JP4654554B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP4654554B2
JP4654554B2 JP2001288460A JP2001288460A JP4654554B2 JP 4654554 B2 JP4654554 B2 JP 4654554B2 JP 2001288460 A JP2001288460 A JP 2001288460A JP 2001288460 A JP2001288460 A JP 2001288460A JP 4654554 B2 JP4654554 B2 JP 4654554B2
Authority
JP
Japan
Prior art keywords
mold
steel
continuous casting
powder
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001288460A
Other languages
Japanese (ja)
Other versions
JP2003094155A (en
Inventor
誓司 糸山
和広 仮屋
祐樹 鍋島
康夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001288460A priority Critical patent/JP4654554B2/en
Publication of JP2003094155A publication Critical patent/JP2003094155A/en
Application granted granted Critical
Publication of JP4654554B2 publication Critical patent/JP4654554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鋼の連続鋳造方法に関し、粘度が0.5 Pa・s(5ポアズ)以上の超高粘度モールドパウダーの使用下で、凝固初期における凝固殻拘束性ブレークアウトの発生を効果的に防止すると共に、該パウダーの巻き込み防止による鋳片性状の有利な向上を図ろうとするものである。
【0002】
【従来の技術】
鋼鋳片を連続鋳造によって製造する場合、溶鋼を浸漬ノズルを通じて鋳型内に注入し、凝固殻(凝固シェルともいう)を形成させつつ下方に引き抜く方法が、一般的である。
かような鋼の連続鋳造において、近年、生産性の向上を目的として、鋳造速度の増加が図られているが、この場合には、次のような問題が顕在化していた。
1)注入速度の増加により、溶鋼中にパウダーが巻き込まれ、これらが鋳片内に残存することによって最終製品で欠陥となる。
2)初期凝固時の冷却速度の増加に伴い、凝固殻の不均一成長を招き、甚だしい場合には、鋳片の表面に縦割れが発生する。
このような表面縦割れが発生すると、圧延工程へ鋳片を送給するに先立って、疵や欠陥部の除去作業(以下、手入れという)が必要となる。
【0003】
上記の問題を解決するものとして、モールドパウダーの粘度を増加してパウダーの巻き込みを減少させたり、あるいは凝固温度を高くして、鋳型・凝固シェル間の伝熱抵抗を増大させ、シェルの暖冷却化を図る、などの対策が一般的に実施されている。
しかしながら、これらの対策では、鋳型・鋳片間の潤滑性を悪化させるため、拘束性ブレークアウトが発生する危険性が増大する。
【0004】
この対策として、特開平4−40103 号公報では、鋳型の長片テーパを 0.1%以下にすると共に、湯面被覆剤(モールドパウダー) として、CaO/SiO2重量比が 0.5〜1.6 、1300℃における粘度η(Poise)と鋳造速度Vc(m/min)の積が 6.0以上、1250℃における表面張力が 290 dyne/cm以上、ブレークポイントが1000℃以下を満足するパウダーを使用する方法を提案している。
【0005】
【発明が解決しようとする課題】
上記特開平4−40103 号公報に開示の技術の開発により、それなりの効果が認められるに至ったものの、実際の工程に適用するには、以下に述べるような問題を残していた。
すなわち、特開平4−40103 号公報に開示の方法では、ぶりき材や自動車用鋼板(Ti−Sulc鋼:極低炭、低窒素、低SのTi添加鋼)を鋳造する場合には、確かに鋳片欠陥指数やブレークアウト指数および鋳片表面付着パウダーに起因した圧延疵については、減少効果が見られた。
しかしながら、この方法では、鋳片のままでは観察・発見が困難で、表面酸化スケールを酸洗・除去して初めて発見可能な、微細な表面割れ(深さ1mm以内)が鋳造速度の増加につれて増大し、特に直送圧延(CC→熱延、CC→加熱炉→熱延など)のような酸化スケール生成量の少ない工程で熱延する場合、甚だしい場合には、熱延板や冷延板において、線状疵となることが判明した。
