JP4527832B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP4527832B2
JP4527832B2 JP2000053739A JP2000053739A JP4527832B2 JP 4527832 B2 JP4527832 B2 JP 4527832B2 JP 2000053739 A JP2000053739 A JP 2000053739A JP 2000053739 A JP2000053739 A JP 2000053739A JP 4527832 B2 JP4527832 B2 JP 4527832B2
Authority
JP
Japan
Prior art keywords
mold
powder
continuous casting
steel
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000053739A
Other languages
Japanese (ja)
Other versions
JP2001239352A (en
Inventor
隆志 大迫
公男 稲垣
祥 石坂
明宏 森田
智昭 尾本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
JFE Engineering Corp
Original Assignee
Shinagawa Refractories Co Ltd
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd, JFE Engineering Corp filed Critical Shinagawa Refractories Co Ltd
Priority to JP2000053739A priority Critical patent/JP4527832B2/en
Publication of JP2001239352A publication Critical patent/JP2001239352A/en
Application granted granted Critical
Publication of JP4527832B2 publication Critical patent/JP4527832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造方法に関し、特に鋳型断面形状が円形の丸鋳片の連続鋳造に適した鋼の連続鋳造方法に関する。
【0002】
【従来の技術】
鋼の連続鋳造においては、主に、(1)鋳型内の溶鋼表面の被覆保温および酸化防止、(2)溶鋼中より浮上する非金属介在物吸収および溶鋼の清浄化、ならびに(3)鋳型/初期凝固シェル間の潤滑性保持および冷却均一化の目的で、粉末状あるいは顆粒状のモールドパウダーを鋳型内の溶鋼湯面に添加する。
【0003】
一般に、モールドパウダーは、主にCaO−SiO−AlにFe、MgO等を加えた酸化物を基材とし、これに粘度、凝固温度、塩基度等の物性を調整する目的で、アルカリ金属またはアルカリ土類金属を酸化物、炭酸塩または弗化物の形態で適量含み、また溶融調整目的でCを適量含有した組成を有している。
【0004】
溶鋼表面に添加されたモールドパウダーは溶融してスラグ状になり、鋳型と凝固シェル間に均一に流入して潤滑作用を及ぼすことで、安定した連続鋳造を行うことができる。
【0005】
一方、継目無鋼管、あるいは条鋼製造用のビレット、ブルームと呼ばれる鋳造半製品を製造するために、鋳型断面形状が円形の丸鋳片鋳造技術が開発され実施されている。
【0006】
このような丸鋳片鋳造技術は、従来のスラブ等の矩形断面形状の鋳型を用いた連続鋳造に比較して、より最終製品に近い形状(ニアネットシェイプ)に直接鋳造することができるので、分塊工程等を省略することができ、省工程・省コストの面で有利である。
【0007】
矩形断面形状の連続鋳造については、従来、例えば特開平3−193248号公報、特開平4−224063号公報において、疵発生率および割れ感受性の高い高マンガン鋼、中炭素鋼等で、ブレークアウト等の操業トラブルのない安定した鋳造を行うために、モールドパウダーの物性を高塩基度化、高凝固温度化し鋳片の緩冷却化を図ることが提案されている。
【0008】
しかしながら、鋳型断面が円形の連続鋳造においては、高塩基度化によりモールドパウダーが凝固した後の性状が結晶質になりやすいため、凝固時の収縮が大きくなり、メニスカス直下の抜熱が不均一となって、凝固シェルの局所的なディプレッション(凹み)、縦割れやそれに伴うブレークアウト等の問題が生じる。
【0009】
また、高凝固温度化により、鋳型縁部にスラグベアと呼ばれる溶融パウダーの凝固物が発生しやすくなるが、円形断面鋳型では矩形断面鋳型に比較してその鋳型の形状から安定に形成されやすく、スラグベアの肥大化により鋳型と凝固シェル間の溶融パウダーの流入路が塞がれ、不均一流入となりやすい。
【0010】
一般に円形断面鋳型では矩形断面鋳型に比較して小断面であるため、スラグベアが成長した場合、その断面比率が大きく、溶融パウダーの不均一流入をより助長し、結果として不均一冷却による操業不安定を助長してしまう。
【0011】
