JP2015134377A - Melting continuous casting apparatus for high purity ingot and melting continuous casting method for high purity ingot - Google Patents

Melting continuous casting apparatus for high purity ingot and melting continuous casting method for high purity ingot Download PDF

Info

Publication number
JP2015134377A
JP2015134377A JP2015040792A JP2015040792A JP2015134377A JP 2015134377 A JP2015134377 A JP 2015134377A JP 2015040792 A JP2015040792 A JP 2015040792A JP 2015040792 A JP2015040792 A JP 2015040792A JP 2015134377 A JP2015134377 A JP 2015134377A
Authority
JP
Japan
Prior art keywords
melting
continuous casting
holding
molten metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015040792A
Other languages
Japanese (ja)
Inventor
雅俊 衛藤
Masatoshi Eto
雅俊 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015040792A priority Critical patent/JP2015134377A/en
Publication of JP2015134377A publication Critical patent/JP2015134377A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a melting continuous casting apparatus for a high purity ingot capable of producing the high purity ingot which has uniform composition and shape, and can produce a hollow billet having surface roughness of which is preferably suppressed.SOLUTION: A melting continuous casting apparatus for a high purity ingot is a facility for producing an ingot of metal or of an inorganic compound. In the melting continuous casting apparatus, a continuous casting part is connected to a lower part of a part 1 where raw material is heated and melted, and a metal melting/holding part 14 having a function of heating/melting the raw material and a function of holding melted molten metal and a casting outer peripheral part 7 are integrated into an integral structure.

Description

本発明は、高純度鋳塊の溶解連続鋳造装置及び高純度鋳塊の溶解連続鋳造方法に関する。   The present invention relates to a high-purity ingot melting continuous casting apparatus and a high-purity ingot melting continuous casting method.

近年、太陽光発電の需要が急速に伸びており、太陽光発電の構成材料の開発が盛んに進められている。太陽光発電に用いる太陽電池は、一般に基板上に裏面電極層、光吸収層、抵抗バッファ層、透明導電層がこの順に形成された構造を有している。太陽電池の光吸収層は、光吸収能力が大きいほうが好ましく、そのような観点から種々の材料が開発されている。   In recent years, the demand for photovoltaic power generation has increased rapidly, and the development of constituent materials for photovoltaic power generation has been actively promoted. A solar cell used for photovoltaic power generation generally has a structure in which a back electrode layer, a light absorption layer, a resistance buffer layer, and a transparent conductive layer are formed in this order on a substrate. It is preferable that the light absorption layer of the solar cell has a large light absorption capability, and various materials have been developed from such a viewpoint.

太陽電池の光吸収層の材料として、Cu(I族)、In/Ga(III族)、Se/S(VI族)の五元系合金であるCIS系合金が知られている。CIS系合金は、波長が太陽光のスペクトルの範囲を広くカバーしており、光吸収能力が高い。光吸収層は、ガラス基板等の基材上にCIS系合金をターゲット材として、スパッタリングによって形成している。   As a material for a light absorption layer of a solar cell, a CIS alloy that is a quinary alloy of Cu (Group I), In / Ga (Group III), and Se / S (Group VI) is known. CIS alloys cover a wide spectrum range of sunlight and have a high light absorption capability. The light absorption layer is formed on a base material such as a glass substrate by sputtering using a CIS alloy as a target material.

ターゲット材は、通常、作製の容易さ等の理由から板状に形成されている。しかしながら、板状のターゲット材を用いると、ターゲット材の表面がドーナツ状に使用されてしまい、ターゲット材の使用効率が低いという問題がある。   The target material is usually formed in a plate shape for reasons such as ease of production. However, when a plate-like target material is used, there is a problem that the surface of the target material is used in a donut shape and the use efficiency of the target material is low.

これに対し、ターゲット材の形態を中空ビレットにすることで、ターゲットを回転させながらスパッタリングを行い、ターゲット材の使用効率を向上させるロータリー型ターゲットによるスパッタ技術が実用化されている。   On the other hand, a sputtering technique using a rotary target has been put into practical use in which sputtering is performed while rotating the target by using a hollow billet as the target material, thereby improving the use efficiency of the target material.

このような技術として、例えば、特許文献1には、断面が円筒もしくはそれ以外の中空状の水冷鋳型の上下開放せる中空部内に中子を配備し、前記水冷鋳型と中子との間に形成された環状の鋳造路内に金属溶湯を連続して供給する一方、当初は前記鋳造路の下端を密閉するように配置した受台を降下させ、供給された金属溶湯が前記鋳造路内で凝固する凝固開始点をほぼ一定に維持して環状の鋳塊を連続的に引き出すことにより中空ビレットを製造する装置において、前記中子が、(a)前記鋳造路内へ供給すべき金属溶湯を一旦受け入れるための溶湯受槽および該溶湯受槽から前記鋳造路内へ金属溶湯を導くための少なくとも1つの導湯部が上部に一体に形成された断熱材からなる断熱部体に、(b)中子側の予定せる前記凝固開始点を含む上下方向に適当な長さ範囲につき下方が小径となる先細状のテーパーを有する中子側鋳造面を形成するための黒鉛または炭素質材料からなる鋳造部体を固定して構成されていることを特徴とする中空ビレットの連続的鋳造装置が開示されている。   As such a technique, for example, in Patent Document 1, a core is disposed in a hollow part that is open vertically in a hollow or other hollow water-cooled mold having a cross section, and is formed between the water-cooled mold and the core. While the molten metal is continuously supplied into the annular casting path, the cradle is initially lowered so as to seal the lower end of the casting path, and the supplied molten metal is solidified in the casting path. In an apparatus for producing a hollow billet by continuously pulling out an annular ingot while maintaining a solidification start point to be substantially constant, the core (a) temporarily supplies a molten metal to be supplied into the casting path. (B) a core side of a heat receiving part made of a heat receiving material and a heat receiving material integrally formed at an upper part thereof with a molten metal receiving tank for receiving the molten metal from the molten metal receiving tank into the casting path. Including the solidification start point A casting part made of graphite or carbonaceous material for forming a core-side casting surface having a taper-shaped taper having a small diameter on the lower side in an appropriate length range in the vertical direction is fixed. A featured continuous billet casting apparatus is disclosed.

また、特許文献2には、鋳型上の溶湯を保持するための断熱材耐火物製の溶湯受槽に鋳造炉からロンダー(樋)を経て、溶湯を鋳型に供給するホットトップ鋳造法において、耐火材製中子を水冷鋳型の内側に同心的に設置して連続鋳造法により中空ビレットを鋳造する方法において、該中子の内部に冷却剤を流通させるための冷却剤流管及び温度検出装置の温度検知端を設け、該温度検出装置の検出する温度に応じて冷却剤流管内の冷却剤の流量又は温度を調節することにより該中子の温度を制御することを特徴とする中空ビレットの鋳造法が開示されている。   Patent Document 2 discloses a refractory material in a hot top casting method in which a molten metal receiving tank made of a heat-insulating material refractory for holding a molten metal on a mold is fed from a casting furnace to a mold through a launder. In a method of casting a hollow billet by a continuous casting method with a core made concentrically installed inside a water-cooled mold, the temperature of a coolant flow tube and a temperature detection device for circulating a coolant through the core A method for casting a hollow billet, characterized by providing a detection end and controlling the temperature of the core by adjusting the flow rate or temperature of the coolant in the coolant flow tube in accordance with the temperature detected by the temperature detection device. Is disclosed.

さらに、特許文献3には、外部または外周部に冷却構造を有する非同期式の外部鋳型を設置し、該外部鋳型が構成する内部空間に、内部または内周部に冷却構造を有する非同期式の内部鋳型を、内部鋳型と外部鋳型との間に給湯ノズルから溶融金属を流入させる鋳型空間を構成するように挿入し、かつ、該内部鋳型は溶融金属のメニスカスから鋳造方向に向かい内部鋳型の外形形状を連続的に小さくすることを特徴とした中空丸鋳片用の連続鋳造鋳型が開示されている。   Further, in Patent Document 3, an asynchronous external mold having a cooling structure on the outside or the outer periphery is installed, and an asynchronous internal mold having a cooling structure on the inside or the inner periphery is formed in the internal space formed by the external mold. The mold is inserted between the inner mold and the outer mold so as to constitute a mold space for allowing molten metal to flow from the hot water nozzle, and the inner mold is directed from the molten metal meniscus toward the casting direction and the outer shape of the inner mold. There is disclosed a continuous casting mold for hollow round slab characterized by continuously reducing the size of the hollow round slab.

