JP2000202583A - Continuous casting method and mold for continuous casting - Google Patents

Continuous casting method and mold for continuous casting

Info

Publication number
JP2000202583A
JP2000202583A JP11004777A JP477799A JP2000202583A JP 2000202583 A JP2000202583 A JP 2000202583A JP 11004777 A JP11004777 A JP 11004777A JP 477799 A JP477799 A JP 477799A JP 2000202583 A JP2000202583 A JP 2000202583A
Authority
JP
Japan
Prior art keywords
mold
continuous casting
water
cooling
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11004777A
Other languages
Japanese (ja)
Inventor
Akiyuki Iwatani
明之 岩谷
Kiyoshi Takahashi
清志 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11004777A priority Critical patent/JP2000202583A/en
Publication of JP2000202583A publication Critical patent/JP2000202583A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a cast slab having little surface defect and to obtain a mold having long service life by engraving a water-cooling groove vertically extended on the outer surface of the mold in the range from the upper part of the mold to the lower part of the mold and arranging an exothermic body at the position in the specific height range in the vertical direction in the inner part of the mold. SOLUTION: The exothermic body 5 is arranged in the inner part of the mold 1 in the inner part of the mold at the upper and the lower parts within 100 mm of the molten steel surface level or within 200 mm from the upper surface of the mold, and the water-cooling groove 31 vertically extended on the outer surface of the mold in the range from the upper part of the mold to the lower part of the mold is provided. The exothermic body 5 is arranged at the upper and the lower parts within 100 mm of the molten steel surface level, and the cooling water 6 is supplied into the water passage 3 and the continuous casting is executed while cooling the mold 1. In this way, the mold 1 below the lower part of the exothermic body 5 is heated with the exothermic body while cooling with the cooling water 6 in the water-cooling groove 31. Since the temp. of the inner surface of the mold near the molten steel surface level 10 becomes high, the molten steel 7 near the molten steel surface level 10 is slowly cooled and the surface defect occurrence on the cast slab is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造用鋳型お
よび連続鋳造方法に係わり,特に表層欠陥の少ない鋳片
をブレークアウトが発生することなく連続的に製造でき
る連続鋳造用鋳型および連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting mold and a continuous casting method, and more particularly to a continuous casting mold and a continuous casting method capable of continuously producing a slab having few surface defects without causing breakout. About.

【0002】[0002]

【従来の技術】連続鋳造により鋳片を製造するには、溶
融された金属をタンディッシュからノズルを介して連続
鋳造用鋳型(以下、鋳型と呼ぶ。)内に流下し、鋳型で
冷却されて形成した凝固シェルを下方に引き抜き、鋳型
の下流に設置されたスプレー帯でさらに冷却し、引き抜
きロールを経て切断装置に送り、凝固が完了した状態で
切断する。ここで、凝固シェルは引き抜きロールによっ
てほぼ一定の鋳造速度で鋳型の下方に引き抜かれている
が、凝固シェルの表面を損なうことなく引き抜くため
に、鋳型を周期的に上下動させるオッシレーションが行
われている。
2. Description of the Related Art In order to produce a slab by continuous casting, a molten metal is poured from a tundish through a nozzle into a continuous casting mold (hereinafter, referred to as a mold) and cooled by the mold. The formed solidified shell is drawn downward, further cooled by a spray band provided downstream of the mold, sent to a cutting device via a drawing roll, and cut in a state where solidification is completed. Here, the solidified shell is drawn below the mold at a substantially constant casting speed by a drawing roll, but in order to withdraw without damaging the surface of the solidified shell, an oscillation of periodically moving the mold up and down is performed. ing.

【0003】その従来の鋳型は、熱伝導性に優れた銅ま
たは銅合金製とされ、図4にその断面の一部を示すよう
に、バックプレート2を装着した鋳型の下部から上部ま
での鋳型外面に刻設された水冷溝31に冷却水6を供給
し、湯面レベル10近傍の鋳型1を冷却しているので、湯
面レベル10近傍の鋳型内面からの抜熱量が大きい。湯面
レベル10近傍の鋳型内面からの抜熱量が大きいと、鋳型
内面温度が低くなり過ぎて、湯面レベル10近傍の溶融金
属7が急激に冷却されることになるため、急速な凝固シ
ェル8の形成によるオッシレーション爪(オッシレーシ
ョンの一周期毎に形成される水平方向の凝固シェル8の
突起)が著しくなり、鋳片の表層欠陥が多発する問題が
あった。
[0003] The conventional mold is made of copper or a copper alloy having excellent thermal conductivity. As shown in a part of the cross section in FIG. Since the cooling water 6 is supplied to the water cooling groove 31 provided on the outer surface to cool the mold 1 near the molten metal level 10, a large amount of heat is removed from the inner surface of the mold near the molten metal level 10. If the amount of heat removed from the inner surface of the mold near the level 10 is large, the temperature of the inner surface of the mold will be too low, and the molten metal 7 near the level 10 will be rapidly cooled. Oscillation claws (projections of the solidified shell 8 in the horizontal direction formed every one cycle of the oscillation) due to the formation of slag become remarkable, and there has been a problem that surface layer defects of the slab frequently occur.