このように、円形断面鋳型を用いた連続鋳造において、溶鋼の緩冷却化に対し、高塩基度化、高凝固温度化は逆効果になる場合がある。
【0012】
これらの問題を解決するために、特開平8−25008号公報では、以下に示す(1)式で定義された塩基度を最大でも0.9に抑え、また融点は1423K以上であるが実用的には1573Kに抑える一方、粘度をスラブ連続鋳造に比べ、高め(0.3〜0.7Pa・S)に設定したモールドパウダーが提案されている。
〔CaO(mass%)+0.718×CaF(mass%)〕/SiO(mass%)…(1)
【0013】
このパウダーの粘度を高めにすることで、溶鋼湯面からの溶融パウダーの巻き込みを抑制し、かつ溶融パウダーの鋳型/凝固シェル間への流入をより安定化させることができる。さらに、スラグベアの生成を抑制するために、Na、Fの含有量を抑えている。そして、このモールドパウダーを用いて、直径225mmの円形断面鋳型で鋳造速度2.0m/minの条件下で低炭素鋼の連続鋳造テストを行った結果、適正なパウダー消費量を保持しつつ、縦割れ等の鋳片表面欠陥の発生率を低減し、ブレークアウトを防止することができたとしている。
【0014】
【発明が解決しようとする課題】
しかしながら、鋳型の断面サイズが小さい場合には、溶鋼の湯面変動が大きくなる傾向にある。図1は各サイズ毎の平均湯面変動を示したものであるが、直径210mm以下で急激に湯面変動が大きくなる。その結果、溶融パウダーの鋳型/初期凝固シェル間のスラグフィルムが破断され、パウダーの不均一流入とそれに伴う初期凝固不安定性の助長によるディプレッション、縦割れ等の鋳片表面欠陥、ブレークアウト等の操業トラブルの発生確率の増加を引き起こす。
【0015】
一方、直径300mm以上の比較的大断面の丸鋳片連続鋳造においても、より安定した操業を実現することにより、鋳造速度を高速度化し生産効率を向上させるニーズが存在する。
【0016】
本発明はかかる事情に鑑みてなされたものであって、小断面サイズの丸鋳片においても、ブレークアウト等の操業トラブルが発生せず、表面欠陥のない健全な品質の鋳片を得ることができる鋼の連続鋳造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために検討を重ねた結果、モールドパウダーの溶融状態での粘度、塩基度、結晶化温度を適切に調整することにより、小断面の丸鋳片の連続鋳造においてもブレークアウト等の操業トラブルが発生せず、表面欠陥のない健全な品質の鋳片を得ることができることを見出した。
【0018】
本発明は、このような知見に基づいてなされたものであり、1573Kにおける粘度が0.8Pa・S以上(ただし、0.8〜1.0Pa・Sは除く)であり、CaO/SiO(重量比)で表される塩基度が0.3〜1.5であり、結晶化温度が1273K以上であり、Fの含有量が2.0重量%超、5.0重量%以下、Naの含有量がNa O換算で4.0重量%以下であるモールドパウダーを用いて鋼の連続鋳造を行い、鋳型断面形状が円形の丸鋳片を得ることを特徴とする鋼の連続鋳造方法を提供するものである。
【0021】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明では、鋼の連続鋳造を行うにあたり、モールドパウダーを、
(1)1573Kにおける粘度が0.8Pa・S以上
(2)CaO/SiO(重量比)で表される塩基度が0.3〜1.5
(3)結晶化温度が1273K以上
とする。
【0022】
このように本発明の要件を規定した根拠について以下に説明する。
図2は、ラボテストにおける溶融パウダーのスラグ切断荷重指数と、1573Kにおける溶融パウダーの粘度との関係を示すグラフである。図2においてスラグ切断荷重指数とは、溶融パウダーのプールに浸漬したテストピースを引き上げる際に生じる荷重抵抗をロードセルで測定し無次元化した指標である。
【0023】
図2から明らかなように、溶融パウダーの粘度を上げることでスラグ切断荷重が増加する。このことから、モールドパウダーを高粘度化することで、溶融パウダーが鋳型/凝固シェル間に流入して形成されるスラグフィルムが、急激な湯面変動によっても破断しにくくなり、パウダー流入はより均一化することが把握される。また、同様に大きな湯面変動により引き起こされる溶融パウダーの溶鋼湯面からの巻込みも、モールドパウダーの一層の高粘度化により抑制することができる。
【0024】
このように溶融パウダーの粘度を上げることにより、連続鋳造操業が安定化し、高鋳造速度での操業も可能になる。このような効果を有効に発揮させるために、本発明では1573Kにおける粘度を0.8Pa・S以上と規定している。
【0025】
また、CaO/SiOの式で表されるモールドパウダーの塩基度を適正に調整することで、鋳型と凝固シェル間の溶融パウダーのスラグフィルムを適正化し、凝固時の収縮を小さくし、鋳型と凝固シェルとの間のエアギャップの生成を適度に抑制し、冷却化を均一化することができる。前述したように、高塩基度化は鋳片の緩冷却化に効果があるが、円形断面鋳型の連続鋳造では、抜熱が不均一化し、初期凝固不安定性を増大させる。一方、塩基度が低いほど溶融パウダーが凝固した後の性状がガラス質になりやすいので、緩冷却効果はなくなる。また、塩基度が0.3未満では結晶化温度を1273K以上とすることが難しい。これらの点を考慮すると、円形断面鋳型を使用する場合の塩基度CaO/SiO(重量比)の適正範囲は0.3〜1.5であり、したがって本発明ではモールドパウダーの塩基度CaO/SiO(重量比)を0.3〜1.5の範囲としている。丸鋳片の連続鋳造を考慮すると、塩基度が0.5以上であることがより好ましい。