特開昭61−135452号公報Japanese Patent Laid-Open No. 61-134542 特公平1−31971号公報Japanese Patent Publication No. 1-31971 特開平5−293597号公報JP-A-5-293597

上記特許文献に開示されたような縦型連続鋳造では、外側鋳型と内側鋳型とが構成する中空状の空間へ溶湯を流し込んで冷却し、凝固させながら連続して引き出すことで、中空ビレットの形態となった鋳塊を作製している。金属溶湯を断熱材から成るロンダー(樋或いは導湯部)を経て断熱耐火物製の溶湯受槽に供給し、又は給湯ノズルから溶融金属を流入させるため、雰囲気(空気)、耐火材等構成部材による溶湯の汚染が生じる。溶湯中の活性元素の酸化、溶湯の水分による酸化とそれに伴う水素ガスの溶湯への侵入、水素ガスによる鋳塊内のピンホール発生、溶湯移送中の耐火材部材との反応或いは耐火材の離脱による溶湯への混入などによる純度の低下が発生する。また、縦型連続鋳造では、溶湯が凝固を開始する位置や、鋳型内の凝固の状態が、連続鋳造の間でばらつきがあると、作製される中空ビレットのターゲット材の構成が不均一となり、また、表面(鋳肌)に荒れが生じ、中空ビレットと鋳型及び中子との摩擦抵抗が大きく連続鋳造が困難になったり、スパッタリングに種々の悪影響を及ぼす可能性がある。特に、銅を主成分とする中空ビレットを作製する場合、銅の熱伝導性が非常に高いため、鋳造時の熱制御が難しい。また、銅にガリウムを添加したCu−Ga合金を材料とする場合は、銅とガリウムとの融点の差が大きいため、連続鋳造により全体を均一な組成や形状にすることは非常に困難であった。   In the vertical continuous casting as disclosed in the above patent document, the shape of the hollow billet is obtained by pouring the molten metal into the hollow space formed by the outer mold and the inner mold, cooling it, and continuously pulling it out while solidifying. The resulting ingot is produced. Depending on the atmosphere (air), refractory materials, etc., to supply the molten metal to the molten metal receiving tank made of heat-insulating refractory through a launder made of heat-insulating material, or from the hot water nozzle. Contamination of the molten metal occurs. Oxidation of active elements in the molten metal, oxidation of the molten metal with water and associated hydrogen intrusion into the molten metal, generation of pinholes in the ingot due to hydrogen gas, reaction with the refractory member during the transfer of the molten metal, or removal of the refractory material Degradation of purity occurs due to mixing into the molten metal due to. Also, in the vertical continuous casting, if the position where the molten metal begins to solidify and the state of solidification in the mold vary between continuous castings, the configuration of the target material of the produced hollow billet becomes non-uniform, Further, the surface (casting surface) becomes rough, the frictional resistance between the hollow billet, the mold and the core is large, making continuous casting difficult, and various adverse effects on sputtering may occur. In particular, when producing a hollow billet containing copper as a main component, the thermal conductivity of copper is very high, so that it is difficult to control the heat during casting. In addition, when using a Cu—Ga alloy in which gallium is added to copper, the difference in melting point between copper and gallium is large, so it is very difficult to obtain a uniform composition and shape by continuous casting. It was.

そこで、本発明は、均一な組成や形状を有し、表面の荒れが良好に抑制された中空ビレットを作製することができる高純度鋳塊の溶解連続鋳造装置を提供することを課題の一つとする。また、本発明はそのような鋳型を用いた高純度鋳塊の溶解連続鋳造方法を提供することを別の課題の一つとする。   Accordingly, one of the objects of the present invention is to provide a high-purity ingot melting continuous casting apparatus capable of producing a hollow billet having a uniform composition and shape and whose surface roughness is satisfactorily suppressed. To do. Another object of the present invention is to provide a high-purity ingot melting continuous casting method using such a mold.

本発明者は上記課題を解決すべく鋭意研究を重ねたところ、下部に連続鋳造部分を接続することで、高純度でピンホール欠陥の発生がない高純度鋳塊を作成することができることを見出した。また、連続鋳造部分の鋳造空間を外側及び内側から冷却する条件を良好に制御することで均一な組成や形状を有し、鋳塊の表面の荒れが良好に制御された中空ビレットを作成することができることを見出した。   As a result of intensive research to solve the above problems, the present inventor has found that a high-purity ingot free from pinhole defects can be produced by connecting a continuous casting portion to the lower portion. It was. Also, to create a hollow billet that has a uniform composition and shape by well controlling the conditions for cooling the casting space of the continuous casting part from the outside and the inside, and the surface roughness of the ingot is well controlled I found out that I can.

上記知見を基礎として完成した本発明は一側面において、金属又は無機系化合物の鋳塊を作製する設備であって、原料を加熱溶解する部分の下部に連続鋳造部分を接続した高純度鋳塊の溶解連続鋳造装置である。   The present invention completed on the basis of the above knowledge is, in one aspect, a facility for producing an ingot of a metal or an inorganic compound, and is a high-purity ingot in which a continuous casting portion is connected to a lower portion of a portion where a raw material is heated and melted. It is a melting continuous casting device.

本発明は別の一側面において、原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部から前記鋳造空間へ流入させた溶湯を冷却する工程を備えた本発明の溶解連続鋳造装置を用いた高純度鋳塊の溶解連続鋳造方法である。   In another aspect of the present invention, the molten continuous casting according to the present invention includes a step of cooling the molten metal that has flowed into the casting space from a metal melting / holding portion having a function of retaining the molten metal by melting the raw material by heating and melting. This is a continuous casting method for high-purity ingots using an apparatus.

本発明によれば、均一な組成や形状を有し、表面の荒れが良好に抑制された中空ビレットを作製可能な高純度鋳塊の溶解連続鋳造装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the melt | dissolution continuous casting apparatus of the high purity ingot which can produce the hollow billet which has a uniform composition and shape and the surface roughness was suppressed favorably can be provided.

本発明の実施形態に係る高純度鋳塊の溶解連続鋳造装置の断面模式図を示す。The cross-sectional schematic diagram of the melt | dissolution continuous casting apparatus of the high purity ingot which concerns on embodiment of this invention is shown. 本発明の実施形態に係る高純度鋳塊の溶解連続鋳造装置の上面模式図を示す。The upper surface schematic diagram of the melt | dissolution continuous casting apparatus of the high purity ingot which concerns on embodiment of this invention is shown. 本発明の実施形態に係る高純度鋳塊の溶解連続鋳造装置の左側下部の拡大模式図を示す。The expansion schematic diagram of the lower left part of the melt | dissolution continuous casting apparatus of the high purity ingot which concerns on embodiment of this invention is shown. 本発明の他の実施形態に係る高純度鋳塊の溶解連続鋳造装置の左側下部の拡大模式図を示す。The enlarged schematic diagram of the lower left part of the melt | dissolution continuous casting apparatus of the high purity ingot which concerns on other embodiment of this invention is shown. 本発明の更に他の実施形態に係る高純度鋳塊の溶解連続鋳造装置の下部の拡大模式図を示す。The expansion schematic diagram of the lower part of the melt | dissolution continuous casting apparatus of the high purity ingot which concerns on other embodiment of this invention is shown. 本発明の実施形態に係る中子のテーパーの傾きを説明するための中子の模式図を示す。The schematic diagram of the core for demonstrating the inclination of the taper of the core which concerns on embodiment of this invention is shown. 本発明の実施形態に係る高純度鋳塊の溶解連続鋳造装置の断面模式図を示す。The cross-sectional schematic diagram of the melt | dissolution continuous casting apparatus of the high purity ingot which concerns on embodiment of this invention is shown.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(高純度鋳塊の溶解連続鋳造装置の構成)
本発明の高純度鋳塊の溶解連続鋳造装置の断面模式図を図1に示す。図2は、高純度鋳塊の溶解連続鋳造装置の上面模式図である。図3は、高純度鋳塊の溶解連続鋳造装置の左側下部の拡大模式図である。
(Configuration of high-purity ingot melting continuous casting equipment)
A schematic cross-sectional view of the high-purity ingot melting continuous casting apparatus of the present invention is shown in FIG. FIG. 2 is a schematic top view of a high-purity ingot melting continuous casting apparatus. FIG. 3 is an enlarged schematic diagram of the lower left portion of the high-purity ingot melting continuous casting apparatus.

本発明の高純度鋳塊の溶解連続鋳造装置は、柱状の中子2と、中子2の上方に位置する金属を溶解及び溶湯を保持する機能を有する金属溶解・保持部14を有するルツボ1とを備える。すなわち、溶解連続鋳造装置は、原料を加熱溶解する部分の下部に連続鋳造部分が接続されている。   The high-purity ingot melting and continuous casting apparatus of the present invention is a crucible 1 having a columnar core 2 and a metal melting / holding portion 14 having a function of melting a metal located above the core 2 and holding the molten metal. With. That is, in the continuous melting casting apparatus, the continuous casting part is connected to the lower part of the part where the raw material is heated and melted.