【0004】この問題を解決するために、例えば特公平
1-28661 号公報には、鋳型内面にメッキを施した層を鋳
型上面から50〜200mm の範囲内に形成し湯面レベル近傍
の溶融金属を緩冷却することが開示されている。
[0004] To solve this problem, for example,
Japanese Patent Application Laid-Open No. 1-28661 discloses that a plating layer is formed on the inner surface of a mold within a range of 50 to 200 mm from the upper surface of the mold to slowly cool a molten metal near a molten metal level.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記鋳
型内面に形成されたメッキ層は、高温の溶融金属やパウ
ダに侵食されるために寿命が非常に短く、また、溶融金
属やパウダに侵食され部分的に凹凸になる場合がある。
鋳型表面が凹凸になると鋳型と凝固シェルが焼付いて、
鋳型が損傷したりブレークアウトが発生する問題があっ
た。
However, the plating layer formed on the inner surface of the mold has a very short life because it is eroded by high-temperature molten metal or powder. May be uneven.
If the mold surface becomes uneven, the mold and the solidified shell will seize,
There was a problem that the mold was damaged or breakout occurred.

【0006】そこで、本発明の目的は、表層欠陥の少な
い鋳片を製造することが可能な、寿命の長い連続鋳造鋳
型および表層欠陥の少ない鋳片を安定して製造すること
ができる連続鋳造方法を提供することにある。
Accordingly, an object of the present invention is to provide a continuous casting mold having a long life and a continuous casting method capable of stably producing a slab having few surface defects. Is to provide.

【0007】[0007]

【課題を解決するための手段】すなわち、第1発明は、
鋳片を連続的に製造する連続鋳造用鋳型であって、鋳型
上部から鋳型下部までの範囲内の鋳型外面に、上下方向
に延びる水冷溝を刻設するとともに、湯面レベルの上下
に100mm 以内または鋳型上面から200mm 以内の鋳型内部
に発熱体を設けたことを特徴とする連続鋳造用鋳型であ
る。
Means for Solving the Problems That is, the first invention is:
A continuous casting mold that continuously manufactures cast slabs.In the outer surface of the mold from the upper part of the mold to the lower part of the mold, a vertically extending water cooling groove is carved, and within 100 mm above and below the level of the molten metal Alternatively, a continuous casting mold characterized in that a heating element is provided inside the mold within 200 mm from the upper surface of the mold.

【0008】また、第2発明は、本発明の連続鋳造用鋳
型を用いて、前記鋳型内部に設けられた発熱体の出力を
調整して連続鋳造することを特徴とする連続鋳造方法で
ある。また、本発明の連続鋳造用鋳型を用いて、鋳型内
における溶融金属の湯面レベルから上下方向に30mm以内
の鋳型内面の表面温度が、鋳型内面の最大表面温度
(℃)の70%を超え、鋳型の許容温度以内となるように
鋳型を水冷して鋳片を連続鋳造するのが好ましく、前記
鋳型内面の最大表面温度となる位置が、湯面レベルから
上下方向に30mm以内にはいるように鋳型を水冷して連続
鋳造するのがさらに好ましい。
[0008] A second invention is a continuous casting method characterized by performing continuous casting using the continuous casting mold of the present invention by adjusting the output of a heating element provided inside the mold. Further, using the continuous casting mold of the present invention, the surface temperature of the inner surface of the mold within 30 mm vertically from the molten metal level in the mold exceeds 70% of the maximum surface temperature (° C.) of the inner surface of the mold. It is preferable to continuously cast the slab by water-cooling the mold so as to be within the allowable temperature of the mold, so that the position of the maximum surface temperature of the inner surface of the mold is within 30 mm vertically from the molten metal level. More preferably, the mold is water-cooled and continuously cast.