【0026】
モールドパウダーの結晶化温度は鋳型と凝固シェル間の抜熱に影響を及ぼす。この結晶化温度が1273K未満の場合には、強冷却指向が強くなり、鋳型と凝固シェル間の抜熱が大きくなりすぎ、鋳片の縦割れ等の欠陥が発生する確率が高くなる。そのため、本発明ではモールドパウダーの結晶化温度を1273K以上と規定している。
【0027】
上記要件を満たせば、丸鋳片の連続鋳造に適したものとなるが、さらに前記モールドパウダーのNaの含有量をNaO換算で4.0重量%以下、Fの含有量を5.0重量%以下とすることが好ましい。このようにNa、Fを低減することにより、スラグベアの生成を抑制し、溶融パウダーの鋳型/凝固シェル間の流入路を安定に確保し、スラグフィルムの均一流入を実現する。さらに、浸漬ノズル等の耐火物の溶損を抑制し、連々鋳時間を従来より延長することができる。なお、浸漬ノズルと鋳型との間の狭い小断面鋳型条件下では、湯面変動が大きくなりやすく、浸漬ノズルからの受熱も大きく、スラグベアの成長を助長するため、さらにNaをNaO換算で3.0重量%以下にすることが好ましい。また、Fは抑制すべき元素ではあるが、結晶化温度を1273K以上とする観点からは、2重量%を超えて含有することが好ましく、さらには3重量%を超えて含有することが好ましい。
【0028】
なお、本発明におけるモールドパウダーは、上記要件を満たす限り、その組成は限定されず、CaO−SiO−Alに、Fe、MgO等を加えた酸化物を基材とし、これに粘度、凝固温度、塩基度等の物性を調整する目的で、アルカリ金属またはアルカリ土類金属を酸化物、炭酸塩または弗化物の形態で適量含み、また溶融調整目的でCを適量含有した一般的な組成のものを用いることができる。また、その他の連続鋳造の操業条件も特に限定されるものではない。
【0029】
【実施例】
(実施例1)
表1に示すA〜EのうちA〜Dのモールドパウダーを用い、直径170〜210mmの円形断面鋳型を用いて中炭〜中高炭範囲の炭素鋼(組成は表2に示す)で、丸鋳片連続鋳造テストを実施した。このテストには曲げ型連続鋳造機(多点矯正)使用し、鋳造速度は1.4〜2.0m/minとした。このテストの結果を図3および図4に示す。なお、表1中、パウダーA〜Cは本発明の要件から外れる従来例であり、D,Eは本発明の範囲を満たす本発明例である。なお、結晶化温度は粘度が高くなると検知し難くなる傾向にあり、粘度の高いパウダーEは一般的な方法では結晶化温度を測定することは困難であるが、ここでは、白金ルツボ中でパウダースラグを完全に溶融させた後、1273Kまで炉冷し、30分間保持した後、水冷凝固させ、その水砕品をX線回折分析し、結晶の有無を確認した。すなわち、結晶のピークを検出することができれば結晶化温度が少なくとも1273Kであることを確認することができる。この方法に基づいて結晶化温度を求めた結果、パウダーEの結晶化度は1273K以上であった。
【0030】
図3に本テストにおける表面欠陥およびブレークアウトの発生頻度を示す。この図から明らかなように、従来例のモールドパウダーA〜Cを用いた場合には、はディプレッション、縦割れ等の表面欠陥およびブレークアウトのいずれかまたは両方が発生したが、本発明例のモールドパウダーDを用いた場合には、表面欠陥は皆無で、ブレークアウトの発生もなく、安定した操業を達成することができた。
【0031】
図4に直径170〜210mmの円形断面鋳型を用いた連続鋳造における各モールドパウダーの平均消費量についての結果を示す。この図から明らかなように、本発明例のモールドパウダーDは、従来例のモールドパウダーA〜Cに比べて消費量が低減し、低消費量でも安定鋳造が確保されていることがわかる。
【0032】
また、従来例のうちモールドパウダーAは中高炭レベルの炭素鋼用強冷却指向のパウダーであり、モールドパウダーB,Cは中炭用緩冷却指向のパウダーであり、従来は鋳造される鋼の炭素含有レベルに応じて使い分けていたが、本発明例のモールドパウダーDはどちらの鋼種でも安定して適用することができた。したがって、本発明のモールドパウダーを用いることによりパウダー銘柄の統合が期待できる。
【0033】
(実施例2)
実施例1と同じ連続鋳造機を用い、表1に示すモールドパウダーD,Eを用いて、中炭〜中高炭範囲の炭素鋼における高速連続鋳造テストを実施した。鋳型サイズは直径170〜330φとした。
【0034】
表3に各サイズ毎の鋳造速度、ならびに表面欠陥およびブレークアウトの発生率を示す。なお、鋳造速度は各サイズにおける従来の鋳造速度を100%として%表示している。この表に示すように、鋳造速度が従来に比べて15〜25%程度高速化しているのにも関わらず、表面欠陥、ブレークアウト等の操業トラブルは皆無であり、高速鋳造下でも安定操業が実現できることが確認された。
【0035】
【表1】

Figure 0004527832
【0036】
【表2】
Figure 0004527832
【0037】
【表3】
Figure 0004527832
