JPH0649221B2 - Thin cast continuous casting machine - Google Patents

Thin cast continuous casting machine

Info

Publication number
JPH0649221B2
JPH0649221B2 JP2732688A JP2732688A JPH0649221B2 JP H0649221 B2 JPH0649221 B2 JP H0649221B2 JP 2732688 A JP2732688 A JP 2732688A JP 2732688 A JP2732688 A JP 2732688A JP H0649221 B2 JPH0649221 B2 JP H0649221B2
Authority
JP
Japan
Prior art keywords
continuous casting
casting machine
belt
solidified shell
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2732688A
Other languages
Japanese (ja)
Other versions
JPH01202347A (en
Inventor
常昭 長道
健 中井
卓 岡嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2732688A priority Critical patent/JPH0649221B2/en
Publication of JPH01202347A publication Critical patent/JPH01202347A/en
Publication of JPH0649221B2 publication Critical patent/JPH0649221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0648Casting surfaces
    • B22D11/0654Casting belts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、無端状金属ベルトを使用した薄鋳片の連続
鋳造機に関する。
Description: TECHNICAL FIELD The present invention relates to a continuous casting machine for thin slabs using an endless metal belt.

(従来の技術) 従来、薄鋼板は水冷された銅製鋳型内に溶鋼を連続的に
供給し、冷却・凝固させ厚さ200〜300mmのスラブを製造
し、このスラブを熱間圧延機および冷間圧延機によって
圧延して製造していた。
(Prior Art) Conventionally, thin steel sheets are manufactured by continuously supplying molten steel into a water-cooled copper mold, cooling and solidifying to produce a slab with a thickness of 200 to 300 mm. It was rolled and manufactured by a rolling mill.

しかしながら、前記熱間圧延工程における消費エネルギ
ーが極めて大きいことから、熱間圧延設備に替わる省エ
ネルギー型綱板製造設備の実現が望まれていた。
However, since the energy consumption in the hot rolling process is extremely large, it has been desired to realize an energy-saving steel plate manufacturing facility that replaces the hot rolling facility.

このような状況下にあって、溶鋼から直接薄鋳片または
薄板を製造する方法あるいは装置が種々提案されてい
る。例えば、本出願人が提案した特願昭61-180628号公
報に開示の無端軌道式連続鋳造機もその発明の一つであ
る。この型式の薄鋳片連続鋳造機は、第1図に示すよう
に、駆動ローラー1と、この駆動ローラー1により循環
される一対の金属ベルト2と、これら両金属ベルトの両
端部において挟持され金属ベルト2と共に循環するダム
ブロック3を備え、前記上下一対の金属ベルトと左右一
対のダムブロックとで鋳造空間を形成したことを主要構
成とするものである。
Under such circumstances, various methods or devices for directly producing thin cast pieces or sheets from molten steel have been proposed. For example, an endless track type continuous casting machine disclosed in Japanese Patent Application No. 61-180628 proposed by the present applicant is one of the inventions. As shown in FIG. 1, the thin cast continuous casting machine of this type has a drive roller 1, a pair of metal belts 2 circulated by the drive roller 1, and a metal sandwiched between both ends of these metal belts. The main configuration is that a dam block 3 that circulates together with the belt 2 is provided, and a casting space is formed by the pair of upper and lower metal belts and the pair of left and right dam blocks.

そして、この装置により薄鋳片を鋳造する場合は、金属
ベルトの背面から多量の冷却水7を噴射すると共に、前
記鋳造空間に給湯樋4から溶鋼5と注入し、金属ベルト
2の鋳造面に凝固殻6を生成させ、順次凝固させて鋳片
8とし、この鋳片8を後方に連続的に引き抜いて製造す
るのである。
When casting a thin cast piece with this device, a large amount of cooling water 7 is jetted from the back surface of the metal belt, and molten steel 5 is injected into the casting space from the hot water supply trough 4 to the casting surface of the metal belt 2. The solidified shell 6 is generated and sequentially solidified to form a cast piece 8, and the cast piece 8 is continuously drawn backward to manufacture.

ところで、上記した薄鋳片連続鋳造機を使用して鋳片を
製造する場合、鋳片表面に縦割れが発生することがあ
る。
By the way, when a cast product is manufactured using the thin cast continuous casting machine described above, vertical cracks may occur on the surface of the cast product.