【0009】[0009]

【発明の実施の形態】先ず、本発明の鋳型について、図
1、図2を用いて詳細に説明する。図1は本発明の鋳型
を用いて鋼を連続鋳造している際の要部の断面を示す概
略図、図2は、鋳型1の一辺の構造を示す概略図であ
る。図において、符号1は鋳型、符号2はバックプレー
ト、符号31、33は水冷溝、符号32は水冷孔、符号4はO
−リング、符号5は発熱体、符号6は冷却水、符号7は
溶鋼、符号8は凝固シェル、符号9はパウダ、符号10は
溶鋼の湯面レベル、符合11は電源を示している。鋳型1
は、従来と同様に銅( 熱伝導率332kcal/mh℃)または銅
合金とされ、溶鋼7の周囲を囲むように構成されてい
る。そのバックプレート2が装着された鋳型1は、鋳型
内面が溶鋼7に面し、鋳型内面と反対側の鋳型外面が、
O−リング4を介してバックプレート内面と密着され
て、鋳型1を冷却するための冷却水6が漏れないように
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the mold of the present invention will be described in detail with reference to FIGS. FIG. 1 is a schematic diagram showing a cross section of a main part when steel is continuously cast using the mold of the present invention, and FIG. 2 is a schematic diagram showing a structure of one side of the mold 1. In the figure, reference numeral 1 denotes a mold, reference numeral 2 denotes a back plate, reference numerals 31 and 33 denote water cooling grooves, reference numeral 32 denotes water cooling holes, and reference numeral 4 denotes O.
Reference numeral 5 denotes a heating element, reference numeral 6 denotes cooling water, reference numeral 7 denotes molten steel, reference numeral 8 denotes a solidified shell, reference numeral 9 denotes powder, reference numeral 10 denotes a molten steel surface level, and reference numeral 11 denotes a power supply. Mold 1
Is made of copper (thermal conductivity: 332 kcal / mh ° C.) or a copper alloy as in the past, and is configured to surround the periphery of the molten steel 7. The mold 1 on which the back plate 2 is mounted has a mold inner surface facing the molten steel 7 and a mold outer surface opposite to the mold inner surface,
The O-ring 4 closely contacts the inner surface of the back plate so that the cooling water 6 for cooling the mold 1 does not leak.

【0010】本発明の鋳型1は、湯面レベルの上下に10
0mm 以内または鋳型上面から200mm以内の鋳型内部に設
けられた発熱体5と、鋳型上部から鋳型下部までの範囲
内の鋳型外面に刻設された、上下方向に延びる水冷溝31
を備えている。そして、鋳型1を冷却するための水路3
は、バックプレート2の下部に穿設された冷却水を導入
するための水冷孔と、バックプレート2の下部に刻設さ
れた、鋳型1の辺の方向に延びる水冷溝と、鋳型1の外
面の上下方向に刻設された複数の水冷溝31と、バックプ
レート2の上部に穿設された冷却水を排出するための水
冷孔32と、バックプレート2の上部に刻設された、鋳型
1の辺の方向に延びる水冷溝33とからなる。複数の水冷
溝31の両端部は、水冷溝33と水冷溝35に連通されてお
り、水冷溝33および水冷溝35は、少なくとも一つの水冷
孔32および水冷孔34に連通されている。そこで、バック
プレート2下部の水冷孔34から供給された冷却水6は、
鋳型1の辺の方向に延びる水冷溝35を介して、上下方向
に延びる複数の水冷溝31に下端部で分配される。分配さ
れた冷却水6は、鋳型1の上部に至り鋳型の辺の方向に
延びる水冷溝33を介して集められて、冷却水を排出する
ための、バックプレート2上部の水冷孔32から排出され
る。
The casting mold 1 of the present invention has 10
A heating element 5 provided within 0 mm or within 200 mm from the upper surface of the mold, and a vertically extending water cooling groove 31 engraved on the outer surface of the mold in a range from the upper part of the mold to the lower part of the mold.
It has. And a water channel 3 for cooling the mold 1
A water cooling hole formed in a lower portion of the back plate 2 for introducing cooling water, a water cooling groove formed in a lower portion of the back plate 2 and extending in a direction of a side of the mold 1, and an outer surface of the mold 1. A plurality of water cooling grooves 31 formed in the upper and lower directions, water cooling holes 32 formed in the upper portion of the back plate 2 for discharging cooling water, and a mold 1 formed in the upper portion of the back plate 2. And a water cooling groove 33 extending in the direction of the side. Both ends of the plurality of water cooling grooves 31 communicate with the water cooling grooves 33 and the water cooling grooves 35, and the water cooling grooves 33 and the water cooling grooves 35 communicate with at least one of the water cooling holes 32 and the water cooling holes 34. Therefore, the cooling water 6 supplied from the water cooling hole 34 below the back plate 2
It is distributed at the lower end to a plurality of vertically extending water cooling grooves 31 via water cooling grooves 35 extending in the direction of the side of the mold 1. The distributed cooling water 6 reaches the upper part of the mold 1 and is collected through a water cooling groove 33 extending in the direction of the side of the mold, and is discharged from a water cooling hole 32 on the upper part of the back plate 2 for discharging the cooling water. You.