【0038】
【発明の効果】
以上説明したように、本発明によれば、モールドパウダーの性状を適切に調整することにより、小断面サイズの丸鋳片の連続鋳造においても、ブレークアウト等の操業トラブルが発生せず安定した連続鋳造が可能となり、表面欠陥のない健全な品質の鋳片を得ることができる。また、このような効果をパウダー低消費量で実現することができ経済的であり、さらに鋳造速度の高速化も可能となる。
【図面の簡単な説明】
【図1】円形断面鋳型の鋳型サイズと湯面変動指数との関係を示すグラフ。
【図2】ラボテストにおける溶融パウダーのスラグ切断荷重指数と1573Kにおける溶融パウダーの粘度との関係を示すグラフ。
【図3】実施例1の連続鋳造テストにおける表面欠陥およびブレークアウトの発生頻度を示すグラフ。
【図4】実施例1の連続鋳造テストにおけるモールドパウダーの消費量についての結果を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting how the steel, in particular mold cross section about the continuous casting how steel suitable for continuous casting of round round slab.
[0002]
[Prior art]
In continuous casting of steel, mainly, (1) heat insulation and oxidation prevention of the molten steel surface in the mold, (2) absorption of non-metallic inclusions floating in the molten steel and cleaning of the molten steel, and (3) mold / Powdery or granular mold powder is added to the molten steel surface in the mold for the purpose of maintaining lubricity between the initial solidified shells and making the cooling uniform.
[0003]
In general, the mold powder is mainly composed of an oxide obtained by adding Fe 2 O 3 , MgO or the like to CaO—SiO 2 —Al 2 O 3 , and adjusts physical properties such as viscosity, solidification temperature, and basicity. For the purpose, it has a composition containing an appropriate amount of an alkali metal or alkaline earth metal in the form of an oxide, carbonate or fluoride, and an appropriate amount of C for the purpose of melting adjustment.
[0004]
The mold powder added to the surface of the molten steel melts into a slag shape, and evenly flows between the mold and the solidified shell to exert a lubricating action, so that stable continuous casting can be performed.
[0005]
On the other hand, a round slab casting technique having a circular mold cross-sectional shape has been developed and implemented in order to manufacture a cast semi-finished product called a seamless steel pipe or a billet or a bloom for producing a long bar.
[0006]
Such round slab casting technology can be directly cast into a shape (near net shape) closer to the final product compared to continuous casting using a rectangular mold such as a conventional slab, The bundling process can be omitted, which is advantageous in terms of process saving and cost saving.