ルツボ1は、中子2の外周面とで、金属を溶解する機能及び溶湯を保持する機能を有する金属溶解・保持部14からの溶融金属(溶湯8)を流入させる中空ビレット9の鋳造空間を構成する鋳造外周部7を有し、鋳造空間を、外周側及び内周側からそれぞれ深さ方向において複数部位に区分けして冷却する冷却部3、15を備える。このように、冷却部3、15が鋳造空間を、外周側及び内周側からそれぞれ深さ方向において複数部位に区分けして冷却するため、鋳造空間の溶湯8の凝固状態を深さ方向で良好に制御することができる。金属を溶解する機能及び溶湯を保持する機能を有する金属溶解・保持部14には、不活性ガスを導入する不活性ガス導入部12が設けられており、溶湯8内の酸素分圧を低下させている。金属を溶解及び溶湯を保持する機能を有する金属溶解・保持部14の溶湯8の加熱方式は、抵抗加熱、高周波誘導加熱等を用いることができる。   The crucible 1 forms a casting space of the hollow billet 9 into which the molten metal (molten metal 8) flows from the metal melting / holding portion 14 having the function of melting the metal and the function of retaining the molten metal with the outer peripheral surface of the core 2. It has a casting outer peripheral portion 7 to be configured, and includes cooling portions 3 and 15 for cooling the casting space by dividing it into a plurality of portions in the depth direction from the outer peripheral side and the inner peripheral side, respectively. As described above, the cooling units 3 and 15 divide the casting space into a plurality of portions in the depth direction from the outer peripheral side and the inner peripheral side, respectively, and cool it, so that the solidified state of the molten metal 8 in the casting space is good in the depth direction. Can be controlled. The metal melting / holding unit 14 having a function of melting a metal and a function of holding a molten metal is provided with an inert gas introducing unit 12 for introducing an inert gas, thereby reducing the oxygen partial pressure in the molten metal 8. ing. As the heating method of the molten metal 8 of the metal melting / holding unit 14 having the function of melting the metal and holding the molten metal, resistance heating, high-frequency induction heating, or the like can be used.

鋳造空間を外周側から冷却する冷却部3は、ルツボ1の鋳造外周部7の外周側に設けられている。ルツボ1の鋳造外周部7の外周側に設けられた冷却部3としては、深さ方向に区分けされた小冷却部を複数備えた水冷銅ジャケット等の冷媒ジャケットを設けることができる。複数の小冷却部は、それぞれ水等の冷媒が通過する経路を備えた構造とすることができる。各小冷却部の温度制御は、冷媒ジャケットを流れる冷媒の流量、流速、温度等を調整することにより行うことができる。このような構成により、簡便な手段で効率良く溶湯8を冷却することができる。また、冷媒が溶湯8に直接接触しない構造となっているため、湯漏れが生じても水蒸気爆発のおそれが無い。   The cooling part 3 for cooling the casting space from the outer peripheral side is provided on the outer peripheral side of the casting outer peripheral part 7 of the crucible 1. As the cooling part 3 provided on the outer peripheral side of the casting outer peripheral part 7 of the crucible 1, a refrigerant jacket such as a water-cooled copper jacket provided with a plurality of small cooling parts divided in the depth direction can be provided. Each of the plurality of small cooling units may have a structure including a path through which a coolant such as water passes. The temperature control of each small cooling unit can be performed by adjusting the flow rate, flow rate, temperature, and the like of the refrigerant flowing through the refrigerant jacket. With such a configuration, the molten metal 8 can be efficiently cooled by simple means. In addition, since the refrigerant does not directly contact the molten metal 8, there is no risk of a steam explosion even if a hot water leak occurs.

本発明の高純度鋳塊の溶解連続鋳造装置で用いる冷却部としては、上述のように鋳造空間を、外周側及び内周側からそれぞれ深さ方向において複数部位に区分けして冷却する構成でなくてもよい。例えば、図4に示すように、冷却部3’が区分けされていない構成であってもよい。このような構成により、簡便な手段で効率良く溶湯8を冷却することができる。また、冷媒が溶湯8に直接接触しない構造となっているため、湯漏れが生じても水蒸気爆発のおそれが無い。   The cooling section used in the high-purity ingot melting continuous casting apparatus of the present invention is not configured to cool by dividing the casting space into a plurality of portions in the depth direction from the outer peripheral side and the inner peripheral side as described above. May be. For example, as shown in FIG. 4, the cooling unit 3 ′ may not be divided. With such a configuration, the molten metal 8 can be efficiently cooled by simple means. In addition, since the refrigerant does not directly contact the molten metal 8, there is no risk of a steam explosion even if a hot water leak occurs.

本発明の高純度鋳塊の溶解連続鋳造装置で用いる冷却部3、3’は、それぞれ、図5に示すように、その内部において深さ方向に上下する流路21を備えてもよい。流路21は、内部に冷媒が通るように構成されている。流路21は、図5に示すように、冷媒が、冷却部3、3’の深さ方向に上下しながら鋳造空間を周方向に連続して流れるように構成されていてもよい。このような構成により、簡便な手段でより効率良く溶湯8を冷却することができる。また、冷媒が溶湯8に直接接触しない構造となっているため、湯漏れが生じても水蒸気爆発のおそれが無い。   As shown in FIG. 5, each of the cooling units 3, 3 ′ used in the high-purity ingot melting and continuous casting apparatus of the present invention may include a flow path 21 that moves up and down in the depth direction. The flow path 21 is configured so that the refrigerant passes through it. As shown in FIG. 5, the flow path 21 may be configured such that the refrigerant continuously flows in the circumferential direction in the casting space while moving up and down in the depth direction of the cooling units 3 and 3 ′. With such a configuration, the molten metal 8 can be cooled more efficiently by simple means. In addition, since the refrigerant does not directly contact the molten metal 8, there is no risk of a steam explosion even if a hot water leak occurs.

ルツボ1の金属を溶解及び溶湯を保持する機能を有する金属溶解・保持部14と鋳造外周部7とは一体形成されているのが好ましい。このような構成によれば、製造効率が良好となる。また、金属溶解・保持部14と鋳造外周部7とが複数の構成片及び、又は複数の材質で形成されてもよい。また、金属溶解・保持部14はアルミナ(Al23)、ムライト(3Al23・2SiO2)ジルコニア(ZrO2)などのファインセラミックス、グラファイト等で形成することができるが、特にグラファイトで形成されているのが好ましい。グラファイトは、金属、特に銅合金に対して潤滑性に富む材料であり、表面の荒れが良好に抑制された表面品質に富む中空ビレット9を作製することができる。また、グラファイトで形成すると、材料全体に亘って緻密な温度管理が可能となるため、材料全体の温度制御の自由度が高くなる。さらに、溶湯8への不純物の混入が良好に抑制される。また、鋳造外周部7は、熱膨張及び熱収縮特性、潤滑性(グラファイトとの反応性)、抜熱性などの理由により、鉄、鉄合金、銅、銅合金などその表面にクロムなどをめっきしたものを溶湯に接する部分に使用し、鋳造後に冷却が進んだ部分にグラファイトを使用するのが好ましい。 It is preferable that the metal melting / holding portion 14 having a function of melting the metal of the crucible 1 and holding the molten metal and the casting outer peripheral portion 7 are integrally formed. According to such a configuration, manufacturing efficiency is improved. Further, the metal melting / holding portion 14 and the cast outer peripheral portion 7 may be formed of a plurality of constituent pieces and / or a plurality of materials. The metal dissolving / holding portion 14 can be formed of fine ceramics such as alumina (Al 2 O 3 ), mullite (3Al 2 O 3 .2SiO 2 ) zirconia (ZrO 2 ), graphite, etc. Preferably it is formed. Graphite is a material rich in lubricity with respect to metals, particularly copper alloys, and can produce a hollow billet 9 rich in surface quality in which surface roughness is well suppressed. Moreover, since it becomes possible to perform precise temperature control over the entire material when it is formed of graphite, the degree of freedom of temperature control of the entire material is increased. Furthermore, the mixing of impurities into the molten metal 8 is suppressed satisfactorily. The casting outer peripheral portion 7 is plated with chromium or the like on the surface thereof such as iron, iron alloy, copper, copper alloy for reasons such as thermal expansion and contraction characteristics, lubricity (reactivity with graphite), and heat removal. It is preferable to use a material in contact with the molten metal and use graphite in a portion where cooling has progressed after casting.

ルツボ1には、金属を溶解する機能及び溶湯を保持する機能を有する金属溶解・保持部14から鋳造空間へ溶湯8を供給する溶湯供給部位の溶湯温度を測定する溶湯温度測定用熱電対13が、所定の保護管内に収容された状態で、中子2の上面を貫通するように形成された熱電対保護管挿入口4を通り、溶湯供給部位に到達するように設けられている。この熱電対13は、1つだけ設けてもよく、複数を周方向に等間隔で設けてもよい。複数設けると、溶湯供給部位の溶湯温度をより正確に測定することが可能となる。   The crucible 1 has a molten metal temperature measuring thermocouple 13 for measuring the molten metal temperature at the molten metal supply portion that supplies the molten metal 8 from the metal melting / holding portion 14 having the function of melting the metal and holding the molten metal to the casting space. In a state where it is accommodated in a predetermined protective tube, it passes through the thermocouple protective tube insertion port 4 formed so as to penetrate the upper surface of the core 2 and is provided so as to reach the molten metal supply site. Only one thermocouple 13 may be provided, or a plurality of thermocouples 13 may be provided at equal intervals in the circumferential direction. By providing a plurality, it becomes possible to measure the melt temperature at the melt supply site more accurately.