【0011】このように構成された本発明の鋳型1は、
発熱体5を湯面レベルの上下に100mm以内にして、水路
3に冷却水6を供給して鋳型1を水冷しながら連続鋳造
するので、発熱体5の下端より下方の鋳型1は、水冷溝
31の冷却水6により冷却されるけれども、湯面レベル10
近傍の鋳型1は、水冷溝31の冷却水6により冷却されつ
つ、発熱体5によって加熱される。このため、発熱体5
の下端より下方の鋳型内面の温度は従来と同程度である
けれども、湯面レベル10近傍の鋳型内面の温度は従来よ
りも高くなる。この結果、湯面レベル10近傍の溶鋼7が
緩冷却されるので、鋳片の表面欠陥が減少することにな
るのである。
The thus-configured mold 1 of the present invention comprises:
Since the heating element 5 is set within 100 mm above and below the level of the molten metal and cooling water 6 is supplied to the water channel 3 to continuously cast the mold 1 while cooling the mold 1, the mold 1 below the lower end of the heating element 5 is provided with a water cooling groove.
Cooled by cooling water 6 of 31
The nearby mold 1 is heated by the heating element 5 while being cooled by the cooling water 6 in the water cooling groove 31. Therefore, the heating element 5
Although the temperature of the mold inner surface below the lower end of the mold is the same as that of the related art, the temperature of the mold inner surface near the molten metal level 10 becomes higher than before. As a result, the molten steel 7 near the molten metal level 10 is slowly cooled, so that the surface defects of the slab are reduced.

【0012】湯面レベルの上下に100mm 以内または鋳型
上面から200mm 以内の鋳型内部に発熱体5を設ける理由
は次のとおりである。湯面レベルの上下に100mm 以内の
鋳型内部に発熱体5を設ける理由は、湯面レベルの下方
100mm を超える範囲に発熱体5を設けて鋳造すると、鋳
型の表面温度が許容温度を超えて、鋳型の硬度低下によ
り摩耗が増加し鋳型寿命が短くなったり、鋳型と凝固シ
ェルが焼付いて鋳型を損傷したり、ブレークアウトが発
生しやすくなる。一方、湯面レベルの上方100mm を超え
る範囲に発熱体5を設けても、湯面レベル10近傍の鋳型
内面の温度を高くする効果が小さい。このため、湯面レ
ベルの上下に100mm 以内の鋳型内部に発熱体5を設ける
のである。
The reason why the heating element 5 is provided within the mold within 100 mm above or below the level of the molten metal or within 200 mm from the upper surface of the mold is as follows. The reason why the heating element 5 is provided inside the mold within 100 mm above and below the level
When the heating element 5 is cast in a range exceeding 100 mm, the surface temperature of the mold exceeds the permissible temperature, the wear of the mold increases due to a decrease in the hardness of the mold, and the life of the mold is shortened. Damage and breakouts are more likely to occur. On the other hand, even if the heating element 5 is provided in a range exceeding 100 mm above the level of the molten metal, the effect of increasing the temperature of the inner surface of the mold near the level of the molten metal 10 is small. For this reason, the heating element 5 is provided inside the mold within 100 mm above and below the level of the molten metal.

【0013】また、鋳型上面から200mm 以内の鋳型内部
に発熱体5を設ける理由は、通常、湯面レベルは、鋳型
上面から100mm 以内に設定されて鋳造される。そして、
鋳型の上面から 200mm(= 100+100 ) を超える範囲の
鋳型内部に発熱体5を設けると、鋳型の表面温度が許容
温度を超えてしまう。このため、鋳型上面から200mm以
内の鋳型内部に発熱体5を設けるのである。
The reason why the heating element 5 is provided inside the mold within 200 mm from the upper surface of the mold is that the casting level is usually set within 100 mm from the upper surface of the mold. And
If the heating element 5 is provided inside the mold within a range of more than 200 mm (= 100 + 100) from the upper surface of the mold, the surface temperature of the mold exceeds the allowable temperature. For this reason, the heating element 5 is provided inside the mold within 200 mm from the upper surface of the mold.