一つは凝固組織上の問題であり、通常の厚肉スラブと
同様に溶鋼中の炭素量が0.09〜0.30%の中炭素鋼の場合
に多発する。これに関しては、これまでにも種々研究が
行われ、炭素量が0.09〜0.30%の溶鋼は包晶反応域のた
め、オーステナイト単相となる温度が高く、オーステナ
イト粒が粗大化して割れ感受性が高くなることに加え
て、包晶反応により凝固時の収縮量が大きいため、凝固
中に急冷されると凝固反応が均一に進行せず、凝固殻の
厚さが不均一となり、それに起因して縦割れが発生する
と言われている。
One is the problem of solidification structure, which occurs frequently in the case of medium carbon steel with a carbon content of 0.09 to 0.30% in the molten steel as in the case of ordinary thick slabs. In this regard, various studies have been conducted so far, and the molten steel with a carbon content of 0.09 to 0.30% is a peritectic reaction region, so the temperature at which the austenite single phase is formed is high, and the austenite grains become coarse and crack susceptibility is high. In addition to the above, the amount of shrinkage during solidification due to the peritectic reaction is large, so the solidification reaction does not proceed uniformly when rapidly cooled during solidification, and the thickness of the solidified shell becomes uneven, which causes It is said that cracking will occur.

この他に、中炭素鋼に限らず、この装置固有の問題に
よっても縦割れが発生する。それは、溶鋼がベルト間に
注入され、凝固殻が生成する際、メニスカス近傍におい
て急激な抜熱のために抜熱量にむらが生じ、初期凝固殻
の厚さが不均一となるからである。そして、凝固殻の薄
い部分に凝固収縮応力、熱応力、またはベルト振動によ
る衝撃力が加わり、縦割れが発生すると考えられる。即
ち、第1図に示すような装置においては、金属ベルト2
の鋳造面は約1600℃の溶鋼5に接し、その裏面は冷却水
7で冷やされる苛酷な条件で運転されるために、金属ベ
ルト2の厚さ方向に急勾配の温度差を生じ、熱膨張によ
る歪みが発生する。この歪みによるベルトは、第2図
(a)(b)に示すように、幅方向(a)および鋳込方向(b)に変
形する。そして、このベルトの波打ち変形量は、第3図
に示すように金属ベルトの熱膨張に大きく影響される。
In addition to this, not only medium carbon steel, but also vertical cracks occur due to problems peculiar to this apparatus. This is because when molten steel is injected between the belts and solidified shells are generated, the amount of heat removed becomes uneven in the vicinity of the meniscus due to rapid heat removal, and the thickness of the initial solidified shells becomes uneven. Then, it is considered that solidification shrinkage stress, thermal stress, or impact force due to belt vibration is applied to the thin portion of the solidified shell, and vertical cracking occurs. That is, in the device shown in FIG. 1, the metal belt 2
The casting surface of is in contact with the molten steel 5 of about 1600 ° C, and the back surface is cooled by the cooling water 7 so that it is operated under severe conditions, so that a steep temperature difference occurs in the thickness direction of the metal belt 2 and thermal expansion occurs. Distortion occurs due to. The belt caused by this distortion is shown in Fig. 2.
As shown in (a) and (b), it deforms in the width direction (a) and the casting direction (b). The corrugated deformation amount of the belt is greatly affected by the thermal expansion of the metal belt as shown in FIG.

その結果、金属ベルト2に接している鋳片表面の冷却速
度がばらつき、これに起因して凝固殻6の厚さが不均一
となる。すなわち、下側ベルトにおいては、第4図(a)
(b)に示すように、溶鋼5の注湯直後(a)から凝固が進行
すると、メニスカスから離れるにつれて、成長する凝固
殻が金属ベルトへの抜熱に対する抵抗となって、ベルト
の温度上昇が低減されるうえ、金属ベルトが冷却されて
いるために金属ベルトの熱変形量が低下し、凝固殻6と
金属ベルト2が局部的に離反するため、冷却水7による
均等な冷却が行われず、凹部を有する不均一厚さの凝固
殻6が形成される。当然、上側ベルトも下側ベルトと同
様に不均一厚さの凝固殻が形成される。このように、中
炭素鋼でない鋼でも凝固殻形成が不均一になり、凝固殻
の薄い部分に生ずる熱応力により、凝固殻の固液界面あ
るいは凝固殻表面に割れが発生するのである。
As a result, the cooling rate of the surface of the slab that is in contact with the metal belt 2 varies, which causes the thickness of the solidified shell 6 to be uneven. That is, in the lower belt, FIG. 4 (a)
As shown in (b), when solidification progresses immediately after the molten steel 5 is poured (a), the growing solidified shell becomes a resistance against heat removal to the metal belt as the distance from the meniscus increases, and the temperature rise of the belt increases. In addition, since the metal belt is cooled, the amount of thermal deformation of the metal belt is reduced and the solidified shell 6 and the metal belt 2 are locally separated from each other, so that uniform cooling by the cooling water 7 is not performed, A solidified shell 6 having a non-uniform thickness having concave portions is formed. As a matter of course, the upper belt also forms a solidified shell having a non-uniform thickness like the lower belt. As described above, even in the case of a steel which is not a medium carbon steel, the formation of the solidified shell becomes non-uniform, and the thermal stress generated in the thin portion of the solidified shell causes cracks in the solid-liquid interface of the solidified shell or the surface of the solidified shell.