[0007]
For continuous casting with a rectangular cross-sectional shape, conventionally, for example, in Japanese Patent Laid-Open No. 3-193248 and Japanese Patent Laid-Open No. 4-224063, high manganese steel, medium carbon steel, etc. with high flaw occurrence rate and crack sensitivity, breakout, etc. In order to perform stable casting without any operational troubles, it has been proposed that the physical properties of the mold powder be increased in basicity and the solidification temperature to be increased so that the slab is cooled slowly.
[0008]
However, in continuous casting with a circular mold cross section, the properties after the mold powder solidifies due to high basicity tends to become crystalline, so the shrinkage during solidification increases, and the heat removal just below the meniscus is uneven. As a result, problems such as local depletion of the solidified shell, vertical cracking, and breakout associated therewith arise.
[0009]
In addition, due to the high solidification temperature, a solidified product of molten powder called slag bear is likely to be generated at the mold edge, but the circular cross-section mold is more easily formed from the shape of the mold compared to the rectangular cross-section mold. Due to the increase in size, the inflow path of the molten powder between the mold and the solidified shell is blocked, and uneven inflow tends to occur.
[0010]
In general, a circular cross-section mold has a smaller cross-section than a rectangular cross-section mold, so when a slag bear grows, its cross-section ratio is large, which further promotes non-uniform flow of molten powder, resulting in unstable operation due to non-uniform cooling. Will be encouraged.
[0011]
Thus, in continuous casting using a circular cross-section mold, increasing the basicity and increasing the solidification temperature may have an adverse effect on the slow cooling of molten steel.
[0012]
In order to solve these problems, in Japanese Patent Laid-Open No. 8-25008, the basicity defined by the following formula (1) is suppressed to 0.9 at the maximum, and the melting point is 1423K or more, but practical. On the other hand, a mold powder having a viscosity set to be higher (0.3 to 0.7 Pa · S) than that of slab continuous casting has been proposed.
[CaO (mass%) + 0.718 × CaF 2 (mass%)] / SiO 2 (mass%) (1)
[0013]
By increasing the viscosity of the powder, the entrainment of the molten powder from the molten steel surface can be suppressed, and the inflow of the molten powder into the mold / solidified shell can be further stabilized. Furthermore, in order to suppress the production | generation of a slag bear, content of Na and F is suppressed. Using this mold powder, a continuous casting test of low carbon steel was performed with a circular cross-section mold having a diameter of 225 mm under a casting speed of 2.0 m / min. As a result, while maintaining an appropriate amount of powder consumption, It is said that the occurrence rate of slab surface defects such as cracks could be reduced and breakout could be prevented.
[0014]
[Problems to be solved by the invention]
However, when the mold cross-sectional size is small, the molten steel surface level tends to increase. FIG. 1 shows the average hot-water surface fluctuation for each size, but the hot-water surface fluctuation rapidly increases when the diameter is 210 mm or less. As a result, the slag film between the mold of the molten powder and the initial solidification shell is broken, and operations such as depletion due to non-uniform inflow of powder and the accompanying initial solidification instability, slab surface defects such as vertical cracks, breakout, etc. Increases the probability of trouble occurring.
[0015]
On the other hand, there is a need to increase the casting speed and improve the production efficiency by realizing more stable operation even in continuous casting of a relatively large cross-section with a diameter of 300 mm or more.
[0016]
The present invention has been made in view of such circumstances, and even in a round slab having a small cross-sectional size, operation troubles such as breakout do not occur, and it is possible to obtain a slab of sound quality without surface defects. an object of the present invention is to provide a continuous casting how of steel that can be.
[0017]
[Means for Solving the Problems]
As a result of repeated studies to solve the above-mentioned problems, the inventors of the present invention have made continuous adjustment of round slabs having a small cross section by appropriately adjusting the viscosity, basicity, and crystallization temperature in the molten state of the mold powder. It has been found that an operation trouble such as a breakout does not occur in casting, and a slab having a sound quality free from surface defects can be obtained.
