JPS5970442A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPS5970442A
JPS5970442A JP17949282A JP17949282A JPS5970442A JP S5970442 A JPS5970442 A JP S5970442A JP 17949282 A JP17949282 A JP 17949282A JP 17949282 A JP17949282 A JP 17949282A JP S5970442 A JPS5970442 A JP S5970442A
Authority
JP
Japan
Prior art keywords
mold
thickness
cooling
continuous casting
casting mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17949282A
Other languages
Japanese (ja)
Other versions
JPS628259B2 (en
Inventor
Masaharu Sora
空 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Nippon Steel Corp
Original Assignee
Mishima Kosan Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd, Nippon Steel Corp filed Critical Mishima Kosan Co Ltd
Priority to JP17949282A priority Critical patent/JPS5970442A/en
Publication of JPS5970442A publication Critical patent/JPS5970442A/en
Publication of JPS628259B2 publication Critical patent/JPS628259B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/043Curved moulds

Abstract

PURPOSE:To decrease the change in the temp. of a billet and a casting mold and to form a strong solidified shell at a uniform thickness by making the cooling power of cooling water for the casting mold higher in the top part of the mold and lower in the bottom part. CONSTITUTION:The wall thickness of casting mold faces 2, 2' is made small in a top part and large in a bottom part in order to make the cooling power for the casting mold in the vertical direction of the mold higher in the top part and lower in the bottom part. In other words, the wall thickness is regulated to t1<t2<...t5. The resistance in extracting heat from the respective mold faces is made such that the opposed faces 2, 2' have an equal wall thickness in the corresponding same height position.

Description

【発明の詳細な説明】 本発明は、連続鋳造鋳片の表面割れ等の鋳片欠陥を防止
し、表面品質の良い鋳片を製造するだめの連続鋳造用鋳
型に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting mold for preventing slab defects such as surface cracks in continuously cast slabs and for producing slabs with good surface quality.

連続鋳造により製造された鋳片の品質は、鋳型の抜熱条
件、とくに、鋳型頂部におiする凝固シェルの均一な形
成と、凝固シェル形成後の凝固進行のための抜熱条件に
よって左右されることが知られている。
The quality of slabs manufactured by continuous casting is influenced by the heat removal conditions of the mold, especially the uniform formation of a solidified shell at the top of the mold, and the heat removal conditions for the progress of solidification after the solidified shell is formed. It is known that

連続鋳造用の鋳型は、第1図に示す構造になっており延
鋳型+11の溶鋼や鋳片に接触する面をバックアンプフ
レーム(4)により支持され、且つ内部に冷却水用スリ
ット(3)を設けた熱伝導性の良い銅又は銅合金の板か
らなる鋳型面+21.  (2’)、  (2”)、(
2”’)で形成している。従来の鋳型特に湾曲型鋳型は
第1図に示す■−■、■二■、It/−IV線に沿った
、それぞれの断面図の第2図、第3図および第4図に示
すように鋳型面(2)、(2’)。
The continuous casting mold has the structure shown in Fig. 1. The surface of the rolling mold +11 that comes into contact with the molten steel and slab is supported by a back amplifier frame (4), and there is a cooling water slit (3) inside. The mold surface is made of a plate of copper or copper alloy with good thermal conductivity and is provided with +21. (2'), (2”), (
2"'). Conventional molds, especially curved molds, are formed by cross-sectional views shown in Fig. 2, Mold surfaces (2), (2') as shown in Figures 3 and 4.

(2″) 、’  (2″’・)の厚みTl 、T2.
T:1およびT4において、異なるにも拘わらず冷却水
スリソト(3)は鋳型裏面のバンクアンプフレーム(4
)と平行に設けられているため鋳型内面の抜熱は4面不
均一となる。このため溶融金属の凝固シェルの形成が不
均一になり、鋳片に不均一な応力状態が生じ、鋳片の表
面品質に悪影響を及ぼし、びいてはブレークアウト発生
の1つの要因にもなっている。
(2″), '(2″'·) thickness Tl, T2.
In T:1 and T4, although they are different, the cooling water drain (3) is connected to the bank amplifier frame (4) on the back of the mold.
), so heat removal from the inner surface of the mold is uneven on all four sides. As a result, the formation of the solidified shell of the molten metal becomes uneven, creating a non-uniform stress state in the slab, which adversely affects the surface quality of the slab, and even becomes one of the factors for the occurrence of breakouts. There is.