以上説明した原因によって、鋳片表面に縦割れ疵が発生
した場合には、後続の圧延工程に移送する前に疵取りを
する必要がある。このため、鋳片温度が低下し、ホット
チャージやダイレクトローリング(直送圧延)が実施で
きず、生産工程上の大きな問題になっている。
When vertical cracks are generated on the surface of the slab due to the reasons described above, it is necessary to remove the cracks before transferring to the subsequent rolling step. For this reason, the slab temperature decreases, and hot charging or direct rolling (direct rolling) cannot be performed, which is a serious problem in the production process.

(発明が解決しようとする課題) この発明は、薄鋳片連続鋳造機により薄鋳片を鋳造する
時に発生する表面割れ、すなわち、 中炭素鋼(C:0.09〜0.30%)の場合に生ずる包晶反
応に起因する不均一凝固による割れ、 金属ベルトの熱変形に起因する不均一凝固による割
れ、等を防止できる薄鋳片の連続鋳造機を提供するもの
である。
(Problem to be Solved by the Invention) The present invention is a surface crack that occurs when casting a thin slab by a thin slab continuous casting machine, that is, a case that occurs in the case of medium carbon steel (C: 0.09 to 0.30%). A continuous casting machine for thin cast pieces capable of preventing cracks due to non-uniform solidification due to crystallization reaction, cracks due to non-uniform solidification due to thermal deformation of a metal belt, and the like.

(課題を解決するための手段) 本発明者らは、薄鋳片連続鋳造機により薄鋳片を鋳造す
る際に発生する表面割れについて種々研究を重ねた結
果、金属ベルトの背面に複数条の縦溝を形成し、ベルト
幅方向に溶鋼から抜熱量に差異をつけると、初期凝固殻
生成時の鋳片表面に微細な凹部を多数発生させることが
でき、この凹部が存在することにより、 中炭素綱の初期凝固殻厚さを均一に生成させることが
できる、 金属ベルトと鋳片との接触面積が減少するので抜熱量
が低減し、金属ベルトの温度上昇による熱変形を抑制す
ることができる、との知見を得て本発明を完成するに到
った。
(Means for Solving the Problems) The inventors of the present invention have conducted various studies on surface cracks that occur when casting a thin slab with a thin slab continuous casting machine, and as a result, a plurality of strips are formed on the back surface of the metal belt. If vertical grooves are formed and the amount of heat removed from the molten steel is made different in the belt width direction, a large number of fine recesses can be generated on the surface of the slab during the initial solidified shell formation. The initial solidified shell thickness of carbon steel can be generated uniformly. The contact area between the metal belt and the cast piece is reduced, so the heat removal amount is reduced and the thermal deformation due to the temperature rise of the metal belt can be suppressed. The present invention has been completed based on the knowledge that

すなわち、この発明の要旨は、「駆動ローラーと、この
駆動ローラーにより循環される一対の金属ベルトと、こ
れら両金属ベルトの両端部で挟持され金属ベルトと共に
循環するダムブロックを備え、前記両金属ベルトとダム
ブロックとで包囲され鋳造空間を形成した薄鋳片連続鋳
造機において、前記金属ベルト背面に複数条の縦溝を形
成したことを特徴とする薄鋳片連続鋳造機」にある。
That is, the gist of the present invention is to provide a "driving roller, a pair of metal belts circulated by the driving rollers, and a dam block sandwiched between both end portions of the both metal belts and circulating together with the metal belts. In a thin cast continuous casting machine surrounded by a dam block and forming a casting space, a plurality of vertical grooves are formed on the back surface of the metal belt.