ルツボ1の鋳造外周部7には、深さ方向に伸びるような管状孔部17が形成され、この管状孔部17には鋳造外周部内熱電対10が設けられている。この熱電対10は、1つだけ設けてもよく、複数を鋳造外周部7の周方向に等間隔で設けてもよい。複数設けると、溶湯供給部位の溶湯温度をより正確に測定することが可能となる。また、この熱電対10は、一体で深さ方向において複数箇所の温度測定点を有する。このような構成によれば、上述の深さ方向に区分けされた小冷却部を複数備えた冷媒ジャケットで冷却された鋳造空間の溶湯8の凝固状態を深さ方向でより良好に制御することが可能となる。このため、溶湯8が凝固を開始する位置や、鋳型内の凝固の状態を、連続鋳造の間でばらつき無く制御し、これにより作製する中空ビレット9のターゲット材の組成や形状を均一にすることができ、さらに表面の荒れを良好に抑制することができる。特に、銅を主成分とする中空ビレット9を作製する場合、銅の熱伝導性が非常に高いため、従来は鋳造時の熱制御が難しかった。また、銅にガリウムを添加したCu−Ga合金を材料とする場合は、銅とガリウムとの融点の差が大きいため、連続鋳造により全体を均一な組成や形状にすることは非常に困難であった。これに対し、本発明によれば、上述のように鋳造時の熱制御を細かく行うことができるため、Cu−Ga合金が材料であっても、均一な組成や形状を有し、表面の荒れが良好に抑制された中空ビレット9を作製することができる。   A tubular hole portion 17 extending in the depth direction is formed in the casting outer peripheral portion 7 of the crucible 1, and the cast hole outer peripheral thermocouple 10 is provided in the tubular hole portion 17. Only one thermocouple 10 may be provided, or a plurality of thermocouples 10 may be provided at equal intervals in the circumferential direction of the casting outer peripheral portion 7. By providing a plurality, it becomes possible to measure the melt temperature at the melt supply site more accurately. Further, the thermocouple 10 has a plurality of temperature measurement points as a unit in the depth direction. According to such a configuration, the solidification state of the molten metal 8 in the casting space cooled by the refrigerant jacket provided with a plurality of small cooling portions divided in the depth direction can be controlled better in the depth direction. It becomes possible. For this reason, the position at which the molten metal 8 starts to solidify and the solidification state in the mold are controlled without variation during continuous casting, thereby making the composition and shape of the target material of the hollow billet 9 produced uniform. In addition, surface roughness can be satisfactorily suppressed. In particular, when producing a hollow billet 9 containing copper as a main component, the thermal conductivity of copper is very high, and thus it has been difficult to control the heat during casting. In addition, when using a Cu—Ga alloy in which gallium is added to copper, the difference in melting point between copper and gallium is large, so it is very difficult to obtain a uniform composition and shape by continuous casting. It was. On the other hand, according to the present invention, since the heat control during casting can be finely performed as described above, even if the Cu-Ga alloy is a material, it has a uniform composition and shape, and the surface is rough. It is possible to produce a hollow billet 9 in which is suppressed satisfactorily.

中子2の内部には、鋳造空間を内周側から冷却する冷却部が設けられている。中子2の内部に設けられた冷却部15は、同心円状に配置され、深さ方向に伸びるように形成された管状孔部16と、管状孔部16に冷媒プローブ挿入口6から差し込まれる、水等の冷媒を用いた冷媒プローブとで構成されている。管状孔部16は、周方向に沿って複数が等間隔で形成されており、周方向に沿って材料を均一に冷却することができる。冷媒プローブを管状孔部16に差し込むが、このときの差し込み深さを調整することで、鋳造空間の内周側から深さ方向において複数部位に区分けして冷却することができる。また、冷媒が溶湯8に直接接触しない構造となっているため、湯漏れが生じても水蒸気爆発のおそれが無い。   Inside the core 2, a cooling unit is provided for cooling the casting space from the inner peripheral side. The cooling part 15 provided inside the core 2 is disposed concentrically and is inserted into the tubular hole part 16 from the refrigerant probe insertion port 6 into the tubular hole part 16 formed so as to extend in the depth direction. It is comprised with the refrigerant | coolant probe using refrigerant | coolants, such as water. A plurality of tubular holes 16 are formed at equal intervals along the circumferential direction, and the material can be cooled uniformly along the circumferential direction. The refrigerant probe is inserted into the tubular hole portion 16. By adjusting the insertion depth at this time, cooling can be performed by dividing into a plurality of portions in the depth direction from the inner peripheral side of the casting space. In addition, since the refrigerant does not directly contact the molten metal 8, there is no risk of a steam explosion even if a hot water leak occurs.

中子2は、所定の高さだけルツボ1の金属を溶解及び溶湯を保持する機能を有する金属溶解・保持部14内に入り込んでおり、上部が拡径している。この拡径部分に上下方向で貫通するように熱電対保護管挿入口4が形成されている。また、この拡径部分の端部は下方に曲げられて壁部が形成されて、当該壁部の下端がルツボに接触している。当該壁部は横方向に貫通するように溶湯供給口5が形成されており、当該溶湯供給口5を通って金属を溶解及び溶湯を保持する機能を有する金属溶解・保持部14内の溶湯8が鋳造空間へ流れ込む。   The core 2 enters the metal melting / holding part 14 having a function of melting the metal of the crucible 1 and holding the molten metal by a predetermined height, and the upper part is enlarged in diameter. A thermocouple protective tube insertion port 4 is formed so as to penetrate the enlarged diameter portion in the vertical direction. Moreover, the edge part of this enlarged diameter part is bent below, and a wall part is formed, and the lower end of the said wall part is contacting the crucible. A molten metal supply port 5 is formed so as to penetrate the wall portion in the lateral direction, and the molten metal 8 in the metal melting / holding unit 14 has a function of melting the metal through the molten metal supply port 5 and holding the molten metal. Flows into the casting space.

中子2は、下方に進むにつれて径が抜熱の勾配に合わせて縮小する傾きが0.01超えのテーパー状に形成されている。鋳造空間の溶湯8は、下方に進むに従って冷却されて凝固し、その後の冷却で熱収縮し、このとき徐々に縮径していく。このため、その縮径の程度に合わせて、中子2を下方に進むにつれて径が縮小する傾きが0.01超えのテーパー状に形成することで、作製される中空ビレット9と中子2との間の摩擦を良好に抑制する。従って、鋳型20から中空ビレット9を連続して良好に引き抜くことができる。ここで、図6に当該テーパーの傾きを説明するための中子の模式図を示す。図6では、中子の長さをxとし、直径をyとしている。この場合、上端部から下端部に進むにつれて径が縮小しており、そのテーパーの傾きをaとし、上端部の長さ(直径)をbとすると、y=ax+bの式が成り立つ。このときのテーパーの傾きaが0.01超であると、連続鋳造における鋳造片の引き抜きが良好となる。   The core 2 is formed in a taper shape with an inclination that the diameter decreases in accordance with the gradient of heat removal as it goes downward. The molten metal 8 in the casting space is cooled and solidified as it progresses downward, and is thermally contracted by the subsequent cooling, and at this time, the diameter is gradually reduced. For this reason, the hollow billet 9 and the core 2 that are produced by forming the core 2 into a taper shape with an inclination that decreases in diameter as the core 2 is moved downward according to the degree of diameter reduction. Suppresses the friction between the two. Therefore, the hollow billet 9 can be continuously and satisfactorily pulled out from the mold 20. Here, FIG. 6 shows a schematic diagram of a core for explaining the inclination of the taper. In FIG. 6, the length of the core is x, and the diameter is y. In this case, the diameter is reduced as it goes from the upper end to the lower end, and if the inclination of the taper is a and the length (diameter) of the upper end is b, the equation y = ax + b holds. When the taper inclination a is more than 0.01, the cast piece is easily pulled out in continuous casting.

中子2は金属(鉄、銅合金)、グラファイト等で形成することができるが、特にグラファイトで形成されているのが好ましい。グラファイトは、金属、特に銅合金に対して潤滑性に富む材料であり、表面の荒れが良好に抑制された表面品質に富む中空ビレット9を作製することができる。また、グラファイトで形成すると、材料全体に亘って緻密な温度管理が可能となるため、材料全体の温度制御の自由度が高くなる。さらに、溶湯8への不純物の混入が良好に抑制される。   The core 2 can be formed of a metal (iron, copper alloy), graphite, or the like, but is particularly preferably formed of graphite. Graphite is a material rich in lubricity with respect to metals, particularly copper alloys, and can produce a hollow billet 9 rich in surface quality in which surface roughness is well suppressed. Moreover, since it becomes possible to perform precise temperature control over the entire material when it is formed of graphite, the degree of freedom of temperature control of the entire material is increased. Furthermore, the mixing of impurities into the molten metal 8 is suppressed satisfactorily.