これは、パウダーの凝固温度(ブレークポイント)が1000℃以下であるため、鋳型内抜熱量が大きくなり、その結果、鋳型内で凝固シェルに発生する熱応力が大きくなって、微細表面割れに至るものと考えられる。
【0006】
この発明は、上記の問題を有利に解決するもので、1300℃におけるモールドパウダーの粘度ηが0.5 Pa・s(5ポアズ)以上、また該パウダーの凝固温度が1000℃以上であっても、鋳型潤滑が安定し、かつ表面割れ発生のない鋳片を安定して製造することができる、鋼の連続鋳造方法を提案することを目的とする。
【0007】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、以下に述べる知見を得た。
(1) 従来、鋳型テーパーは、相対値である%(次式(3) )や%/m (次式(4) )で表現されてきたが、絶対値表現に着目することにより、鋳型・凝固シェル間の潤滑性を定量的に評価できる。
テーパー(%)=(上記開口厚Tu −下端開口厚Td)/長辺高さL×100
---(3)
テーパー(%/m )=(Tu −Td )/Tu /L×100 ---(4)
(2) 粘度が0.5 Pa・s(5ポアズ)以上、ブレークポイントが1000℃以上のモールドパウダーを使用しても、拘束性ブレークアウト(BO)の発生なしに、安定した鋳造を行うためには、特開平4−40103 号公報では考慮していない、鋳型振動条件と鋳型長辺傾斜角度βを特定の範囲に規制することが重要である。
この発明は、上記の知見に立脚するものである。
【0008】
すなわち、この発明は、1300℃における粘度ηが0.5 Pa・s (5ポアズ)以上で、かつ凝固温度(ブレークポイント)Tm が1000℃以上の湯面被覆剤を使用して鋼を連続鋳造するに際し、垂直鋳型の長辺面の傾斜角度β(°)(但し、鋳型の出口方向に鋳型厚みが狭まる方向を正とする)と鋳型の振動ストロークS(mm)の関係が、次式(1)
2×10-3mm≦S sinβ≦8×10-3mm --- (1)
の関係を満足し、かつ鋳型振動における鋳型の最大上昇速度Vm (m/min)と鋳造速度Vc (m/min)との比が、次式(2)
0.8 ≦Vm /Vc ≦ 1.6 --- (2)
の範囲を満足する条件下で、鋼片を鋳造することを特徴とする鋼の連続鋳造方法である。
【0009】
【発明の実施の形態】
以下、この発明を具体的に説明する。
鋼の連続鋳造において、潤滑を保ち、かつ凝固シェルの摩擦による破断を防止するために一般的に実施されている鋳型振動(モールドオシレーションとも呼ばれる)時の鋳型壁面の動きは、鋳型に傾斜β(°)が存在するために、鋳型の上昇時には鋳型壁面は凝固シェルに近づき、下降時には離れる。つまり、鋳型壁面と凝固シェルとの間隔は周期的に変動していることになる。
この変動厚みΔdは、鋳型傾斜角度βと振動ストロークSを用いて、次式で表される。
Δd=S sinβ
このΔdが大きいと、例えば、潤滑不良により鋳型・凝固シェル間に液相の潤滑膜が殆ど存在しない場合、上昇してくる鋳型壁面が凝固シェルを直接摺動することになり、シェルに大きな引っ張り力が作用することになる。
【0010】
ここに、鋳型・凝固シェル間に液相の潤滑膜が殆ど存在しない頻度は、パウダーの粘度が高くなるほど、またブレークポイントが高くなるほど、大きくなり、拘束性ブレークアウトの危険が増大する。
また、鋳型の上昇速度の最大値Vm (サイン振動波形の場合、Vm =πSf)と鋳造速度Vc との比Vm /Vc の増加も、その危険性を増大させる。
【0011】
そこで、発明者らは、上記したΔdとVm /Vc を特定の範囲に規制する必要があると考え、これらを種々に変化させた実験を行った。
その結果、モールドパウダーの粘度が0.5 Pa・s (5ポアズ)以上、ブレークポイントが1000℃以上においても、Vm /Vc が適正な範囲を満足する場合、すなわち次式(2)
0.8 ≦Vm /Vc ≦ 1.6 --- (2)
の範囲を満足する場合には、殆ど拘束性ブレークアウトの発生なしに、鋳造できることが判明した。
【0012】
ただし、Δdの低下、つまりβの低下は、パウダー消費量の局所的増加とその不安定化を増大させ、鋳片表面にディプレッション(凹)や縦割れまたはコーナー近傍割れを増大させる傾向にあるので、β値を所定の範囲に制限する必要があることも判明した。
そこで、このβ値の適正範囲について検討したところ、このβ(°)を鋳型の振動ストロークS(mm)との関係で、次式(1)
2×10-3mm≦S sinβ≦8×10-3mm --- (1)
の関係を満足する範囲に制御すれば、所望の効果が得られることが究明された。
【0013】