かかる従来の鋳型での抜熱挙動は、凝固シェルを形成す
ると第5図に示すように、当初は鋳型面(21,(2’
)と密着しているが、やがて溶鋼の凝固収縮により鋳型
面+21.(2’)からはなれ、鋳型面[21,(2’
)と鋳片表面との間に隙間(6)を発生する。この隙間
(6)の発生で、凝固シェル(5)は鋳型面(21,(
2’)での支持を失い溶鋼静圧により、凝固シェル(5
)はふくれ現象を生じて、凝固シェル表面に引張力が働
く。これが場面近傍での割れ発生の起因と考えられ、従
来の鋳型では下部に行く←従い、鋳片から鋳型への熱移
動が小さくなるにもかかわらず鋳型の冷却条件が上部と
同一である為に、鋳片に対しては強冷の状態となり、隙
間は成長し、割れも成長していく。これが先に述べた、
不均一な平面断面の冷却と相まって、鋳片の表面割れを
助長する。
The heat removal behavior in such a conventional mold is such that when a solidified shell is formed, the mold surface (21, (2'
), but eventually the mold surface +21. (2') away from the mold surface [21, (2'
) and the surface of the slab (6). Due to the generation of this gap (6), the solidified shell (5) is formed on the mold surface (21, (
The solidified shell (5') is lost due to the static pressure of the molten steel.
) causes a blistering phenomenon and tensile force acts on the surface of the solidified shell. This is thought to be the cause of cracks occurring near the scene, and in conventional molds, it goes to the bottom ← Therefore, although the heat transfer from the slab to the mold becomes smaller, the mold cooling conditions are the same as the upper part. , the slab is strongly cooled, gaps grow, and cracks grow. This is what I mentioned earlier
Coupled with the non-uniform cooling of the planar cross section, this promotes surface cracking of the slab.

本発明は、かかる従来の連続鋳造用鋳型の抜熱上の欠点
を防止すべく完成したもので、平面断面における鋳型面
全面の抜熱を均一にし、また垂直方向においては、頂部
は鋳型変形による表面割れ防止の目的から鋳型材質の高
温軟化点温度以下に冷し、場面近傍の凝固シェル厚を溶
鋼静圧の小なるうちに厚くし、底部にいくに従い暖冷し
、鋳型と鋳片との隙間発生をおさえながら、鋳型全体の
抜熱量を大きくして、鋳片及び鋳型の頂部、底部の温度
差を小さくして、鋳片応力と併せて鋳型応力の減少をは
かり、均一な凝固シ左ルを形成させ、凝固シェルの成長
過程を鋳型自体の冷却能によって制御し、表面割れを少
くする鋳型を提供するものである。
The present invention was completed in order to prevent the drawbacks of conventional continuous casting molds in terms of heat removal. To prevent surface cracking, the mold material is cooled to a temperature below the high-temperature softening point temperature, the solidified shell near the surface is thickened while the static pressure of the molten steel is small, and the bottom is warmed and cooled to prevent the mold and slab from forming. While suppressing the generation of gaps, the amount of heat removed from the entire mold is increased, and the temperature difference between the slab and the top and bottom of the mold is reduced, thereby reducing mold stress as well as slab stress, resulting in a uniform solidification system. The purpose of the present invention is to provide a mold that forms a solidified shell, controls the growth process of the solidified shell by the cooling ability of the mold itself, and reduces surface cracks.