【0014】また、本発明では発熱体を鋳型内部に設け
たので、発熱体が溶鋼やパウダと接触することがなくな
って、鋳型寿命を長くできるのである。発熱体として
は、ガスや液体の加熱体としてもよいが、市販の円筒型
カートリッジヒーターのように抵抗加熱で加熱するもの
がさらに好適である。抵抗加熱の加熱体とすれば、電源
11の出力を調節することにより、鋳型内面の温度を好適
な範囲に調整できるからである。
Further, in the present invention, since the heating element is provided inside the mold, the heating element does not come into contact with molten steel or powder, so that the life of the mold can be extended. As the heating element, a gas or liquid heating element may be used, but a heating element that is heated by resistance heating such as a commercially available cylindrical cartridge heater is more preferable. If you use a heating body for resistance heating,
By adjusting the output of No. 11, the temperature of the inner surface of the mold can be adjusted to a suitable range.

【0015】また、第2発明は、本発明の連続鋳造用鋳
型を用いて、鋳型内部に設けられた発熱体の出力を調整
して連続鋳造するようにしたので、湯面レベル近傍の溶
鋼を緩冷却することができるので、表層欠陥の少ない鋳
片を連続鋳造することが可能である。
In the second invention, the continuous casting mold of the present invention is used to adjust the output of a heating element provided inside the casting mold to perform continuous casting. Since the cooling can be performed slowly, it is possible to continuously cast a slab having few surface layer defects.

【0016】[0016]

【実施例】(実施例1) 図1に示した本発明の鋳型に
おいて、鋳型の辺の方向に20mmピッチで、鋳型上面の厚
みの中央に孔を開け、鋳型上面から50〜120mm の範囲の
鋳型内部に、市販の円筒型カートリッジヒーター(ヒー
ター1本当たりの容量:0.70kw 、長さ:70mm、外径:10m
m φ) を設けた。さらに鋳型上部( 鋳型上面から50mm)
から鋳型下部( 鋳型上面から950mm)までの範囲内の鋳型
外面に、上下方向に延びる水冷溝を複数刻設した。その
他の鋳型条件は、表1に示した。
(Example 1) In the mold of the present invention shown in FIG. 1, a hole was made in the center of the thickness of the upper surface of the mold at a pitch of 20 mm in the direction of the side of the mold, and the hole was formed in a range of 50 to 120 mm from the upper surface of the mold. Inside the mold, a commercially available cylindrical cartridge heater (capacity per heater: 0.70kw, length: 70mm, outer diameter: 10m)
m φ). In addition, the top of the mold (50 mm from the top of the mold)
A plurality of water-cooling grooves extending in the vertical direction were formed on the outer surface of the mold in the range from to the lower part of the mold (950 mm from the upper surface of the mold). Other template conditions are shown in Table 1.

【0017】ここで、ヒーター1本当たりの容量0.70kw
は、次のようにして求めた。すなわち、従来の鋳型にお
いて、湯面レベル位置の熱流束と最高温度部の熱流束と
の差が700kw/m2であったので、この差の熱流束を供給可
能な、鋳型の辺長1m当たりの容量は式(1) となる。但
し、湯面レベルと鋳型内面の最高温度部と間隔は、50mm
とした。(図3参照) 700(kw/m2) ×0.05(m)=35(kw/m) −−−−−−(1) 鋳型の辺の方向に20mmピッチで設置するのでヒーター1
本当たりの容量は、式(2) で与えられる。
[0017] Here, the capacity per heater 0.70kw
Was determined as follows. That is, in the conventional mold, the difference between the heat flux at the molten metal level position and the heat flux at the highest temperature part was 700 kw / m 2. Is given by equation (1). However, the gap between the surface level and the maximum temperature of the mold inner surface is 50mm
And (Refer to Fig. 3) 700 (kw / m 2 ) × 0.05 (m) = 35 (kw / m)----------------------------
The capacity per book is given by equation (2).