ここに、Vm /Vc に上限が存在するのは、鋳型上昇時のシェルに作用する引っ張り摩擦力が過大となって、拘束性ブレークアウトの増大につながるのを防止するためであり、粘度:0.5 Pa・s (5ポアズ)以上、ブレークポイント:1000℃以上で、かつΔdが適正範囲内では、1.6 以下とするのが最適である。
一方、Vm /Vc に下限値が存在する理由は、Vm が小さすぎると、鋳型振動毎に凝固シェルに作用する圧縮力が小さくなり、オシレーションマーク部の結合力が弱まり、鋳型が上昇する際にシェルの破断が発生し易くなるためである。理論的にはVm /Vc >1.0 で凝固開始位置シェルに圧縮力が作用するが、湯面変動速度や凝固シェル強度、鋼種、潤滑膜厚さ等の影響により、経験的には 0.8以上であれば問題がないことが見出された。
【0014】
【実施例】
断面サイズで、鋳型下端厚みTd が 220mm, 265mm 、長辺が1560mmの垂直鋳型を用いて、C:0.03〜0.06mass%, Si:tr, Mn:0.3 〜0.6 mass%, P:0.015〜0.035 mass%, S:0.007 〜0.020 mass%およびAl:0.025 〜0.045 mass%を含有し、残部はFeおよび不可避的不純物の組成になる低炭素鋼を連続鋳造した。この際、タンディッシュ内の溶鋼過熱度は15〜40℃、定常での鋳造速度は 1.1〜2.7 m/min 、鋳型振動の波形はサイン波、ストロークSは4〜10mmとした。また、使用した鋳型の上端から下端までの長さ(鋳型長)は 907mmで、その状態で鋳型テーパーβを0〜0.07°に加工した。モールドパウダーは、表1に示すものを使用した。
なお、短辺テーパーは、発明鋳型および従来鋳型ともに、片面:0.58°に設定した。
【0015】
表1および表2に示す条件で連続鋳造中の鋳型測温に基づく拘束性ブレークアウト(BO)予知システム(特公平1−143748号公報に記載される方法によった)による警報発生率(1000チャージ当たりの回数)を鋳型内潤滑性の指標として、潤滑性を評価した。
また、鋳片表面の割れを評価するために、調査用鋳片(300 mm長さ、全幅)の表面黒皮酸化膜を研磨機で 0.1〜0.2 mm除去後、過酸化水素水と塩酸の混酸腐食を施し、割れ(鋳片1m 当たりの割れ個数、個/m )を調査した。ディプレッション(鋳片当たりの個数、個/m )は1チャージ(スラブ8〜12本)当たり2本のスラブの両面を外観観察により評価した。その後の熱延は、鋳片表面は手入れ無しのまま、実施した。
そして、製品冷延板(厚み:0.3 mm)コイルのパウダー性欠陥率(個数/コイル長×100)についても調査した。
得られた結果を表2に併記する。
【0016】
【表1】

Figure 0004654554
【0017】
【表2】
Figure 0004654554
【0018】
表2に示したとおり、この発明により、従来よりも粘度が2倍以上のパウダーを使用しても、安定した鋳型内潤滑が達成されていることが、BO警報発生回数から分かる。また、製品品質の悪化(パウダー欠陥率や表面割れ発生)もほとんどなく、良好な製品が得られていることが分かる。
【0019】
なお、参考のため、図1に、拘束性ブレークアウトや鋳片表面割れおよびディプレッションが発生しない、安定鋳造条件を得る領域を示す。
【0020】
【発明の効果】
かくして、この発明によれば、高速鋳造に際し、粘度ηが0.5 Pa・s(5ポアズ)以上で、かつ凝固温度(ブレークポイント)が1000℃以上のモールドパウダーを使用した場合であっても、安定した鋳型内潤滑が達成できるだけでなく、縦割れやパウダー欠陥などの製品欠陥のない鋳片を安定して製造することができる。
【図面の簡単な説明】
【図1】 拘束性ブレークアウトや鋳片表面割れおよびディプレッションが発生しない、安定鋳造条件の領域を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting method of steel, and effectively prevents the occurrence of a solidified shell constraining breakout in the initial stage of solidification using an ultra-high viscosity mold powder having a viscosity of 0.5 Pa · s (5 poise) or more. At the same time, it is intended to advantageously improve the slab properties by preventing the entrainment of the powder.
