belt 1, as shown in Fig. 9, as solidification progresses immediately after pouring (Fig. A), the solidified shell C and metal belt 1 locally separate from each other, so uniform cooling is not performed and a dent is formed. A solidified shell C with non-uniform thickness is formed (lower figure). On the other hand, as shown in Fig. 10, the upper metal belt 1 also forms a solidified shell C having uneven thickness with depressions as the solidification progresses from immediately after pouring (Fig. A), as shown in Fig. 10. ). That is, even in steels other than medium carbon steels whose compositions are less likely to cause uneven solidification, the formation of the solidified shell C of the slab becomes uneven, resulting in dents on the metal belt 1 side. Since the solidified shell C in this concave portion E is thin, tensile force due to thermal stress is generated in the solidified shell C.
There was a problem in that cracks occurred from the internal solid-liquid interface or the surface of the solidified shell, making it impossible to obtain ultra-thin slabs with good surface properties. Therefore, in order to prevent such cracks from occurring in continuously cast slabs, it is sufficient to reduce the amount of heat removed from the molten steel by the metal belt, and to suppress thermal deformation of the metal belt due to temperature rise. In order to prevent vertical cracks in continuously cast thin slabs, this invention equalizes the thickness of the so-called initial solidification shell that forms near the meniscus, and reduces the amount of heat removed from the molten steel by the belt. The present invention provides a belt for a continuous casting machine for thin cast slabs, which can suppress thermal deformation due to temperature rise of the belt. (Means for Solving the Problems) The belt for a continuous cast thin slab casting apparatus of the present invention has endless metal belts circulated by a driving roller arranged facing each other at a predetermined interval, and near both ends of these metal belts. The belt of the continuous casting apparatus includes a dam block which is sandwiched between both belts and circulates together with the belt, and which supplies molten steel to a casting space surrounded by these metal belts and the dam block to continuously produce thin slabs. , width is 250
A groove with a height or depth of ~750 μm and a height or depth of 60 to 300 μm and continuous peaks and valleys parallel to the casting direction is formed. In the present invention, the width b of the peaks and valleys forming the grooves parallel to the casting direction is set to 250 to 750 μm for the following reason. That is, since the reason for providing the fine grooves is to reduce the amount of heat removed by reducing the contact area of the molten steel with the metal belt, the molten steel A must not easily flow into the valleys of the fine grooves. First, Figure 2 shows the relationship between the pressure of molten steel near the meniscus position and the width b of the valley at the limit of molten steel inflow. It works between the belt and the coagulation shell. From the results shown in FIG. 2, when the molten steel pressure is 10 g/cm 2 , the width b of the valley where molten steel does not flow is 750 μm or less. Also,
The reason why the width b of the valley is set to 250 μm or more is that processing becomes difficult if the width is less than this. In addition, in the present invention, the height (depth) a of the peaks and valleys that form the grooves parallel to the casting direction is 60~
The reason for setting it to 300 μm is as follows. First, in this invention, the lower limit of the valley depth a is
The reason for setting the depth to 60 μm is that if the depth a is less than 60 μm, the heat insulating effect of air as intended in the present invention is not sufficient. Here, Figure 3 shows the results of measuring the heat flux at a position 20 mm below the meniscus position.
Normally, in order to uniformize the thickness of the solidified shell by slow cooling, it is necessary to reduce the heat flux by 20% or more. From the results shown in Figure 3, the depth of the valley
It can be seen that a diameter of 60 μm or more is required. on the other hand,
The reason why the depth a of the trough is set to 300 μm or less is because the effect hardly changes even if the depth a is exceeded. (Function) As mentioned above, the present invention has a metal belt with a width