以下、添付図面に示す実施例に基いて本発明の詳細な説
明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

第6図および第7図は本発明の鋳型の第1の実施態様に
おける縦断面図を示すものである。それぞれの断面は、
従来の鋳型断面を示す第3図と第4図←対応する。同図
において、各水平断面のスリット(3)の深さを調整し
、鋳型面(21,(2’)の肉厚もほぼ一定になるよう
にして、水平断面における各鋳型面の均一な抜熱効果を
得るように各断面における鋳型面(21,(2’)の厚
みがtl#tllk、tl2=tla HHHtn’;
tnl #tn2 #tn3となるように構成している
FIGS. 6 and 7 are longitudinal sectional views of the first embodiment of the mold of the present invention. Each cross section is
Figures 3 and 4, which show cross sections of conventional molds, correspond to each other. In the same figure, the depth of the slit (3) in each horizontal section is adjusted so that the wall thickness of the mold surface (21, (2') is also almost constant), so that each mold surface is uniformly extracted in the horizontal section. In order to obtain a thermal effect, the thickness of the mold surface (21, (2') in each cross section is tl#tllk, tl2=tla HHHtn';
tnl #tn2 #tn3.

鋳型の垂直方向では、鋳型冷却能を頂部において高め底
部で緩かにするための具体的な構造として、鋳型面(2
)、(2’)の厚みを頂部で薄くし、底部で厚くなるよ
うにtl<t2<・・・L6+t、、3 < ta3 
<・・・153としたものである。
In the vertical direction of the mold, the mold surface (2
), (2') is thinner at the top and thicker at the bottom so that tl<t2<...L6+t,,3<ta3
<...153.

鋳型への熱量の流れは、当然凝固シェルの発達々含まっ
て、頂部に大きくなる。この為、本鋳型は、頂部の抜熱
抵抗(1+ )を底部の抜熱抵抗(t4)よりも小さく
なるように鋳型面の厚みを調整した構造になっている。
The flow of heat into the mold is naturally greater at the top, involving the development of the solidified shell. For this reason, this mold has a structure in which the thickness of the mold surface is adjusted so that the heat extraction resistance (1+) at the top is smaller than the heat extraction resistance (t4) at the bottom.

そして、それぞれの鋳型面の抜熱抵抗は、対応する同一
高さ位置において、相対する鋳型面(21,(2’)の
相対する厚みは、等しくなる様に構成している。
The heat removal resistance of each mold surface is configured such that the opposing thicknesses of the opposing mold surfaces (21, (2')) are equal at the corresponding same height position.

湾曲型鋳型の垂直方向への厚みの調整は、第8図に示す
方法を採用することによって容易に得ることができる。
Adjustment of the vertical thickness of the curved mold can be easily achieved by employing the method shown in FIG.

湾曲部分の垂直方向への鋳型面の厚みを上方に薄く、下
方に厚くして、作成するためには、それぞれの鋳型内面
(201) 、  (201’)の湾曲のための円弧曲
率半H(R) 、 Tr)の中心点(0)に対して、ス
リット(3)の内面(202)。
In order to make the thickness of the mold surface in the vertical direction of the curved part thinner upward and thicker downward, the arc curvature half H ( R), the inner surface (202) of the slit (3) with respect to the center point (0) of Tr).

(202’)への円弧の曲率半径は、鋳型内面(201
)、  (201’)円弧曲率半径と同じ(R)。
The radius of curvature of the arc toward (202') is the inner surface of the mold (201
), (201') Same as the arc curvature radius (R).

Tr)で、それぞれの中心点(0’)、  (0”)を
鋳型内面(201)、  (201’)の円弧の中心(
0)に対して、それぞれ上下に移動させることによって
、容易に製作できる。垂直型鋳型の厚み調整は、第7図
のように、スリットをテーパに加工すればよい。こうし
た加工で、頂部の冷却能を高め、底部での冷却能を緩か
にし、しかも全体として抜熱能力を高めた構造が可能で
ある。と同時にこの鋳       ・型は、銅板の改
削面から見ても、従来鋳型より有利である。従来鋳型は
、溶鋼から鋳型への熱移動の大きいメニスカス(場面)
位置で、銅板拐質の耐力を考慮して、スリット深さが決
められ、スリット深さは上から下まで一定である為鋼板
厚の最も薄い曲率(R)−に(基準側)の銅板残厚(鋼
板厚−スリット深さ)から改削限界が決定する。これに
対して、本発明鋳型は、メニスカスより下端に行くに従
い、銅板残厚は厚くなるため、改削に対しても有利とな
る。
Tr), the respective center points (0') and (0'') are the center of the arc of the mold inner surface (201) and (201') (
0), it can be easily manufactured by moving it up and down, respectively. The thickness of the vertical mold can be adjusted by making the slits taper, as shown in FIG. Through such processing, it is possible to create a structure that increases the cooling capacity at the top, reduces the cooling capacity at the bottom, and increases the heat removal capacity as a whole. At the same time, this mold/mold is more advantageous than conventional molds in terms of modifying the copper plate. Conventional molds have a meniscus (scene) with large heat transfer from molten steel to the mold.
The slit depth is determined by taking into account the yield strength of the copper plate, and since the slit depth is constant from top to bottom, the copper plate remaining on the (reference side) is placed at the thinnest curvature (R) - of the steel plate thickness. The modification limit is determined from the thickness (steel plate thickness - slit depth). On the other hand, in the mold of the present invention, the residual thickness of the copper plate increases from the meniscus toward the lower end, so it is also advantageous for modification.