以下、本発明の薄鋳片連増鋳造機について図面を用いて
説明する。第5図は本発明の特徴とする金属ベルトの幅
方向断面図であり、金属ベルト2の背面側にベルト幅方
向に複数条の縦溝9が形成されている。鋳造時には、ベ
ルト2の背面側に多量の冷却水が流され、鋳造面側(第
5図においてはフラットな面)に存在する溶鋼から熱を
奪うのであるが、ベルト背面の縦溝によって構成される
薄肉部DAと厚肉部DBからの抜熱量が異なるため、処理凝
固殻表面に微細な凹部を生成し、この凹部によって緩冷
却ができるのである。そして、この縦溝の間隔が小さい
ほど、凹部が微細となって緩冷却効果が向上することは
言うまでもない。
The thin cast continuous casting machine of the present invention will be described below with reference to the drawings. FIG. 5 is a sectional view in the width direction of the metal belt, which is a feature of the present invention, in which a plurality of vertical grooves 9 are formed in the belt width direction on the back side of the metal belt 2. At the time of casting, a large amount of cooling water is caused to flow on the back surface side of the belt 2 to remove heat from the molten steel present on the casting surface side (flat surface in FIG. 5). Since the heat removal amounts from the thin portion D A and the thick portion D B are different from each other, a minute concave portion is generated on the surface of the treated solidified shell, and the concave portion allows gentle cooling. Needless to say, the smaller the spacing between the vertical grooves, the finer the recesses and the better the cooling effect.

第6図はベルトに形成した縦溝の深さを種々変えた場合
のメニスカスから20mm下方位置における薄肉部と厚肉部
との抜熱量比を調べた結果を示している。この図から肉
厚比DA/DBが大きくなるにつれて抜熱比QA/QBは正比例
して増大していることが分かる。なお、DAは薄肉部の厚
さ、DBは厚肉部の厚さ、QAは薄肉部からの抜熱量、QB
厚肉部からの抜熱量である。
FIG. 6 shows the results of examining the heat removal amount ratio between the thin wall portion and the thick wall portion at a position 20 mm below the meniscus when the depths of the vertical grooves formed in the belt are variously changed. From this figure, it can be seen that the heat removal ratio Q A / Q B increases in direct proportion as the wall thickness ratio D A / D B increases. Note that D A is the thickness of the thin portion, D B is the thickness of the thick portion, Q A is the heat removal amount from the thin portion, and Q B is the heat removal amount from the thick portion.

第7図は、メニスカスから20mm下方位置における隣合う
薄肉部と厚肉部の抜熱量比と凝固殻厚さの不均一度の関
係を調べた結果を示している。
FIG. 7 shows the results of examining the relationship between the heat removal amount ratio of the adjacent thin and thick portions and the nonuniformity of the solidified shell thickness at a position 20 mm below the meniscus.

ここで、凝固殻厚さの不均一度とは、凝固殻厚さの変動
量を示す標準偏差で定められるもので、この値が大きい
ほど凝固殻厚さの不均一度Yが大きいことになる。
Here, the nonuniformity of the solidified shell thickness is determined by the standard deviation indicating the variation amount of the solidified shell thickness. The larger this value, the larger the nonuniformity Y of the solidified shell thickness. .

なお、nは凝固殻厚さの測定点数、Xiは一定間隔で測定
した凝固殻厚さ、は凝固殻厚さの平均値、である。
In addition, n is the number of measurement points of the thickness of the solidified shell, Xi is the thickness of the solidified shell measured at regular intervals, and is the average value of the thickness of the solidified shell.

この図から抜熱量比が1に近づくと、微小凹部の生成が
少なくなり、溶鋼からの抜熱量が増加してベルトが熱変
形するため、不均一凝固度が大きくなることが分かる。
一方、抜熱量が0に近づくと、局部的な抜熱のために凝
固殻厚さの不均一度が増大することが分かる。また、こ
の図から抜熱量比を0.4〜0.6の範囲にすると凝固不均一
度が小さいので、表面割れの無い鋳片を作るには、この
範囲で製造することが好ましい。
From this figure, it can be seen that when the heat removal amount ratio approaches 1, the generation of minute recesses decreases, the heat removal amount from the molten steel increases, and the belt thermally deforms, resulting in an increased degree of non-uniform solidification.
On the other hand, it can be seen that when the heat removal amount approaches 0, the nonuniformity of the solidified shell thickness increases due to local heat removal. Further, from this figure, when the heat removal amount ratio is in the range of 0.4 to 0.6, the solidification non-uniformity is small, and therefore it is preferable to manufacture in this range in order to make a slab without surface cracks.