Since we have formed grooves that are 250 to 750 μm in height or 60 to 300 μm in height and have continuous peaks and valleys parallel to the casting direction, the surface of the metal belt that comes into contact with the molten steel is reduced, reducing the amount of heat removed by the metal belt. As a result, the vicinity of the meniscus is slowly cooled and the thickness of the solidified shell grows uniformly, and furthermore, thermal deformation due to temperature rise of the metal belt can be reduced and uneven solidification can be suppressed. The solidified shell in the surface layer can be grown uniformly. (Example) A belt for a continuous cast thin slab casting apparatus according to an example of the present invention will be described below with reference to the drawings. FIG. 1A shows a configuration diagram of the casting apparatus, FIG. 1B shows a schematic perspective view of the belt, and FIG. 1C shows a cross-sectional view of the belt. In the figure, reference numeral 1 denotes a pair of endless metal belts, which are guided by drive rollers 2 and hold molten steel A and slab B on their casting surfaces while maintaining a predetermined interval, and on their back surfaces are constantly cooled by water D. It circulates in the direction of the arrow while being cooled. 3 is a dam block, which is guided by a guide roller 4;
It is arranged at both ends between the pair of upper and lower metal belts 1, and is arranged to circulate in synchronization with these metal belts 1. Further, 5 is a gutter for supplying hot water, which supplies molten steel A to a casting space formed by a pair of upper and lower metal belts 1 and both dam blocks 3. The continuous thin slab casting apparatus is constructed as described above, but in the present invention, the endless metal belt 1 is formed as shown in FIGS. 1B and 1C. That is, the surface of the metal belt 1 is machined into fine grooves in which peaks 7 and troughs 6 that are parallel to the casting direction are continuous. The grooves are preferably provided regularly, and their cross-sectional shape is such that they block the inflow of molten steel A while allowing air to flow in, and the peaks 7 constitute the contact area with molten steel A (and slab B). Heat is removed through the lever. By the way, regarding the width b and height or depth a of the peaks 7 or valleys 6 that form this fine groove, b = 250 to 750 μm, a = 60 to
Form to have a thickness of 300 μm. As described above, in the present invention, the width b of the peak portion 7 or the valley portion 6 is 250 to 750 μm, and the height or depth a is 250 to 750 μm.
By setting the processing range to 60 to 300 μm and using this processing range for the metal belt 1, the effect of slow cooling aimed at by the present invention can be obtained. In addition, as mentioned above, reducing the amount of heat removed is effective in producing a uniform initial solidification shell thickness for medium carbon steel, but as shown in Figure 4, ordinary belts without microgroove processing The effect appears by reducing the amount of heat removed to 70% or less. Therefore, it is necessary to reduce the amount of heat removed by 30% or more, but the first
As shown in Figure B, by forming fine grooves on the metal belt 1 in parallel to the casting direction, the area ratio of the part where the inner surface of the metal belt 1 contacts the molten steel A is reduced, and the entire metal belt is slowly cooled. be able to. In addition, with a regular curved or vertical continuous casting machine that uses a water-cooled copper plate, even if steel other than medium carbon steel is cast, uneven solidification and cracking will not occur, but with an endless belt type continuous casting machine, no cracks will occur. When casting, the amplitude of the waving of the metal belt 1 increases due to thermal deformation of the metal belt 1, which causes uneven thickness of the solidified shell and cracks (see FIG. 5). However, by using the metal belt 1 with fine grooves, the contact area ratio between the slab B and the metal belt 1 is reduced, and the amount of heat removed from the slab B to the metal belt 1 is reduced. The temperature rise on the inner surface of the metal belt 1 is reduced, and the thermal deformation of the metal belt 1 is suppressed due to the increase in deformation resistance due to the fine groove processing, so that cracks are significantly reduced. As a specific example, using the apparatus shown in FIG. 1A, the metal belt 1 is a conventional mild steel belt and the following
An ultra-thin slab was cast from molten steel having the chemical composition shown in Table 2 below using a metal belt machined with the microgrooves shown in the table.