上述の鋳型面の厚み調整により、冷却能力の頂部と、底
部とを変化させる手段は、4面組立プレート鋳型に適し
ている。
The means for changing the top and bottom of the cooling capacity by adjusting the thickness of the mold surface described above is suitable for a four-sided assembled plate mold.

また、冷却水通路を通過する冷却水の冷却能力を変化さ
せる手段として、鋳型内での冷却水の通過速度を変化さ
せることによって、達成することも可能である。第9図
ないし第11図は、その具体的な実施手段として、冷却
水の通路を頂部で狭くして、頂部における冷却水の流通
速度を高め、これによって、鋳型頂部の冷却能力を増大
させた構造を示す。各鋳型面(21) 、  (21’
 )の内面を通る冷却水の通路(41) 、  (41
’ )を、冷却水路形成板(31) 、  (31”)
によって、頂部を狭くし、底部を広くして、冷却水の流
通速度を変化させたものである。この冷却水の流通速度
の変化により、鋳型の頂部と、底部との鋳型の冷却能を
変化させる構造はチューブラ鋳型あるいは、ブロック鋳
型に好適である。
Furthermore, as a means for changing the cooling capacity of the cooling water passing through the cooling water passage, it is also possible to achieve this by changing the passage speed of the cooling water within the mold. Figures 9 to 11 show, as specific implementation means, that the cooling water passage is narrowed at the top to increase the cooling water flow rate at the top, thereby increasing the cooling capacity at the top of the mold. Show the structure. Each mold surface (21), (21'
) Cooling water passage (41) passing through the inner surface of (41
), cooling channel forming plate (31), (31”)
By making the top narrower and the bottom wider, the cooling water flow rate is changed. A structure in which the cooling ability of the top and bottom of the mold is changed by changing the flow rate of cooling water is suitable for tubular molds or block molds.

勿論、冷却能の変化は、この冷却水の流通速度を変化さ
せて、頂部の抜熱能力を増大させる手段と、第6図およ
び第7図に示す鋳型面の厚みの変更による手段、あるい
は、表面処理等の肉厚の変化等を任意に組合せることに
よっても可能である。
Of course, the cooling capacity can be changed by changing the flow rate of the cooling water to increase the heat removal capacity at the top, by changing the thickness of the mold surface as shown in FIGS. 6 and 7, or by changing the thickness of the mold surface as shown in FIGS. This is also possible by arbitrarily combining changes in wall thickness such as surface treatment.

第12図は、従来の鋳型と本発明における抜熱の態様を
示すもので、実線は従来の鋳型の場合を示し、点線は本
発明の場合を示す。
FIG. 12 shows aspects of heat removal in a conventional mold and the present invention, with the solid line showing the case of the conventional mold and the dotted line showing the case of the present invention.