中子2には、深さ方向に伸びるような管状孔部16が形成され、管状孔部16には中子内熱電対11が設けられている。管状孔部16は、中子2の外周方向に沿って複数を等間隔で形成するのが好ましい。このような構成によれば、中子内熱電対11を中子2の外周方向に沿って1箇所以上に設けることができ、材料を中子2の外周方向に沿って複数箇所測定することができる。また、中子内熱電対11は、一体で深さ方向において複数箇所の温度測定点を有するのが好ましい。このような構成によれば、上述の冷媒プローブにより深さ方向で冷却状態を調整した鋳造空間の溶湯8の凝固状態を深さ方向でより良好に制御することが可能となる。このため、溶湯8が凝固を開始する位置や、鋳型20内の凝固の状態を、連続鋳造の間でばらつき無く制御し、これにより作製する中空ビレット9のターゲット材の組成や形状を均一にすることができ、さらに表面の荒れを良好に抑制することができる。   The core 2 is formed with a tubular hole 16 that extends in the depth direction. The tubular hole 16 is provided with a core thermocouple 11. It is preferable to form a plurality of tubular holes 16 at equal intervals along the outer circumferential direction of the core 2. According to such a configuration, the core thermocouple 11 can be provided at one or more locations along the outer circumferential direction of the core 2, and the material can be measured at a plurality of locations along the outer circumferential direction of the core 2. it can. Moreover, it is preferable that the core thermocouple 11 has a plurality of temperature measurement points as a unit in the depth direction. According to such a configuration, the solidification state of the molten metal 8 in the casting space whose cooling state is adjusted in the depth direction by the above-described refrigerant probe can be controlled better in the depth direction. For this reason, the position at which the molten metal 8 starts to solidify and the solidification state in the mold 20 are controlled without variation during continuous casting, thereby making the composition and shape of the target material of the hollow billet 9 produced uniform. Further, surface roughness can be satisfactorily suppressed.

鋳造外周部内熱電対10と、中子内熱電対11との各温度測定点は、鋳型20の深さ方向において同じ位置に形成されているのが好ましい。このような構成によれば、鋳型20内の材料の凝固の状態を深さ方向において外側と内側とで均一に制御することが可能となり、より均一な組成や形状を有し、表面の荒れが良好に抑制された中空ビレット9を作製することができる。   It is preferable that the temperature measurement points of the casting outer peripheral thermocouple 10 and the core inner thermocouple 11 are formed at the same position in the depth direction of the mold 20. According to such a configuration, it is possible to uniformly control the solidification state of the material in the mold 20 on the outside and the inside in the depth direction, and it has a more uniform composition and shape, and the surface is roughened. A hollow billet 9 that is well suppressed can be produced.

(高純度鋳塊の溶解連続鋳造装置30の構成)
図7に、本発明の実施形態に係る高純度鋳塊の溶解連続鋳造装置30の断面模式図を示す。高純度鋳塊の溶解連続鋳造装置30は、金属溶解炉から直接に鋳型及び前記鋳型の内側に配置される中子の間に供給される溶湯を冷却して凝固させることで中空ビレット39を形成し、前記鋳型及び前記中子から中空ビレット39を引き抜くことで連続して中空ビレットを鋳造する連続鋳造装置である。縦型連続鋳造装置30は、柱状の中子32と、中子32の上方に位置する金属を溶解する機能及び溶湯を保持する機能を有する金属溶解・保持部とを備えた本発明の縦型連続鋳造用鋳型20を備える。
(Configuration of high-purity ingot melting continuous casting apparatus 30)
In FIG. 7, the cross-sectional schematic diagram of the melt | dissolution continuous casting apparatus 30 of the high purity ingot which concerns on embodiment of this invention is shown. The high-purity ingot melting continuous casting apparatus 30 forms a hollow billet 39 by cooling and solidifying a molten metal supplied directly from a metal melting furnace between a mold and a core disposed inside the mold. The continuous casting apparatus continuously casts the hollow billet by pulling out the hollow billet 39 from the mold and the core. The vertical continuous casting apparatus 30 includes a columnar core 32 and a metal melting / holding portion having a function of melting a metal located above the core 32 and a function of holding a molten metal. A continuous casting mold 20 is provided.

鋳造空間を外周側から冷却する冷却部である水冷銅ジャケット33が、ルツボ31の外周側に設けられている。このとき、冷媒が溶湯38に直接接触しない構造となっているため、湯漏れが生じても水蒸気爆発のおそれが無い。ルツボ31には、不活性ガスを導入する不活性ガス導入部42が設けられており、溶湯38内の酸素分圧を低下させている。   A water-cooled copper jacket 33 that is a cooling unit that cools the casting space from the outer peripheral side is provided on the outer peripheral side of the crucible 31. At this time, since the refrigerant does not directly contact the molten metal 38, there is no risk of a steam explosion even if a hot water leak occurs. The crucible 31 is provided with an inert gas introduction part 42 for introducing an inert gas, and the oxygen partial pressure in the molten metal 38 is reduced.

ルツボ31の外周にはヒーター45が設けられている。ルツボ31の壁部にはルツボ温度制御用熱電対44が設けられている。ルツボ31から鋳造空間へ溶湯38を供給する溶湯供給部位の溶湯温度を測定する溶湯温度測定用熱電対43が、所定の保護管内に収容された状態で、中子32の上面を貫通するように形成された熱電対保護管挿入口を通り、溶湯供給部位に到達するように設けられている。中子32の内部には、鋳造空間を内周側から冷却する水冷プローブ46が同心円状に配置され、内部に冷媒プローブ挿入口36から差し込まれる。中空ビレットの縦型連続鋳造装置30は、金属溶解炉から直接に鋳型20及び鋳型20の内側に配置される中子32の間に供給される溶湯を冷却して凝固させることで中空ビレット39を形成し、鋳型20及び中子32から引き抜き機構47で中空ビレット39を引き抜くことで連続して中空ビレットを鋳造する。   A heater 45 is provided on the outer periphery of the crucible 31. A crucible temperature control thermocouple 44 is provided on the wall of the crucible 31. A molten metal temperature measurement thermocouple 43 for measuring the molten metal temperature at the molten metal supply portion that supplies the molten metal 38 from the crucible 31 to the casting space is inserted into the predetermined protective tube so as to penetrate the upper surface of the core 32. It passes through the formed thermocouple protective tube insertion port and is provided so as to reach the molten metal supply site. Inside the core 32, a water-cooling probe 46 that cools the casting space from the inner peripheral side is concentrically arranged, and is inserted into the inside through a refrigerant probe insertion port 36. The vertical continuous casting apparatus 30 of the hollow billet cools and solidifies the molten metal supplied between the mold 20 and the core 32 disposed inside the mold 20 directly from the metal melting furnace, thereby solidifying the hollow billet 39. Then, the hollow billet 39 is continuously drawn by pulling the hollow billet 39 from the mold 20 and the core 32 by the pulling mechanism 47.

(中空ビレット9の縦型連続鋳造方法)
次に、本発明の中空ビレット9の縦型連続鋳造方法について詳細に説明する。当該鋳造方法は、本発明の中空ビレット9の縦型連続鋳造用鋳型20を用いて行う。
まず、ルツボ1の金属を溶解する機能及び溶湯を保持する機能を有する金属溶解・保持部14に銅合金等のスパッタリングターゲット材の金属原料の溶湯8を設ける。金属を溶解及び溶湯を保持する機能を有する金属溶解・保持部14の溶湯8へは、不活性ガス導入部12からの窒素やアルゴン、ヘリウム等の不活性ガスが連続して供給されている。
次に、金属を溶解及び溶湯を保持する機能を有する金属溶解・保持部14から鋳造空間へ溶湯8を流入させる。鋳造空間には、凝固した溶湯8を連続して鋳型20から引き抜くための鋳造片〔金属(純銅、Cu−Ga合金)片〕、またはグラファイト片があらかじめ底面方向から挿入されている。鋳造空間へ流入した溶湯8は、外周側及び内周側からそれぞれ深さ方向において複数部位に区分けして冷却されて、あらかじめ挿入した鋳造片上で固まる。溶湯8の流入及び冷却を連続して行いつつ、この鋳造片を所定の速度で連続して引き抜くことで、中空ビレット9を連続して作製する。鋳造片の引き抜きは、従来と同様に、前進、停止、後退等の時間を設定した連続パターンで行うことができる。
(Vertical continuous casting method for hollow billet 9)
Next, the vertical continuous casting method of the hollow billet 9 of the present invention will be described in detail. The casting method is performed using the vertical continuous casting mold 20 of the hollow billet 9 of the present invention.
First, a metal melt 8 of a sputtering target material such as a copper alloy is provided in a metal melting / holding portion 14 having a function of melting the metal of the crucible 1 and a function of holding the molten metal. An inert gas such as nitrogen, argon, or helium from the inert gas introduction unit 12 is continuously supplied to the molten metal 8 of the metal melting / holding unit 14 having a function of melting the metal and holding the molten metal.
Next, the molten metal 8 is caused to flow into the casting space from the metal melting / holding portion 14 having a function of melting the metal and holding the molten metal. In the casting space, a cast piece (metal (pure copper, Cu—Ga alloy) piece) or a graphite piece for continuously drawing the solidified molten metal 8 from the mold 20 is inserted in advance from the bottom surface direction. The molten metal 8 that has flowed into the casting space is divided into a plurality of portions in the depth direction from the outer peripheral side and the inner peripheral side, cooled, and solidified on the previously inserted cast piece. The hollow billet 9 is continuously produced by continuously pulling out the cast piece at a predetermined speed while continuously flowing in and cooling the molten metal 8. The cast piece can be pulled out in a continuous pattern in which the time of advance, stop, retreat, etc. is set as in the conventional case.