第8図は、凝固殻厚さの不均一度と鋳片表面割れの総長
さとの関係を示している。この図から凝固殻厚さの不均
一度が小さいほど、割れ総長さが減少することが分か
る。
FIG. 8 shows the relationship between the nonuniformity of the thickness of the solidified shell and the total length of the surface crack of the slab. From this figure, it can be seen that the smaller the nonuniformity of the solidified shell thickness, the smaller the total crack length.

(実施例) 第1図に示す薄鋳片連続鋳造機に、背面の縦溝形状の異
なる金属ベルトを使用し鋳片を製造した。使用した金属
ベルトの溝間隔はいずれも10mmであったが、肉厚比を0.
4、0.5、0.6と変えた(第6図中●印で示している)。
その時使用した溶鋼は、第1表に示す中炭素綱と低炭素
綱の2綱種であり、鋳造条件は、鋳片寸法が幅1000mm、
厚さ50mmとし、鋳造速度を3.0〜6.0m/minとした。
(Example) A slab was manufactured by using a thin slab continuous casting machine shown in FIG. 1 with metal belts having different vertical groove shapes on the back surface. The groove spacing of the metal belts used was 10 mm, but the wall thickness ratio was 0.
It was changed to 4, 0.5, and 0.6 (indicated by ● in Fig. 6).
The molten steel used at that time was two kinds of steel, medium carbon steel and low carbon steel shown in Table 1, and the casting conditions were as follows:
The thickness was 50 mm and the casting speed was 3.0 to 6.0 m / min.

鋳造の結果、中炭素綱の場合は、抜熱量比が第7図中の
●印で示す位置にあるため、均一な凝固殻が形成され、
表面割れの全く無い良好な薄鋳片を製造できた。また、
低炭素綱の場合もベルトの熱変形がなく、ベルトの波打
ち振幅を抑制できたこともあって、第9図から分かるよ
うに、表面性状の極めてよい薄鋳片が得られた。
As a result of casting, in the case of medium carbon steel, since the heat removal amount ratio is at the position indicated by the ● mark in FIG. 7, a uniform solidified shell is formed,
A good thin slab with no surface cracks could be manufactured. Also,
In the case of the low carbon steel as well, the belt was not thermally deformed and the waving amplitude of the belt could be suppressed. Therefore, as can be seen from FIG. 9, a thin slab having an extremely good surface quality was obtained.

(発明の効果) 以上説明したように、本発明の薄鋳片連続鋳造機を用い
れば、薄鋳片製造の際に鋳造初期の不均一凝固に起因す
る表面割れを防止して表面性状の良好な薄鋳片を製造す
ることができる。しかも、本発明の薄鋳片連続鋳造機
は、どのような綱種の鋳造にも適用できる優れた効果を
奏する。
(Effect of the invention) As described above, when the thin cast continuous casting machine of the present invention is used, surface cracks due to uneven solidification at the initial stage of casting during the production of thin casts can be prevented and the surface properties can be improved. It is possible to manufacture thin cast pieces. Moreover, the thin cast continuous casting machine of the present invention has an excellent effect that it can be applied to casting of any kind of rope.

【図面の簡単な説明】[Brief description of drawings]