本発明においては、従来の鋳型よりも、各面の冷却能力
を均一とし、垂直方向においては、水平断面における鋳
型の冷却水の冷却能力を鋳型の頂部において高め、底部
で緩やかにすることによって、頂部と底部との抜熱量の
差を少(し、鋳片、鋳型の温度変化を小さくする。しか
も、鋳型全体の抜熱量は増大している。これによって、
均一な厚さで、強固な凝固シェルを鋳型内で形成でき、
高品質の鋳片の製造が可能となるものである。
In the present invention, the cooling capacity of each surface is made more uniform than that of conventional molds, and in the vertical direction, the cooling capacity of the cooling water of the mold in the horizontal cross section is increased at the top of the mold and softened at the bottom. The difference in the amount of heat removed between the top and the bottom is reduced (and the temperature change of the slab and mold is reduced. Moreover, the amount of heat removed from the entire mold is increased.
A strong solidified shell with uniform thickness can be formed in the mold.
This makes it possible to manufacture high-quality slabs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、湾曲型連続鋳造鋳型の外観を示す斜視図であ
り、第2図〜第4図は、それぞれ第1図のn−m線、m
−m線、およびIV−IV線に沿っての従来の鋳型の断
面を示す。第5図は、鋳造時の凝固シェルの形成状態を
示す縦断面図。第6図および第7図は、本発明に係る連
続鋳造鋳型の一実施態様を示す縦断面図である。第8図
は、本発明を湾曲型鋳型に適用した場合の設計要領を示
す。 第9図は、本発明の他の実施例を示す縦断面図。 第10図および第11図は第9図の■−■および■−■
線に沿っての断面図、また、第12図は従来の連続鋳造
用鋳型と本発明に係る連続鋳造用鋳型の抜熱状況の差を
示すものである。 +1)  鋳型 +21.  (2’)、  (2″)、  (2″’)
  鋳型面(3)スリット (4)バンクアップフレーム (21) 、  (21”)  鋳型面特許出願人  
  三島光産株式会社 代理人  手掘 益(ほか2名) 0 特開昭59−70442(4) 特開昭59−70442(6) 第9図 第10図    第11図 第12図 1友熱量、のKきさ
FIG. 1 is a perspective view showing the external appearance of a curved continuous casting mold, and FIGS. 2 to 4 are lines nm and m in FIG. 1, respectively.
Figure 3 shows a cross-section of a conventional mold along line -m and line IV-IV. FIG. 5 is a longitudinal cross-sectional view showing the state of formation of a solidified shell during casting. 6 and 7 are longitudinal sectional views showing one embodiment of a continuous casting mold according to the present invention. FIG. 8 shows a design procedure when the present invention is applied to a curved mold. FIG. 9 is a longitudinal sectional view showing another embodiment of the present invention. Figures 10 and 11 are ■-■ and ■-■ of Figure 9.
The cross-sectional view along the line and FIG. 12 show the difference in heat removal status between the conventional continuous casting mold and the continuous casting mold according to the present invention. +1) Mold +21. (2'), (2''), (2''')
Mold surface (3) Slit (4) Bank up frame (21) , (21”) Mold surface Patent applicant
Mishima Kosan Co., Ltd. agent Masu Tebori (and 2 others) 0 JP-A-59-70442 (4) JP-A-59-70442 (6) Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 1 Tomoheat amount, K size

Claims (1)

【特許請求の範囲】 1、水平断面における各鋳型面の冷却能を均一にし、且
つ、垂直方向において、頂部の冷却能を高め、底部の冷
却能を頂部に対し緩かになる1うに構成したことを特徴
とする連続鋳造用鋳型。 2、水平断面におりる各面の冷却スリットによる冷却能
の変化を各鋳型面の厚み調整によって均一化せしめ、且
つ、垂直方向に対しては、鋳型面の厚みを頂部に薄く、
底部を厚く構成してなることを特徴とする第1項に記載
の連続鋳造用鋳型。 3、水平断面における各面の冷却スリットによる冷却能
の変化を各鋳型面の厚み調整によって均一化せしめ、且
つ垂直方向に対して、頂部部分における冷却流路を底部
部分よりも狭く構成□してなることを特徴とする第1項
に記載の連続鋳造用鋳型。
[Claims] 1. The cooling capacity of each mold surface in the horizontal cross section is made uniform, and in the vertical direction, the cooling capacity of the top part is increased, and the cooling capacity of the bottom part is made gentler than that of the top part. A continuous casting mold characterized by: 2. Changes in cooling capacity due to cooling slits on each surface in the horizontal section are made uniform by adjusting the thickness of each mold surface, and in the vertical direction, the thickness of the mold surface is thinner at the top.
2. The continuous casting mold according to item 1, wherein the mold has a thick bottom. 3. Changes in cooling capacity due to cooling slits on each surface in the horizontal section are made uniform by adjusting the thickness of each mold surface, and the cooling flow path at the top portion is configured to be narrower than the bottom portion in the vertical direction. 2. The continuous casting mold according to item 1, characterized in that:
JP17949282A 1982-10-12 1982-10-12 Mold for continuous casting Granted JPS5970442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17949282A JPS5970442A (en) 1982-10-12 1982-10-12 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17949282A JPS5970442A (en) 1982-10-12 1982-10-12 Mold for continuous casting