【表】【table】

【表】 このときの鋳込み条件は、鋳片寸法:1000mm幅
×50mm厚、鋳込速度:3.0〜6.0m/minであつた。 次に、これら具体例によつて得られた鋳片につ
いて、それぞれその表面性状を比較した結果、中
炭素鋼については、第4図中に示すように、微細
溝加工を施した本考案ベルト1による場合(▲
印)は、従来のベルトによる場合(△印)に比
べ、凝固シエル厚の不均一度がほとんどなく、表
面性状の極めて良好な薄鋳片が得られた。また、
低炭素鋼については、第5図に示すように、本考
案ベルト1を用いたもの(●及び▲印)では、従
来のベルトを用いたもの(○及び△印)に比べて
ベルトの波打ち振幅が小さく、その結果、表面疵
の極めて少ない良好な薄鋳片が得られた。 (考案の効果) 以上説明したように本考案は、無端ベルト式連
続鋳造装置に使用する金属ベルトに、幅が250〜
750μmで高さ又は深さが60〜300μmの鋳込み方
向と平行な山部と谷部を連続させた溝となるよう
に形成することにより、中炭素鋼では包晶反応に
起因する、また低炭素鋼では金属ベルトの熱変形
に起因する各不均一凝固が抑制できるため、これ
らが原因となつて発生していた鋳片の表面疵が著
しく減少し、表面性状の極めて良好な金属薄鋳片
を安定して製造できる。
[Table] The casting conditions at this time were slab dimensions: 1000 mm width x 50 mm thickness, and casting speed: 3.0 to 6.0 m/min. Next, as a result of comparing the surface properties of the slabs obtained in these specific examples, it was found that for medium carbon steel, as shown in FIG. In case of (▲
(marked), compared to the case using a conventional belt (△ mark), there was almost no non-uniformity in the solidified shell thickness, and a thin slab with extremely good surface quality was obtained. Also,
As for low carbon steel, as shown in Figure 5, belt undulation amplitude is lower in belts using the belt 1 of the present invention (● and ▲ marks) than in belts using conventional belts (○ and △ marks). As a result, a good thin slab with extremely few surface defects was obtained. (Effects of the invention) As explained above, the present invention is suitable for metal belts used in endless belt type continuous casting equipment with a width of 250 mm
By forming grooves with continuous peaks and valleys parallel to the casting direction with a height or depth of 750 μm and a height or depth of 60 to 300 μm, low carbon In steel, uneven solidification caused by thermal deformation of the metal belt can be suppressed, so the surface defects of slabs that were caused by these are significantly reduced, making it possible to produce thin metal slabs with extremely good surface quality. Can be manufactured stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示すもので、イ図
はその鋳造装置の構成図、ロ図はベルトの概略斜
視図、ハ図はベルトの横断面図、第2図はベルト
の谷部の幅と溶鋼圧力との関係を示す特性図、第
3図は同深さと熱流束減少率との関係を示す特性
図、第4図は緩冷却比率と凝固シエル厚不均一度
の関係を示す実験結果を示す図、第5図はベルト
の波打ち振幅の標準偏差と割れ総長さの関係を示
す実験結果を示す図、第6図は炭素量と縦割れ発
生頻度の関係を示す図、第7図イ,ロは従来のベ
ルトの幅方向及び鋳込み方向の変形状態を示す説
明図、第8図は同ベルトの熱膨張率と波打ちの振
幅との関係を示す図、第9図イ,ロは鋳片下面側
凝固シエル成長に及ぼす金属ベルト幅方向の変形
の影響を示す説明図、第10図イ,ロは鋳片上面
側における同説明図である。 1は金属ベルト、2は駆動ローラー、3はダム
ブロツク、6は谷部、7は山部、Aは溶鋼、Bは
鋳片。
Fig. 1 shows an embodiment of the present invention, Fig. A is a block diagram of its casting device, Fig. B is a schematic perspective view of the belt, Fig. C is a cross-sectional view of the belt, and Fig. 2 is a valley of the belt. Figure 3 is a characteristic diagram showing the relationship between the width of the part and the molten steel pressure, Figure 3 is a characteristic diagram showing the relationship between the depth and heat flux reduction rate, and Figure 4 is the relationship between the slow cooling ratio and solidification shell thickness non-uniformity. Figure 5 is a diagram showing the experimental results showing the relationship between the standard deviation of the ripple amplitude of the belt and the total crack length. Figure 6 is a diagram showing the relationship between the carbon content and the frequency of occurrence of longitudinal cracks. Figures 7A and 7B are explanatory diagrams showing the deformation state of the conventional belt in the width direction and casting direction. Figure 8 is a diagram showing the relationship between the coefficient of thermal expansion and the amplitude of waviness of the same belt. Figure 9A and Figure 7B 10A and 10B are explanatory diagrams showing the influence of deformation in the width direction of the metal belt on the solidified shell growth on the lower surface side of the slab, and FIGS. 10A and 10B are the same explanatory diagrams on the upper surface side of the slab. 1 is a metal belt, 2 is a drive roller, 3 is a dam block, 6 is a valley, 7 is a peak, A is molten steel, and B is a slab.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 駆動ローラーにより循環される無端状金属ベル
トを所定の間隔と成すごとく対向配置し、これら
金属ベルトの両端部近傍で両ベルトに挟持されベ
ルトと共に循環するダムブロツクを備え、これら
金属ベルトとダムブロツクで囲繞された鋳造空間
に溶湯を供給して連続的に薄鋳片を製造する連続
鋳造装置の前記ベルトにおいて、該ベルトに、幅
が250〜750μmで高さ又は深さが60〜300μmの鋳
込み方向と平行な山部と谷部を連続させた溝を形
成したことを特徴とする薄鋳片連続鋳造装置用ベ
ルト。
Endless metal belts circulated by drive rollers are arranged facing each other at a predetermined interval, and a dam block is provided near both ends of the metal belts and circulates together with the belts, and the belt is surrounded by the metal belts and the dam blocks. In the above-mentioned belt of a continuous casting apparatus that continuously produces thin slabs by supplying molten metal to a casting space, the belt is provided with a belt parallel to the casting direction having a width of 250 to 750 μm and a height or depth of 60 to 300 μm. 1. A belt for continuous thin slab casting equipment, characterized in that a groove is formed with continuous peaks and valleys.
JP1988006034U 1988-01-21 1988-01-21 Expired - Lifetime JPH0539807Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988006034U JPH0539807Y2 (en) 1988-01-21 1988-01-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988006034U JPH0539807Y2 (en) 1988-01-21 1988-01-21