[0018]
The present invention has been made based on such findings, the viscosity is 0.8 Pa · S or more at 1573K (However, 0.8~1.0Pa · S excluded) was, CaO / SiO 2 ( The basicity expressed by weight ratio) is 0.3 to 1.5, the crystallization temperature is 1273 K or more, the F content is more than 2.0% by weight, 5.0% by weight or less , Na A continuous casting method for steel, characterized in that continuous casting of steel is performed using a mold powder having a content of 4.0% by weight or less in terms of Na 2 O to obtain a round cast piece having a circular mold cross-sectional shape. It is to provide.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
In the present invention, when performing continuous casting of steel, mold powder,
(1) Viscosity at 1573K of 0.8 Pa · S or higher
(2) basicity represented by CaO / SiO 2 (weight ratio) is 0.3 to 1.5
(3) The crystallization temperature is 1273K or higher.
[0022]
The grounds for defining the requirements of the present invention will be described below.
FIG. 2 is a graph showing the relationship between the slag cutting load index of the molten powder in the laboratory test and the viscosity of the molten powder at 1573K. In FIG. 2, the slag cutting load index is a non-dimensional index obtained by measuring the load resistance generated when pulling up a test piece immersed in a pool of molten powder with a load cell.
[0023]
As is clear from FIG. 2, the slag cutting load increases by increasing the viscosity of the molten powder. For this reason, by increasing the viscosity of the mold powder, the slag film that is formed when the molten powder flows between the mold and the solidified shell is less likely to break due to sudden changes in the molten metal surface, and the powder flow is more uniform. It is grasped that. Similarly, the entrainment of molten powder from the molten steel surface caused by a large molten metal surface fluctuation can be suppressed by further increasing the viscosity of the mold powder.
[0024]
By increasing the viscosity of the molten powder in this way, the continuous casting operation is stabilized and operation at a high casting speed is possible. In order to effectively exhibit such an effect, in the present invention, the viscosity at 1573 K is defined as 0.8 Pa · S or more.
[0025]
In addition, by appropriately adjusting the basicity of the mold powder represented by the formula of CaO / SiO 2 , the slag film of the molten powder between the mold and the solidified shell is optimized, the shrinkage during solidification is reduced, and the mold and It is possible to moderately suppress the generation of an air gap between the solidified shell and uniform cooling. As described above, high basicity is effective for slow cooling of the slab, but in continuous casting of a circular cross-section mold, heat removal becomes non-uniform and initial solidification instability increases. On the other hand, the lower the basicity, the more easily the glass powder is solidified after the molten powder is solidified, so the slow cooling effect is lost. In addition, when the basicity is less than 0.3, it is difficult to set the crystallization temperature to 1273K or higher. Considering these points, the appropriate range of basicity CaO / SiO 2 (weight ratio) when using a circular cross-section mold is 0.3 to 1.5. Therefore, in the present invention, the basicity CaO / SiO 2 (weight ratio) is in the range of 0.3 to 1.5. In consideration of continuous casting of round slabs, the basicity is more preferably 0.5 or more.
[0026]
The crystallization temperature of the mold powder affects the heat removal between the mold and the solidified shell. When the crystallization temperature is less than 1273K, the strong cooling direction becomes strong, the heat removal between the mold and the solidified shell becomes too large, and the probability of occurrence of defects such as vertical cracks in the slab increases. Therefore, in this invention, the crystallization temperature of mold powder is prescribed | regulated as 1273K or more.
[0027]
If the above requirements are satisfied, it will be suitable for continuous casting of round slabs. Furthermore, the Na content of the mold powder is 4.0% by weight or less in terms of Na 2 O, and the F content is 5.0. It is preferable to set the weight% or less. By reducing Na and F in this way, the generation of slag bear is suppressed, the inflow path between the mold / solidified shell of molten powder is stably secured, and the uniform inflow of the slag film is realized. Furthermore, the melting time of refractories such as an immersion nozzle can be suppressed, and the casting time can be continuously extended compared with the conventional one. In the narrow small section mold conditions between the immersion nozzle and the mold, the molten metal surface variation tends to increase, larger heat from the immersion nozzle, to facilitate the growth of the slag bear, further Na in terms of Na 2 O It is preferable to make it 3.0% by weight or less. Further, F is an element to be suppressed, but from the viewpoint of setting the crystallization temperature to 1273 K or more, it is preferably contained in excess of 2% by weight, and more preferably contained in excess of 3% by weight.
[0028]
The composition of the mold powder in the present invention is not limited as long as the above requirements are satisfied, and the base material is an oxide obtained by adding Fe 2 O 3 , MgO or the like to CaO—SiO 2 —Al 2 O 3 , For the purpose of adjusting physical properties such as viscosity, solidification temperature, basicity, etc., an appropriate amount of alkali metal or alkaline earth metal in the form of an oxide, carbonate or fluoride is included, and an appropriate amount of C is included for the purpose of adjusting the melting. The thing of a general composition can be used. Also, other continuous casting operating conditions are not particularly limited.