Publications (2)

Publication Number Publication Date
JPS5970442A true JPS5970442A (en) 1984-04-20
JPS628259B2 JPS628259B2 (en) 1987-02-21

Family

ID=16066767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17949282A Granted JPS5970442A (en) 1982-10-12 1982-10-12 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPS5970442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165751U (en) * 1983-04-19 1984-11-07 日本鋼管株式会社 Mold for round billet continuous casting machine
EP1206986A1 (en) * 2000-11-16 2002-05-22 SMS Demag AG Continuous casting mould, especially for casting billet strands and blooms

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195356U (en) * 1987-12-17 1989-06-23
JPH0195357U (en) * 1987-12-17 1989-06-23

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410230A (en) * 1977-06-24 1979-01-25 Mishima Kosan Co Ltd Method of making mold for continuous cast capable of adjusting cast heat distribution during mold removal
JPS5653849A (en) * 1979-10-08 1981-05-13 Kawasaki Steel Corp Continuous casting method of steel slab of less surface defects

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410230A (en) * 1977-06-24 1979-01-25 Mishima Kosan Co Ltd Method of making mold for continuous cast capable of adjusting cast heat distribution during mold removal
JPS5653849A (en) * 1979-10-08 1981-05-13 Kawasaki Steel Corp Continuous casting method of steel slab of less surface defects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165751U (en) * 1983-04-19 1984-11-07 日本鋼管株式会社 Mold for round billet continuous casting machine
EP1206986A1 (en) * 2000-11-16 2002-05-22 SMS Demag AG Continuous casting mould, especially for casting billet strands and blooms

Also Published As

Publication number Publication date
JPS628259B2 (en) 1987-02-21

Similar Documents

Publication Publication Date Title
RU2460607C2 (en) Device and method for subsequent casting of metals having equal or similar shrinkage factors
TWI268821B (en) Adjustment of heat transfer in continuous casting molds in particular in the region of the meniscus
JPH071083A (en) Continuous casting device for rolling billet
JPS5832552A (en) Mold for continuous casting of thin walled ingot
JPS5970442A (en) Mold for continuous casting
US4911226A (en) Method and apparatus for continuously casting strip steel
US4582114A (en) Continuous casting apparatus for the production of cast sheets
JPH09276994A (en) Mold for continuous casting
JP3089608B2 (en) Continuous casting method of beam blank
JPH10193041A (en) Mold for continuously casting molten steel
JP2950152B2 (en) Continuous casting mold for slab
JPS606254A (en) Continuous casting method
JPS609553A (en) Stopping down type continuous casting machine
CA2019958C (en) Continuous-casting mold for vertically casting metal strip
JPS59147746A (en) Casting mold for making ingot and ingot making method
JPH1080752A (en) Mold for continuous casting
JPH03453A (en) Continuous casting mold for restraining corner crack in casting billet
JPS5832551A (en) Method and mold for continuous casting of thin walled ingot
JPH03169457A (en) Short wall mold in strip continuous casting machine
JPH10193042A (en) Mold for continuously casting molten steel
RU2149074C1 (en) Method for continuous casting of thin flat metallic ingots
JPH0215858A (en) Method and device for continuously casting cast strip
JPH0539807Y2 (en)
JPH06218497A (en) Mold for continuous casting
JPS59185548A (en) Continuous casting machine for thin billet