【0018】 35(kw/m)×0.02(m) =0.70kw −−−−−−(2) この本発明の鋳型を用いて、湯面レベルを鋳型上面から
100mm とし、ヒーターの出力を100 % (発明例A) 、50
%( 発明例C) 、25%( 発明例B)に調整して、表2に示
す成分のスラブを表3に示した条件で鋳造した。一方、
従来例として、発熱体を設けるための孔を開けず、その
他は発明例と同じにした鋳型を用い、発明例と同じ条件
で鋳造した。
35 (kw / m) × 0.02 (m) = 0.70 kw (2) Using this mold of the present invention, the level of the molten metal is set from the upper surface of the mold.
100 mm, heater output 100% (Invention A), 50
% (Invention Example C) and 25% (Invention Example B), and slabs having the components shown in Table 2 were cast under the conditions shown in Table 3. on the other hand,
As a conventional example, a casting was performed under the same conditions as those of the invention example, using a mold having the same structure as that of the invention example except that a hole for providing a heating element was not formed.

【0019】上記の発明例と従来例について、次のよう
にして鋳型の温度測定及び鋳造した鋳片の表層欠陥を調
査した。鋳型の温度測定は、鋳型の長辺中央部に、鋳型
表面からの距離を2mm、4mm、6mmとした孔を、鋳型の
短辺および長辺方向に少しずらせて、鋳型上面から10mm
ピッチで開けた後、φ1.2mm のPR熱電対を埋め込んで行
った。この温度測定値に基づいて、隣接する2点の温度
勾配を算出し、外挿により鋳型の表面温度を求めた。鋳
片の表層欠陥は、表4に示した範囲の各表皮下について
マクロエッチした後、パウダ欠陥および気泡欠陥等の表
面欠陥個数を測定し、それらの合計個数を求めた。
With respect to the above-mentioned invention examples and conventional examples, the temperature of the mold was measured and the surface defects of the cast slab were examined as follows. The temperature of the mold was measured at the center of the long side of the mold at a distance of 2 mm, 4 mm, and 6 mm from the surface of the mold.
After opening at the pitch, a PR thermocouple of φ1.2 mm was embedded. Based on the measured temperature, the temperature gradient of two adjacent points was calculated, and the surface temperature of the mold was obtained by extrapolation. The surface defects of the slab were obtained by macro-etching each surface subcutaneous area in the range shown in Table 4 and then measuring the number of surface defects such as powder defects and bubble defects, and calculating the total number thereof.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】鋳型の温度測定に基づいて得られた、鋳型
上面からの距離と鋳型内面の表面温度の関係を図3に示
す。ここで、鋳型の温度測定値は、湯面レベル変動(±
5mm)の周期が短いので、それに追随せず時間平均され
ている。この結果より、発明例(B)では、鋳型内面の
表面温度が最大となる位置が湯面レベルの±30mm以内に
なっていないが、従来例よりも湯面レベル近傍(湯面レ
ベルの±30mm以内)の鋳型内面の表面温度が高くなって
いるので、溶鋼を緩冷却することができることがわか
る。また、発明例(A)では、鋳型内面の表面温度が最
大となる位置が湯面レベルから±30mm以内となり、発明
例(B)よりもさらに湯面レベル近傍の鋳型内面の表面
温度が高くなっているので、溶鋼を緩冷却することがで
きることがわかる。
FIG. 3 shows the relationship between the distance from the upper surface of the mold and the surface temperature of the inner surface of the mold obtained based on the measurement of the temperature of the mold. Here, the measured temperature value of the mold is determined by the fluctuation of the level of the molten metal (±
(5 mm), the period is short, so the time is averaged without following it. From this result, in the invention example (B), the position where the surface temperature of the inner surface of the mold becomes maximum is not within ± 30 mm of the metal level, but is closer to the metal level than the conventional example (± 30 mm of the metal level). It can be seen that the molten steel can be slowly cooled because the surface temperature of the inner surface of the mold is high. In the invention example (A), the position where the surface temperature of the mold inner surface becomes maximum is within ± 30 mm from the molten metal level, and the surface temperature of the mold inner surface near the molten metal level becomes higher than in the invention example (B). Therefore, it can be understood that the molten steel can be slowly cooled.

【0025】次に、上記の発明例および従来例につい
て、鋳型内面の最大表面温度、最大表面温度の位置およ
び湯面レベルの±30mm以内のもっとも低い鋳型内面の表
面温度を求め、その結果と、各鋳型で鋳造した鋳片の表
層欠陥の結果とを合わせて表5に示す。
Next, the maximum surface temperature of the inner surface of the mold, the position of the maximum surface temperature, and the lowest surface temperature of the inner surface of the mold within ± 30 mm of the molten metal level were obtained for the above-mentioned invention examples and conventional examples. Table 5 shows the results of surface layer defects of the slabs cast with the respective molds.