鋳造空間の外周側の冷却は、ルツボ1の鋳造外周部7の外周側に設けられた、小冷却部を複数備えた冷媒ジャケットによって深さ位置で個別に調整して行う。また、複数に区分けされた位置の材料は、それぞれ鋳造外周部内熱電対10で測定しながら冷却状態を調整する。
鋳造空間の内周側の冷却は、中子2の内部に設けた冷媒プローブの差し込みの程度によって深さ位置で個別に調整して行う。特に、凝固開始位置の調整は重要であり、鋳造空間において早く固まり過ぎても中空ビレット9の表面に荒れが生じるおそれがあり、また、遅く固まりすぎても縦型の鋳型であるため溶湯8が鋳造空間の下へ漏れ落ちるおそれがある。
冷却温度の管理は、基本的には、鋳造空間の材料について、上方向から下方向へ進むにつれて強冷から弱冷へとなるように調整するが、熱電対10、11の測定値を確認しながら、各合金に応じた適切な温度となるように、深さ方向で細かく温度管理することが好ましい。これにより、溶湯8の凝固開始位置や、深さ方向の凝固形態を良好に調整することができるため、均一な組成や形状を有し、表面の荒れが良好に抑制された中空ビレット9を作製することができる。
また、鋳造空間の外周側の冷却は、ルツボ1の鋳造外周部7の外周側に設けられた図5に示すような冷却部の内部において深さ方向に上下した流路21を流れる冷媒の速度によって調整してもよい。
また、ルツボ1の鋳造外周部7に設けられた熱電対10と、中子2に設けられた熱電対11との各温度測定点を鋳型の深さ方向において同じ位置に形成することで、鋳型内の材料の凝固の状態を深さ方向において外側と内側とで均一に制御することができ、より均一な組成や形状を有し、表面の荒れが良好に抑制された中空ビレット9を作製することができる。
また、このようにしてCu−Ga合金製ロータリー型スパッタターゲット用の中空ビレットを作製することができる。
Cooling of the outer peripheral side of the casting space is performed by adjusting individually at a depth position by a refrigerant jacket provided on the outer peripheral side of the casting outer peripheral portion 7 of the crucible 1 and having a plurality of small cooling portions. In addition, the materials at the positions divided into a plurality are adjusted in the cooling state while being measured by the thermocouple 10 in the outer periphery of the casting.
Cooling of the inner circumferential side of the casting space is performed by individually adjusting the depth position according to the degree of insertion of the refrigerant probe provided inside the core 2. In particular, the adjustment of the solidification start position is important, and there is a possibility that the surface of the hollow billet 9 is roughened even if it is hardened too early in the casting space, and if it is hardened too late, the molten metal 8 is a vertical mold. There is a risk of leaking under the casting space.
The management of the cooling temperature is basically adjusted so that the material of the casting space is changed from strong to weak as it goes from the upper direction to the lower direction, but the measured values of the thermocouples 10 and 11 are confirmed. However, it is preferable to finely control the temperature in the depth direction so that the temperature is appropriate for each alloy. Thereby, since the solidification start position of the molten metal 8 and the solidification form in the depth direction can be adjusted satisfactorily, a hollow billet 9 having a uniform composition and shape and having a sufficiently suppressed surface roughness is produced. can do.
Further, the cooling on the outer peripheral side of the casting space is performed by the speed of the refrigerant flowing in the flow path 21 that goes up and down in the depth direction inside the cooling part as shown in FIG. 5 provided on the outer peripheral side of the casting outer peripheral part 7 of the crucible 1. You may adjust by.
Further, by forming the temperature measurement points of the thermocouple 10 provided on the outer periphery 7 of the crucible 1 and the thermocouple 11 provided on the core 2 at the same position in the mold depth direction, The solidified state of the inner material can be uniformly controlled in the depth direction between the outside and the inside, and a hollow billet 9 having a more uniform composition and shape and having excellent surface roughness suppressed is produced. be able to.
In addition, a hollow billet for a rotary sputter target made of a Cu—Ga alloy can be produced in this manner.

以下に本発明を実施例でさらに詳細に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

(実施例1)
図1〜3に記載したものと同様の構成を有する高純度鋳塊の溶解連続鋳造装置を準備した。金属を溶解及び溶湯を保持する機能を有する金属溶解・保持部には、960℃に保持したCu−29at%Ga合金の溶湯を設け、窒素ガスを連続して導入した。ルツボ及び中子は、それぞれグラファイトで形成した。また、鋳造空間については、内径129mm、外径160mm、高さ200mmとした。中子の上端部の外径を129mmとし、中子の下端部の外径を123mmとした。
次に、金属を溶解及び溶湯を保持する機能を有する金属溶解・保持部の溶湯を鋳造空間へ流し込み、ルツボ及び中子に設けた深さ位置で複数に区分けされた冷却部によって、独自に当該位置の冷却状態を調整しながら、鋳造片を引き抜き、中空ビレットを連続して鋳造した。ルツボ及び中子の冷却部は、深さ方向に等間隔に5区分(上方向から下方向へ向かって区分A、区分B、区分C、区分D、区分E)し、各冷却部にそれぞれ熱電対の測定点を設けた。ルツボ及び中子の冷却部それぞれにおいて、区分Aの冷却温度は850℃とし、区分Bの冷却温度は400℃とし、区分Cの冷却温度は250℃とし、区分Dの冷却温度は200℃とし、区分Eの冷却温度は150℃とした。
鋳造片の引き抜きパターンは、引き抜き速度:70mm/分での引き抜き、停止、後退を適宜組み合わせて設定した。
このようにして作製した中空ビレットは、全体に亘って均一な組成や形状を有し、表面の荒れが良好に抑制されていた。
Example 1
A high-purity ingot melting continuous casting apparatus having the same configuration as that described in FIGS. In the metal melting / holding portion having the function of melting the metal and holding the molten metal, a molten Cu-29 at% Ga alloy maintained at 960 ° C. was provided, and nitrogen gas was continuously introduced. The crucible and core were each formed of graphite. The casting space was 129 mm in inner diameter, 160 mm in outer diameter, and 200 mm in height. The outer diameter of the upper end of the core was 129 mm, and the outer diameter of the lower end of the core was 123 mm.
Next, the molten metal of the metal melting / holding part, which has the function of melting the metal and holding the molten metal, is poured into the casting space, and the cooling part divided into a plurality at the depth position provided in the crucible and the core, the While adjusting the cooling state of the position, the cast piece was pulled out and the hollow billet was continuously cast. The crucible and core cooling sections are divided into five sections at equal intervals in the depth direction (section A, section B, section C, section D, section E from the top to the bottom), and each cooling section has thermoelectric power. A pair of measurement points was provided. In each of the crucible and core cooling sections, the cooling temperature of section A is 850 ° C., the cooling temperature of section B is 400 ° C., the cooling temperature of section C is 250 ° C., the cooling temperature of section D is 200 ° C., The cooling temperature of section E was 150 ° C.
The drawing pattern of the cast piece was set by appropriately combining drawing, stopping, and retreating at a drawing speed of 70 mm / min.
The hollow billet thus produced had a uniform composition and shape throughout, and the surface roughness was well suppressed.

(実施例2)
図4及び図5に示すような、外周側の冷却部が区分けされておらず、且つ、冷却部が内部において深さ方向に上下した流路を備える以外は実施例1と同様の構成を有する鋳型を用いて、実施例と同様に縦型連続鋳造を行った。冷却は、冷却部の内部において深さ方向に上下した流路を流れる冷媒の速度によって調整し、上方の温度(区分Aに相当)が850℃になるよう冷却水の流量を調整した。
鋳造片の引き抜きパターンは、引き抜き速度:70mm/分での引き抜き、停止、後退を適宜組み合わせて設定した。
このようにして作製した中空ビレットは、実施例1に比較すると内側と外側で組成の差が認められたが問題となるレベルではなかった。
(Example 2)
As shown in FIGS. 4 and 5, the outer peripheral cooling section is not divided, and the cooling section has the same configuration as that of the first embodiment except that the cooling section includes a flow path that goes up and down in the depth direction. Using the mold, vertical continuous casting was performed in the same manner as in the example. Cooling was adjusted by the speed of the refrigerant flowing through the flow path that went up and down in the depth direction inside the cooling section, and the flow rate of the cooling water was adjusted so that the upper temperature (corresponding to section A) was 850 ° C.
The drawing pattern of the cast piece was set by appropriately combining drawing, stopping, and retreating at a drawing speed of 70 mm / min.
As compared with Example 1, the hollow billet thus produced showed a difference in composition between the inner side and the outer side, but was not at a problematic level.