[0029]
【Example】
Example 1
Among the steel powders A to E shown in Table 1, A to D mold powder is used, and carbon steel in the range of medium charcoal to medium and high charcoal (composition is shown in Table 2) using a circular cross-sectional mold having a diameter of 170 to 210 mm. A single continuous casting test was conducted. For this test, a bending type continuous casting machine (multi-point correction) was used, and the casting speed was 1.4 to 2.0 m / min. The results of this test are shown in FIGS. In Table 1, powders A to C are conventional examples deviating from the requirements of the present invention, and D and E are examples of the present invention satisfying the scope of the present invention. It should be noted that the crystallization temperature tends to be difficult to detect as the viscosity increases, and it is difficult to measure the crystallization temperature of the high-viscosity powder E by a general method. After completely melting the slag, it was cooled in the furnace to 1273K, held for 30 minutes, then solidified with water, and the granulated product was subjected to X-ray diffraction analysis to confirm the presence or absence of crystals. That is, if the peak of the crystal can be detected, it can be confirmed that the crystallization temperature is at least 1273K. As a result of obtaining the crystallization temperature based on this method, the crystallinity of the powder E was 1273K or more.
[0030]
FIG. 3 shows the frequency of occurrence of surface defects and breakouts in this test. As is clear from this figure, when using the mold powders A to C of the conventional example, either or both of surface defects such as depletion and vertical cracking and breakout occurred, but the mold of the present invention example When Powder D was used, there were no surface defects, no breakout occurred, and stable operation could be achieved.
[0031]
FIG. 4 shows the results of the average consumption of each mold powder in continuous casting using a circular cross-sectional mold having a diameter of 170 to 210 mm. As is clear from this figure, it can be seen that the mold powder D of the present invention has a lower consumption than the mold powders A to C of the conventional example, and stable casting is ensured even with a low consumption.
[0032]
In addition, among the conventional examples, mold powder A is a strong cooling-oriented powder for medium and high-carbon carbon steel, and mold powders B and C are moderately-cooled powders for medium charcoal. Although it was properly used according to the content level, the mold powder D of the example of the present invention could be stably applied to either steel type. Therefore, integration of powder brands can be expected by using the mold powder of the present invention.
[0033]
(Example 2)
Using the same continuous casting machine as in Example 1, a high-speed continuous casting test was performed on carbon steel in the range of medium charcoal to medium high charcoal using mold powders D and E shown in Table 1. The mold size was 170-330φ in diameter.
[0034]
Table 3 shows the casting speed for each size, and the incidence of surface defects and breakouts. Note that the casting speed is expressed in% with the conventional casting speed for each size as 100%. As shown in this table, there are no operational problems such as surface defects and breakouts despite the fact that the casting speed is about 15-25% faster than the conventional one, and stable operation is possible even under high speed casting. It was confirmed that it could be realized.
[0035]
[Table 1]
Figure 0004527832
[0036]
[Table 2]
Figure 0004527832
[0037]
[Table 3]
Figure 0004527832
[0038]
【The invention's effect】
As described above, according to the present invention, by adjusting the properties of the mold powder appropriately, even in continuous casting of round cast pieces having a small cross-sectional size, operation trouble such as breakout does not occur and stable continuous Casting becomes possible, and a slab of sound quality free from surface defects can be obtained. In addition, such an effect can be realized with low powder consumption, which is economical, and the casting speed can be increased.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a mold size of a circular cross-section mold and a molten metal surface fluctuation index.
FIG. 2 is a graph showing the relationship between the slag cutting load index of molten powder in a laboratory test and the viscosity of molten powder at 1573K.
3 is a graph showing the frequency of occurrence of surface defects and breakouts in the continuous casting test of Example 1. FIG.
4 is a graph showing the results of mold powder consumption in the continuous casting test of Example 1. FIG.