【0026】[0026]

【表5】 [Table 5]

【0027】この結果から、本発明の鋳型および本発明
の連続鋳造方法により、表層欠陥の少ない鋳片を製造で
きることがわかる。また、湯面レベルの±30mm以内の鋳
型内面の表面温度が、鋳型内面の最大表面温度(℃)の
70%よりも大きくなるようにして連続鋳造すると、表層
欠陥の少ない鋳片を製造できることがわかる。また、鋳
型内面の最大表面温度の位置が湯面レベルから±30mm以
内になるように連続鋳造すると、さらに表層欠陥の少な
い鋳片を製造できるので望ましいことがわかる。ここ
で、湯面レベルの±30mm以内のもっとも低い鋳型表面温
度が鋳片の表層欠陥個数と関係があるのは、オッシレー
ション爪の形成速度が湯面レベルから±30mm以内のもっ
とも低い鋳型表面温度で支配されためと考えられる。ま
た、本発明の鋳型は、長期間使用しても鋳型内面が平滑
であったので、鋳型と凝固シェルが焼付いて、ブレーク
アウトを発生したり、鋳型の損傷が発生することがなか
った。
From these results, it can be seen that the cast of the present invention and the continuous casting method of the present invention can produce a slab having few surface defects. In addition, the surface temperature of the mold inner surface within ± 30 mm of the molten metal level is the maximum surface temperature (℃) of the mold inner surface.
It can be seen that continuous casting with a size larger than 70% can produce a slab with few surface layer defects. In addition, it can be seen that continuous casting such that the position of the maximum surface temperature of the inner surface of the mold is within ± 30 mm from the level of the molten metal can produce a slab with less surface layer defects. Here, the lowest mold surface temperature within ± 30 mm of the molten metal level is related to the number of surface defects of the slab, because the formation speed of the oscillation nail is the lowest mold surface temperature within ± 30 mm of the molten metal level. It is thought to be dominated by. In addition, since the mold of the present invention had a smooth inner surface even after being used for a long period of time, the mold and the solidified shell did not seize to cause breakout or damage to the mold.

【0028】[0028]

【発明の効果】本発明の連続鋳造用鋳型は、寿命が長
く、湯面レベル近傍の溶融金属を緩冷却することができ
るので、表層欠陥の少ない鋳片を製造することが可能で
ある。また、長期間使用しても鋳型内面が平滑であるの
で、鋳型と凝固シェルが焼付いて、ブレークアウトや鋳
型の損傷を発生することがない。また、本発明の連続鋳
造用鋳型を用いた連続鋳造方法により、表面欠陥の少な
い鋳片を安定して製造することができる。
The continuous casting mold of the present invention has a long life and can slowly cool the molten metal near the level of the molten metal, so that it is possible to produce a cast piece with few surface defects. In addition, since the inner surface of the mold is smooth even after long-term use, the mold and the solidified shell are not seized to cause breakout or damage to the mold. In addition, by the continuous casting method using the continuous casting mold of the present invention, a slab having few surface defects can be stably manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鋳型の要部の断面を示す概略断面図で
ある。
FIG. 1 is a schematic cross-sectional view showing a cross section of a main part of a mold of the present invention.

【図2】本発明の鋳型1を示す概略図であり、図2
(a)は平面図、図2(b)は正面図、図2(c)は、
図2(a)のX−X断面図である。
FIG. 2 is a schematic view showing a mold 1 of the present invention.
2A is a plan view, FIG. 2B is a front view, and FIG.
It is XX sectional drawing of FIG.2 (a).

【図3】本発明の鋳型の表面温度を従来例と比較して示
す特性図である。
FIG. 3 is a characteristic diagram showing the surface temperature of a mold of the present invention in comparison with a conventional example.

【図4】従来の鋳型の要部の断面を示す概略断面図であ
る。
FIG. 4 is a schematic cross-sectional view showing a cross section of a main part of a conventional mold.