(比較例1)
比較例1として、実施例1と同じ条件ではあるが、中子の上端部の外径を129mmとし、中子の下端部の外径を127mmとしたもので、実施例1と同様の引き抜きを行ったが、引き抜き抵抗が1kNより大きく、引き抜くことができなかった。ここで、比較例1と実施例1との中子の形状について検討する。両者とも、中子の上端部から下端部にかけて進むにつれて径が抜熱の勾配に合わせて縮小するテーパー状に形成されている。中子の長さをxとし、直径をyとする。実施例1では中子の上端部の外径が129mmであり、中子の下端部の外径が123mmであるため、y=−0.03x+129の式が成立する。すなわち、実施例1の中子のテーパーの大きさは、0.03であった。一方、比較例1では中子の上端部の外径が129mmであり、中子の下端部の外径が127mmであるため、y=−0.01x+129の式が成立する。すなわち、比較例1の中子のテーパーの大きさは、0.01であった。このように、中子のテーパーの大きさを0.01より大きくすると、鋳造片の引き抜きが良好となることが確認された。
(Comparative Example 1)
As Comparative Example 1, the outer diameter of the upper end of the core is set to 129 mm and the outer diameter of the lower end of the core is set to 127 mm. However, the pull-out resistance was larger than 1 kN, and the pull-out could not be performed. Here, the shape of the core of Comparative Example 1 and Example 1 will be examined. Both are formed in a taper shape whose diameter decreases in accordance with the gradient of heat removal as it progresses from the upper end to the lower end of the core. Let the length of the core be x and the diameter be y. In Example 1, since the outer diameter of the upper end portion of the core is 129 mm and the outer diameter of the lower end portion of the core is 123 mm, the equation y = −0.03x + 129 is established. That is, the taper size of the core of Example 1 was 0.03. On the other hand, in Comparative Example 1, since the outer diameter of the upper end portion of the core is 129 mm and the outer diameter of the lower end portion of the core is 127 mm, the equation y = −0.01x + 129 is established. That is, the taper size of the core of Comparative Example 1 was 0.01. Thus, it was confirmed that when the size of the taper of the core is larger than 0.01, the cast piece is pulled out satisfactorily.

1、31 ルツボ
2、32 中子
3、3’ 外周側の冷却部
4、34 熱電対保護管挿入口
5、35 溶湯供給口
6、36 冷媒プローブ挿入口
7 鋳造外周部
8、38 溶湯
9、39 中空ビレット
10 鋳造外周部内熱電対
11 中子内熱電対
12、42 不活性ガス導入部
13、43 溶湯温度測定用熱電対
14 金属溶解・保持部
15 中子の冷却部(内周側の冷却部)
16、17 管状孔部
20 縦型連続鋳造用鋳型
21 流路
30 中空ビレットの縦型連続鋳造装置
33 水冷銅ジャケット
44 ルツボ温度制御用熱電対
45 ヒーター
46 水冷プローブ
47 引き抜き機構
1, 31 Crucible 2, 32 Core 3, 3 ′ Outer cooling side 4, 34 Thermocouple protection tube insertion port 5, 35 Molten metal supply port 6, 36 Refrigerant probe insertion port 7 Casting outer peripheral unit 8, 38 Molten metal 9, 39 hollow billet 10 casting outer thermocouple 11 inner core thermocouple 12, 42 inert gas introduction part 13, 43 molten metal temperature measuring thermocouple 14 metal melting / holding part 15 core cooling part (inner side cooling) Part)
16, 17 Tubular hole 20 Vertical continuous casting mold 21 Channel 30 Hollow billet vertical continuous casting apparatus 33 Water-cooled copper jacket 44 Crucible temperature control thermocouple 45 Heater 46 Water-cooled probe 47 Pull-out mechanism

Claims (26)