Claims (1)

1573Kにおける粘度が0.8Pa・S以上(ただし、0.8〜1.0Pa・Sは除く)であり、
CaO/SiO(重量比)で表される塩基度が0.3〜1.5であり、
結晶化温度が1273K以上であり、
Fの含有量が2.0重量%超、5.0重量%以下、Naの含有量がNa O換算で4.0重量%以下であるモールドパウダーを用いて鋼の連続鋳造を行い、鋳型断面形状が円形の丸鋳片を得ることを特徴とする鋼の連続鋳造方法。
The viscosity at 1573 K is 0.8 Pa · S or more (however, 0.8 to 1.0 Pa · S is excluded),
The basicity represented by CaO / SiO 2 (weight ratio) is 0.3 to 1.5,
The crystallization temperature is 1273K or higher,
Continuous casting of steel is performed using a mold powder in which the F content is more than 2.0% by weight and 5.0% by weight or less , and the Na content is 4.0% by weight or less in terms of Na 2 O. A continuous casting method for steel, characterized in that a round cast piece having a circular cross-sectional shape is obtained.
JP2000053739A 2000-02-29 2000-02-29 Steel continuous casting method Expired - Lifetime JP4527832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053739A JP4527832B2 (en) 2000-02-29 2000-02-29 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053739A JP4527832B2 (en) 2000-02-29 2000-02-29 Steel continuous casting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010048587A Division JP2010115714A (en) 2010-03-05 2010-03-05 Mold powder

Publications (2)

Publication Number Publication Date
JP2001239352A JP2001239352A (en) 2001-09-04
JP4527832B2 true JP4527832B2 (en) 2010-08-18

Family

ID=18575079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053739A Expired - Lifetime JP4527832B2 (en) 2000-02-29 2000-02-29 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4527832B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654554B2 (en) * 2001-09-21 2011-03-23 Jfeスチール株式会社 Steel continuous casting method
JP5935737B2 (en) * 2013-03-29 2016-06-15 Jfeスチール株式会社 Continuous casting method for round billets
JP7009228B2 (en) * 2018-01-19 2022-01-25 日鉄建材株式会社 Mold flux for continuous casting and continuous casting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825008A (en) * 1994-07-11 1996-01-30 Sumitomo Metal Ind Ltd Molding powder for continuous casting of steel
JPH08132184A (en) * 1994-11-08 1996-05-28 Sumitomo Metal Ind Ltd Mold for continuous casting round cast billet and continuous casting method using same
WO2000005012A1 (en) * 1998-07-21 2000-02-03 Shinagawa Refractories Co., Ltd. Molding powder for continuous casting of thin slab

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825008A (en) * 1994-07-11 1996-01-30 Sumitomo Metal Ind Ltd Molding powder for continuous casting of steel
JPH08132184A (en) * 1994-11-08 1996-05-28 Sumitomo Metal Ind Ltd Mold for continuous casting round cast billet and continuous casting method using same
WO2000005012A1 (en) * 1998-07-21 2000-02-03 Shinagawa Refractories Co., Ltd. Molding powder for continuous casting of thin slab

Also Published As

Publication number Publication date
JP2001239352A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP4646849B2 (en) Mold powder for continuous casting of high aluminum steel
JP4708055B2 (en) Mold powder for continuous casting of steel
JP4932635B2 (en) Continuous casting powder and steel continuous casting method
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
JP4527832B2 (en) Steel continuous casting method
JP3317258B2 (en) Mold powder for continuous casting of high Mn round section slabs
JP4010929B2 (en) Mold additive for continuous casting of steel
JP2003225744A (en) Powder for continuous casting and continuous casting method using this powder
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
JP2008502481A (en) Zirconia refractories for steelmaking
JP2848231B2 (en) Mold powder for continuous casting
JP3876917B2 (en) Steel continuous casting method
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
JP2010115714A (en) Mold powder
JP4527693B2 (en) Continuous casting method of high Al steel slab
US3940976A (en) Method of determining the suitability of continuously cast slabs of Al- or Al-Si-killed soft steel for producing cold rolled sheets to be tinned
JP3399387B2 (en) Steel continuous casting method
JP4451798B2 (en) Continuous casting method
JPH1058102A (en) Method for continuously casting medium-carbon steel
JP2675376B2 (en) High speed continuous casting of steel
JP3137826B2 (en) Continuous casting method and mold lubricant for continuous casting
JP2004001017A (en) Mold powder for continuous casting of steel
JP2006247672A (en) MOLD FLUX FOR CONTINUOUS CASTING TO Ni BASED MOLTEN METAL AND CONTINUOUS CASTING METHOD FOR Ni MATERIAL
JP7284397B2 (en) Mold powder for continuous casting
JP4609119B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4527832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term