【符号の説明】[Explanation of symbols]

1 鋳型 2 バックプレート 3 水路 31、33 水冷溝 32 水冷孔 4 O−リング 5 円筒型カートリッジヒーター( 発熱体) 6 冷却水 7 溶鋼( 溶融金属) 8 凝固シェル 9 パウダ 10 湯面レベル 11 電源 DESCRIPTION OF SYMBOLS 1 Mold 2 Back plate 3 Water channel 31, 33 Water cooling groove 32 Water cooling hole 4 O-ring 5 Cylindrical cartridge heater (heating element) 6 Cooling water 7 Molten steel (molten metal) 8 Solidified shell 9 Powder 10 Metal surface level 11 Power supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋳片を連続的に製造する連続鋳造用鋳型
であって、鋳型上部から鋳型下部までの範囲内の鋳型外
面に、上下方向に延びる水冷溝を刻設するとともに、湯
面レベルの上下に100mm 以内または鋳型上面から200mm
以内の鋳型内部に発熱体を設けたことを特徴とする連続
鋳造用鋳型。
1. A continuous casting mold for continuously producing a slab, wherein a vertically extending water cooling groove is formed on an outer surface of the mold in a range from an upper portion of the mold to a lower portion of the mold, and Within 100mm above and below or 200mm from the top of the mold
A casting mold for continuous casting, wherein a heating element is provided inside the mold within.
【請求項2】 請求項1に記載の連続鋳造用鋳型を用い
て、前記鋳型内部に設けられた発熱体の出力を調整して
連続鋳造することを特徴とする連続鋳造方法。
2. A continuous casting method using the continuous casting mold according to claim 1, wherein the output of a heating element provided inside the mold is adjusted to perform continuous casting.
JP11004777A 1999-01-12 1999-01-12 Continuous casting method and mold for continuous casting Pending JP2000202583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11004777A JP2000202583A (en) 1999-01-12 1999-01-12 Continuous casting method and mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11004777A JP2000202583A (en) 1999-01-12 1999-01-12 Continuous casting method and mold for continuous casting

Publications (1)

Publication Number Publication Date
JP2000202583A true JP2000202583A (en) 2000-07-25

Family

ID=11593271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11004777A Pending JP2000202583A (en) 1999-01-12 1999-01-12 Continuous casting method and mold for continuous casting

Country Status (1)

Country Link
JP (1) JP2000202583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100398233C (en) * 2004-12-24 2008-07-02 中钢集团洛阳耐火材料研究院 Long nozzle in composite structure free from prewarming
CN100506430C (en) * 2003-08-13 2009-07-01 Km欧洲钢铁股份有限公司 Liquid-cooled crystallizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100506430C (en) * 2003-08-13 2009-07-01 Km欧洲钢铁股份有限公司 Liquid-cooled crystallizer
CN100398233C (en) * 2004-12-24 2008-07-02 中钢集团洛阳耐火材料研究院 Long nozzle in composite structure free from prewarming

Similar Documents

Publication Publication Date Title
JPH01170550A (en) Mold for continuously casting steel
JPH0688106B2 (en) Horizontal continuous casting method for strip-shaped metal ingot and its equipment
TW201813739A (en) Continuous steel casting method in which the inner wall surface of a mold copper plate of the casting mold filled with hetero-thermally conductive metal filling portion and the area ration is 10% or more and 80% or less
KR20210123383A (en) Continuous casting method of slab cast steel
JP2000202583A (en) Continuous casting method and mold for continuous casting
US7059384B2 (en) Apparatus and method for metal strip casting
JP4248085B2 (en) Hollow billet casting core and method for hot top continuous casting of hollow billet using the core
JP2015134377A (en) Melting continuous casting apparatus for high purity ingot and melting continuous casting method for high purity ingot
JP3398608B2 (en) Continuous casting method and mold for continuous casting
JP2020121329A (en) Mold and method for steel continuous casting
KR100650600B1 (en) Method of the melt temperature control in twin roll strip casting
JPS5838640A (en) Continuous casting device for thin metal sheet
JPH01170551A (en) Mold for continuously casting steel
JP5579314B1 (en) High purity ingot melting continuous casting apparatus and high purity ingot melting continuous casting method
JP3724235B2 (en) Continuous casting method and continuous casting mold
JPH04187344A (en) Mold for continuous casting
JPS58218360A (en) Continuous casting device for thin steel plate
KR200337464Y1 (en) Non-Turbulent Mold Casting M/C
JPH1034286A (en) Method and device for continuous casting
KR100333307B1 (en) Apparatus for manufacturing billets using refractory mold
JPS59212151A (en) Method for preventing formation of solidified shell on short-side surface in charging port part in continuous casting of thin-walled billet
JPH03264143A (en) Continuous casting method and mold thereof
JPH01202347A (en) Continuous casting machine for cast strip
JP2015047639A (en) Melting continuous casting apparatus and method for high purity ingot
JPS61245949A (en) Continuous casting method