第1図は薄鋳片連続鋳造機の概略断面図、 第2図(a)(b)は金属ベルトの熱変形を示す図、 第3図は金属ベルトの熱膨張率と波打ち振幅との関係を
示す図、 第4図(a)(b)は不均一厚さの凝固殻が形成される状態を
示す図、 第5図は本発明になる薄鋳片連続鋳造機の金属ベルト幅
方向断面図、 第6図は金属ベルトの肉厚比と抜熱量比との関係を示す
図、 第7図は抜熱量比と凝固殻厚さ不均一度との関係を示す
図、 第8図は凝固殻不均一度と表面割れ総長さとの関係を示
す図、 第9図は金属ベルトの波打ち振幅の標準偏差と表面割れ
との関係を示す図、である。 1は駆動ローラー、2は金属ベルト、3はダムブロッ
ク、4は給湯樋、5は溶鋼、6は凝固殻、7は冷却水、
8は鋳片、9は縦溝
FIG. 1 is a schematic cross-sectional view of a thin cast continuous casting machine, FIGS. 2 (a) and 2 (b) are views showing thermal deformation of a metal belt, and FIG. 3 is a relationship between a coefficient of thermal expansion of a metal belt and a wavy amplitude. Fig. 4 (a) and (b) are views showing a state in which a solidified shell having a non-uniform thickness is formed, and Fig. 5 is a cross section in the width direction of the metal belt of the thin cast continuous casting machine according to the present invention. Fig. 6 is a diagram showing the relationship between the wall thickness ratio of the metal belt and the heat removal amount ratio, Fig. 7 is a view showing the relationship between the heat removal amount ratio and the nonuniformity of the solidified shell thickness, and Fig. 8 is the solidification. FIG. 9 is a diagram showing the relationship between shell nonuniformity and the total length of surface cracks, and FIG. 9 is a diagram showing the relationship between the standard deviation of the corrugation amplitude of a metal belt and surface cracks. 1 is a drive roller, 2 is a metal belt, 3 is a dam block, 4 is a hot water supply gutter, 5 is molten steel, 6 is a solidified shell, 7 is cooling water,
8 is a slab, 9 is a vertical groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】駆動ローラーと、この駆動ローラーにより
循環される一対の金属ベルトと、これら両金属ベルトの
両端部で挟持され金属ベルトと共に循環するダムブロッ
クを備え、前記両金属ベルトとダムブロックとで包囲さ
れた鋳造空間を形成した薄鋳片連続鋳造機において、前
記金属ベルト背面に複数条の縦溝を形成したことを特徴
とする薄鋳片の連続鋳造機。
1. A drive roller, a pair of metal belts circulated by the drive rollers, and a dam block sandwiched between both ends of the both metal belts and circulated together with the metal belts. A continuous casting machine for thin cast pieces, characterized in that a plurality of vertical grooves are formed on the back surface of the metal belt in a continuous casting machine for thin cast pieces which forms a casting space surrounded by.
JP2732688A 1988-02-08 1988-02-08 Thin cast continuous casting machine Expired - Lifetime JPH0649221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2732688A JPH0649221B2 (en) 1988-02-08 1988-02-08 Thin cast continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2732688A JPH0649221B2 (en) 1988-02-08 1988-02-08 Thin cast continuous casting machine

Publications (2)

Publication Number Publication Date
JPH01202347A JPH01202347A (en) 1989-08-15
JPH0649221B2 true JPH0649221B2 (en) 1994-06-29

Family

ID=12217951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2732688A Expired - Lifetime JPH0649221B2 (en) 1988-02-08 1988-02-08 Thin cast continuous casting machine

Country Status (1)

Country Link
JP (1) JPH0649221B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4344954C1 (en) * 1993-12-27 1995-06-14 Mannesmann Ag Conveyor belt of a continuous strip caster for casting strips of metal

Also Published As

Publication number Publication date
JPH01202347A (en) 1989-08-15

Similar Documents

Publication Publication Date Title
JPH0649221B2 (en) Thin cast continuous casting machine
US7059384B2 (en) Apparatus and method for metal strip casting
JPH0539807Y2 (en)
JPH0220645A (en) Mold for continuously casting steel
CN201922005U (en) Continuous casting crystallizer capable of realizing uniform heat transfer in metal initial solidification areas
JPS609553A (en) Stopping down type continuous casting machine
JPH0569626B2 (en)
JPH01202346A (en) Continuous casting method for cast strip
JPH0519165Y2 (en)
JPH01284466A (en) Continuous casting machine for cast strip
KR101119959B1 (en) Casting roll in twin roll strip caster for producing strip with good quality
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip
JP2574471B2 (en) Cooling drum for continuous casting of thin cast slabs
JPH06592A (en) Method for casting nb-containing ferritic stainless steel by twin roll continuous casting method
JPH0518664B2 (en)
JPH0536148B2 (en)
JPH03169457A (en) Short wall mold in strip continuous casting machine
JPS6083745A (en) Production of thin sheet by continuous casting method
JP2968428B2 (en) Manufacturing method of thin cast slab by belt type continuous casting method
JPS59104254A (en) Method for supplying molten metal to twin belt caster
JPH02104445A (en) Mold for continuously casting steel and continuous casting method
JPH01284462A (en) Caterpillar type continuous casting machine and continuous casting method
JPH0340450Y2 (en)
JPS597464A (en) Method and device for continuous casting of thin steel plate
JP2000202583A (en) Continuous casting method and mold for continuous casting