金属又は無機系化合物の鋳塊を作製する設備であって、原料を加熱溶解する部分の下部に連続鋳造部分が接続されており、原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部と鋳造外周部が一体構造である高純度鋳塊の溶解連続鋳造装置。   This is a facility for producing ingots of metal or inorganic compounds, where the continuous casting part is connected to the lower part of the part where the raw material is heated and melted, and the metal melting has the function of holding the molten metal obtained by melting and melting the raw material. -A continuous casting device for high-purity ingots in which the holding part and the outer peripheral part of the casting are integrated. 鋳塊が中空構造である請求項1に記載の高純度鋳塊の溶解連続鋳造装置。   2. The high-purity ingot melting continuous casting apparatus according to claim 1, wherein the ingot has a hollow structure. 高純度鋳塊がスパッタリングターゲット用である請求項1又は2に記載の高純度鋳塊の溶解連続鋳造装置。   The high-purity ingot melting continuous casting apparatus according to claim 1 or 2, wherein the high-purity ingot is for a sputtering target. 原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部と鋳造外周部が複数の構成片及び、又は複数の材質で形成される請求項1〜3のいずれかに記載の高純度鋳塊の溶解連続鋳造装置。   The metal melting / holding portion having a function of holding the molten metal obtained by heating and melting the raw material and the casting outer peripheral portion are formed of a plurality of constituent pieces and / or a plurality of materials. Continuous casting equipment for purity ingots. 柱状であって、下方に進むにつれて径が抜熱の勾配に合わせて縮小する傾きが0.01超えのテーパー状に形成されている中子と、前記中子の上方に位置する原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部と、それに直結した前記中子の外周面とで、前記金属を溶解及び溶湯を保持する機能を有する金属溶解・保持部からの溶融金属を流入させる鋳造空間を構成する鋳造外周部を有し、前記鋳造空間を外周側及び内周側から冷却する冷却部を備えた連続鋳造用鋳型から成る鋳造部分を有する請求項1〜4のいずれかに記載の高純度鋳塊の溶解連続鋳造装置。   A core that is columnar and has a taper shape with a diameter exceeding 0.01 that decreases in accordance with the gradient of heat removal as it progresses downward, and the raw material located above the core is heated and melted. The molten metal from the metal melting / holding part having the function of melting the metal and holding the molten metal with the metal melting / holding part having a function of holding the molten metal and the outer peripheral surface of the core directly connected thereto The casting part which has a casting outer periphery which comprises the casting space which flows in, and has a casting part provided with the cooling part which cools the said casting space from the outer peripheral side and the inner peripheral side. A melting continuous casting apparatus for high-purity ingots according to claim 1. 前記鋳造空間を外周側及び内周側から冷却部をさらに備えた請求項5に記載の高純度鋳塊の溶解連続鋳造装置。   The high-purity ingot melting and continuous casting apparatus according to claim 5, further comprising a cooling unit in the casting space from an outer peripheral side and an inner peripheral side. 前記冷却部が、前記鋳造空間を、外周側及び内周側からそれぞれ深さ方向において複数部位に区分けして冷却するように設けられている請求項6に記載の高純度鋳塊の溶解連続鋳造装置。   The melt continuous casting of the high-purity ingot according to claim 6, wherein the cooling section is provided so as to cool the casting space by dividing it into a plurality of portions in the depth direction from the outer peripheral side and the inner peripheral side, respectively. apparatus. 前記冷却部が、その内部において深さ方向に上下する流路を備える請求項6又は7に記載の高純度鋳塊の溶解連続鋳造装置。   The melting continuous casting apparatus for high-purity ingots according to claim 6 or 7, wherein the cooling section includes a flow path that moves up and down in the depth direction. 前記鋳造空間を外周側から冷却する冷却部が、原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部の鋳造外周部の外周側に設けられている請求項6〜8のいずれかに記載の高純度鋳塊の溶解連続鋳造装置。   The cooling part which cools the said casting space from the outer peripheral side is provided in the outer peripheral side of the casting outer peripheral part of the metal melting | dissolving and holding | maintenance part which has the function to hold | maintain the molten metal which melt | dissolved and melt | dissolved the raw material. The high-purity ingot melting continuous casting apparatus according to any one of the above. 原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部の鋳造外周部の外周側に設けられた冷却部が、深さ方向に区分けされた小冷却部を複数備えた冷媒ジャケットである請求項9に記載の高純度鋳塊の溶解連続鋳造装置。   Refrigerant jacket provided with a plurality of small cooling parts in which the cooling part provided on the outer peripheral side of the casting outer peripheral part of the metal melting / holding part having a function of holding the molten metal obtained by heating and melting the raw material is divided in the depth direction The high-purity ingot melting continuous casting apparatus according to claim 9. 前記小冷却部が、それぞれ冷媒が通過する経路を備えている請求項10に記載の高純度鋳塊の溶解連続鋳造装置。   The high-purity ingot melting continuous casting apparatus according to claim 10, wherein each of the small cooling portions includes a path through which a refrigerant passes. 前記冷媒が、水である請求項11に記載の高純度鋳塊の溶解連続鋳造装置。   The high-purity ingot melting continuous casting apparatus according to claim 11, wherein the refrigerant is water. 前記鋳造空間を内部から冷却する冷却部が、前記中子の内部に設けられている請求項5〜12のいずれかに記載の高純度鋳塊の溶解連続鋳造装置。   The high-purity ingot melting continuous casting apparatus according to any one of claims 5 to 12, wherein a cooling unit for cooling the casting space from the inside is provided inside the core. 前記中子の内部に設けられた冷却部が、同心円状に配置され、深さ方向に伸びるように形成された管状孔部と、前記管状孔部に差し込まれる冷媒プローブとで構成される請求項13に記載の高純度鋳塊の溶解連続鋳造装置。   The cooling part provided in the inside of the core is configured by a concentric circle-shaped tubular hole part formed to extend in the depth direction, and a refrigerant probe inserted into the tubular hole part. The high-purity ingot melting continuous casting apparatus according to 13. 前記冷媒プローブで用いる冷媒が、水である請求項14に記載の高純度鋳塊の溶解連続鋳造装置。   The high-purity ingot melting continuous casting apparatus according to claim 14, wherein the refrigerant used in the refrigerant probe is water. 前記原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部及び中子が、それぞれグラファイトで形成されている請求項5〜15のいずれかに記載の高純度鋳塊の溶解連続鋳造装置。   The continuous melting of the high-purity ingot according to any one of claims 5 to 15, wherein the metal melting / holding portion and the core having a function of holding the molten material obtained by heating and melting the raw material are each formed of graphite. Casting equipment. 前記原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部から前記鋳造空間へ溶湯を供給する溶湯供給部位の溶湯温度を測定する熱電対が設けられている請求項5〜16のいずれかに記載の高純度鋳塊の溶解連続鋳造装置。   The thermocouple which measures the molten metal temperature of the molten metal supply site | part which supplies a molten metal to the said casting space from the metal melting | dissolving and holding | maintenance part which has the function to hold | maintain the molten metal which melt | dissolved the said raw material by heating is provided. The high-purity ingot melting continuous casting apparatus according to any one of the above. 前記原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部の鋳造外周部に、深さ方向に伸びるような管状孔部が形成され、前記管状孔部に熱電対が設けられている請求項5〜17のいずれかに記載の高純度鋳塊の溶解連続鋳造装置。   A tubular hole extending in the depth direction is formed on the outer periphery of the casting of the metal melting / holding part having the function of holding the molten metal obtained by heating and melting the raw material, and a thermocouple is provided in the tubular hole. The high-purity ingot melting continuous casting apparatus according to any one of claims 5 to 17. 前記原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部の鋳造外周部に設けられた熱電対が、一体で深さ方向において複数箇所の温度測定点を有する請求項18に記載の高純度鋳塊の溶解連続鋳造装置。   The thermocouple provided on the outer periphery of the casting of the metal melting / holding portion having the function of holding the molten metal obtained by heating and melting the raw material integrally has a plurality of temperature measurement points in the depth direction. The high-purity ingot melting continuous casting apparatus described. 前記熱電対が前記原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部の鋳造外周部の周方向に沿って複数設けられている請求項18又は19に記載の高純度鋳塊の溶解連続鋳造装置。   20. The high-purity casting according to claim 18 or 19, wherein a plurality of the thermocouples are provided along a circumferential direction of a casting outer peripheral portion of a metal melting / holding portion having a function of holding the molten metal obtained by heating and melting the raw material. Mass melting continuous casting equipment. 前記中子に、深さ方向に伸びるような管状孔部が形成され、前記管状孔部に熱電対が設けられている請求項5〜20のいずれかに記載の高純度鋳塊の溶解連続鋳造装置。   The molten continuous casting of the high purity ingot according to any one of claims 5 to 20, wherein a tubular hole extending in the depth direction is formed in the core, and a thermocouple is provided in the tubular hole. apparatus. 前記中子に設けられた熱電対が、一体で深さ方向において複数箇所の温度測定点を有する請求項21に記載の高純度鋳塊の溶解連続鋳造装置。   The melting and continuous casting apparatus for high-purity ingots according to claim 21, wherein the thermocouple provided in the core has a plurality of temperature measurement points integrally in the depth direction. 前記熱電対が前記中子の外周方向に沿って1箇所以上に設けられている請求項21又は22に記載の高純度鋳塊の溶解連続鋳造装置。   23. The high-purity ingot melting continuous casting apparatus according to claim 21 or 22, wherein the thermocouple is provided at one or more locations along an outer peripheral direction of the core. 前記原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部の鋳造外周部に設けられた熱電対と、前記中子に設けられた熱電対との各温度測定点が、鋳型の深さ方向において同じ位置に形成されている請求項21〜23のいずれかに記載の高純度鋳塊の溶解連続鋳造装置。   Each temperature measurement point of the thermocouple provided on the outer periphery of the casting of the metal melting / holding part having the function of holding the molten material obtained by heating and melting the raw material, and the thermocouple provided on the core is a mold. The melt continuous casting apparatus for high-purity ingots according to any one of claims 21 to 23, which is formed at the same position in the depth direction. 前記原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部に不活性ガスを導入する不活性ガス導入部が設けられている請求項5〜24のいずれかに記載の高純度鋳塊の溶解連続鋳造装置。   The high purity according to any one of claims 5 to 24, wherein an inert gas introduction part for introducing an inert gas is provided in a metal dissolving / holding part having a function of holding the molten material obtained by heating and melting the raw material. Ingot melting continuous casting equipment. 原料を加熱溶解及び溶解した溶湯を保持する機能を有する金属溶解・保持部から前記鋳造空間へ流入させた溶湯を冷却する工程を備えた請求項1〜25のいずれかに記載の溶解連続鋳造装置を用いた高純度鋳塊の溶解連続鋳造方法。   The melting continuous casting apparatus according to any one of claims 1 to 25, further comprising a step of cooling the molten metal that has flowed into the casting space from a metal melting / holding unit having a function of retaining the molten metal by melting the raw material by heating. Melting continuous casting method of high purity ingot using
JP2015040792A 2015-03-02 2015-03-02 Melting continuous casting apparatus for high purity ingot and melting continuous casting method for high purity ingot Pending JP2015134377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015040792A JP2015134377A (en) 2015-03-02 2015-03-02 Melting continuous casting apparatus for high purity ingot and melting continuous casting method for high purity ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015040792A JP2015134377A (en) 2015-03-02 2015-03-02 Melting continuous casting apparatus for high purity ingot and melting continuous casting method for high purity ingot

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014101834A Division JP2015047639A (en) 2014-05-15 2014-05-15 Melting continuous casting apparatus and method for high purity ingot

Publications (1)

Publication Number Publication Date
JP2015134377A true JP2015134377A (en) 2015-07-27

Family

ID=53766640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015040792A Pending JP2015134377A (en) 2015-03-02 2015-03-02 Melting continuous casting apparatus for high purity ingot and melting continuous casting method for high purity ingot

Country Status (1)

Country Link
JP (1) JP2015134377A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106407A (en) * 2021-03-26 2021-07-13 福建省长汀金龙稀土有限公司 Manufacturing device and method of rare earth metal and rare earth alloy rotary target material
CN117000985A (en) * 2023-10-08 2023-11-07 山东有研国晶辉新材料有限公司 Device for removing internal inclusions of ultra-high-purity copper or copper alloy cast ingot and preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106407A (en) * 2021-03-26 2021-07-13 福建省长汀金龙稀土有限公司 Manufacturing device and method of rare earth metal and rare earth alloy rotary target material
CN117000985A (en) * 2023-10-08 2023-11-07 山东有研国晶辉新材料有限公司 Device for removing internal inclusions of ultra-high-purity copper or copper alloy cast ingot and preparation method
CN117000985B (en) * 2023-10-08 2024-02-20 山东有研国晶辉新材料有限公司 Device for removing internal inclusions of ultra-high-purity copper or copper alloy cast ingot and preparation method

Similar Documents

Publication Publication Date Title
US9162281B2 (en) Continuous casting method and continuous casting device for titanium ingots and titanium alloy ingots
KR100564770B1 (en) apparatus for continuously casting an low electroconductive material by induction
US4202400A (en) Directional solidification furnace
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JP2015134377A (en) Melting continuous casting apparatus for high purity ingot and melting continuous casting method for high purity ingot
EP2529860A1 (en) Process for producing copper alloy wire containing active element
JPS63166711A (en) Production of polycrystalline silicon ingot
US3210812A (en) Continuous casting mold
CN103350216A (en) Cast ingot homogenizing control method
JP5579314B1 (en) High purity ingot melting continuous casting apparatus and high purity ingot melting continuous casting method
JP2015047639A (en) Melting continuous casting apparatus and method for high purity ingot
JPS58103941A (en) Production of metallic material having specular surface
JP2004195526A (en) Continuous casting method for molten magnesium molten alloy
JP6070080B2 (en) Continuous casting method of Cu-Zn-Si alloy
RU2744601C2 (en) Cooling furnace for directional solidification and cooling method using such furnace
JP2014014827A (en) Producing apparatus for semi-solidified metal, semi-solidification molding apparatus, producing method for semi-solidified metal, and semi-solidification molding method
JP6105296B2 (en) Continuous casting method of ingot made of titanium or titanium alloy
KR100484382B1 (en) Method of the horizontal continious casting in using of the heating mold and the eguipment here of
KR100576239B1 (en) Horizontal continuous casting apparatus
SU806236A1 (en) Method of continuous ingot casting
JP2004243355A (en) Casting equipment for casting
JP2001278613A (en) Apparatus for unidirectional congelation of silicon
TWI792485B (en) continuous casting method for steel
KR960004416B1 (en) Horizontal continuous casting method and its device
JP2000202583A (en) Continuous casting method and mold for continuous casting