Publications (2)

Publication Number Publication Date
JPH01114141U JPH01114141U (en) 1989-08-01
JPH0539807Y2 true JPH0539807Y2 (en) 1993-10-08

Family

ID=31209926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988006034U Expired - Lifetime JPH0539807Y2 (en) 1988-01-21 1988-01-21

Country Status (1)

Country Link
JP (1) JPH0539807Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017105570A1 (en) * 2017-03-15 2018-09-20 Salzgitter Flachstahl Gmbh Horizontal strip caster with optimized casting belt

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192538A (en) * 1987-02-04 1988-08-09 Nippon Steel Corp Method and apparatus for continuously casting metal strip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192538A (en) * 1987-02-04 1988-08-09 Nippon Steel Corp Method and apparatus for continuously casting metal strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017105570A1 (en) * 2017-03-15 2018-09-20 Salzgitter Flachstahl Gmbh Horizontal strip caster with optimized casting belt

Also Published As

Publication number Publication date
JPH01114141U (en) 1989-08-01

Similar Documents

Publication Publication Date Title
EP0960670B1 (en) Method for water-cooling slabs
EP0463177A1 (en) Continuously cast thin piece and method of casting thereof
JPH0539807Y2 (en)
US4911226A (en) Method and apparatus for continuously casting strip steel
EP0127319A1 (en) Continuous casting apparatus for the production of cast sheets
JPH0519165Y2 (en)
JP3170944B2 (en) Continuous slab casting method
JPH0333424B2 (en)
KR100605700B1 (en) Apparatus for supplying shielding gas on strip casting rolls
JP2968428B2 (en) Manufacturing method of thin cast slab by belt type continuous casting method
JP2867894B2 (en) Continuous casting method
JPH0649221B2 (en) Thin cast continuous casting machine
JPH03169457A (en) Short wall mold in strip continuous casting machine
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip
JPH06592A (en) Method for casting nb-containing ferritic stainless steel by twin roll continuous casting method
JP3065484B2 (en) Manufacturing method of thin cast slab by belt type continuous casting method
JPH0518664B2 (en)
KR100333069B1 (en) Method for uniformly cooling cast slab in twin roll strip caster
JPS6083745A (en) Production of thin sheet by continuous casting method
JPS63126651A (en) Belt type continuous casting method
JPS6216851A (en) Device for casting thin sheet
JPH01284466A (en) Continuous casting machine for cast strip
JP3095951B2 (en) Twin belt continuous casting method
JPH01254356A (en) Continuous casting method by belt caster
JPS6326244A (en) Stationary short side for continuous casting of thin ingot