[0002]
[Prior art]
In the case of producing a steel slab by continuous casting, a method of injecting molten steel into a mold through an immersion nozzle and drawing it downward while forming a solidified shell (also referred to as a solidified shell) is generally used.
In such continuous casting of steel, in recent years, the casting speed has been increased for the purpose of improving productivity, but in this case, the following problems have become apparent.
1) As the injection rate increases, powder is entrained in the molten steel and remains in the slab, resulting in defects in the final product.
2) As the cooling rate during the initial solidification increases, the solidified shell grows unevenly, and in severe cases, vertical cracks occur on the surface of the slab.
When such vertical surface cracks occur, it is necessary to remove the flaws and defective portions (hereinafter referred to as “care”) prior to feeding the slab to the rolling process.
[0003]
In order to solve the above problems, the viscosity of the mold powder is increased to reduce the entrainment of the powder, or the solidification temperature is increased to increase the heat transfer resistance between the mold and the solidified shell, thereby heating and cooling the shell. Measures such as making it easier are generally implemented.
However, since these measures deteriorate the lubricity between the mold and the slab, the risk of a constraining breakout increases.
[0004]
As a countermeasure for this, in JP-A-4-40103, the long taper of the mold is set to 0.1% or less, and as a molten metal surface coating agent (mold powder), the CaO / SiO 2 weight ratio is 0.5 to 1.6 at 1300 ° C. Proposing a method to use powder that satisfies the product of viscosity η (Poise) and casting speed Vc (m / min) of 6.0 or more, surface tension at 1250 ° C of 290 dyne / cm or more, and break point of 1000 ° C or less Yes.
[0005]
[Problems to be solved by the invention]
Although a certain effect has been recognized by the development of the technique disclosed in the above Japanese Patent Laid-Open No. 4-40103, the following problems remain to be applied to an actual process.
That is, in the method disclosed in Japanese Patent Application Laid-Open No. 4-40103, when casting a tinplate material or a steel plate for automobiles (Ti-Sulc steel: extra low carbon, low nitrogen, low S Ti-added steel), In addition, a reduction effect was observed for the rolling defects caused by the slab defect index, breakout index, and slab surface adhering powder.
However, with this method, it is difficult to observe and detect the slab as it is, and fine surface cracks (within 1 mm depth) that can be detected only after pickling and removing the surface oxide scale increase as the casting speed increases. In particular, in the case of hot rolling in a process with a small amount of oxide scale generation such as direct feed rolling (CC → hot rolling, CC → heating furnace → hot rolling, etc.) It turned out to be a linear wrinkle.
This is because the solidification temperature (breakpoint) of the powder is 1000 ° C. or less, so the amount of heat removed from the mold increases, and as a result, the thermal stress generated in the solidified shell in the mold increases, leading to fine surface cracks. It is considered a thing.
[0006]
The present invention advantageously solves the above-described problem. Even if the viscosity η of the mold powder at 1300 ° C. is 0.5 Pa · s (5 poise) or more and the solidification temperature of the powder is 1000 ° C. or more, the mold It is an object of the present invention to propose a continuous casting method of steel that can stably produce a slab with stable lubrication and no occurrence of surface cracks.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the inventors have obtained the following knowledge.
(1) Conventionally, the mold taper has been expressed as a relative value% (following equation (3)) or% / m (following equation (4)). The lubricity between the solidified shells can be evaluated quantitatively.
Taper (%) = (opening thickness Tu−lower end opening thickness Td) / long side height L × 100
--- (3)
Taper (% / m) = (Tu-Td) / Tu / L × 100 --- (4)
(2) To achieve stable casting without the occurrence of constraining breakout (BO) even when using mold powder with a viscosity of 0.5 Pa · s (5 poise) or higher and a breakpoint of 1000 ° C or higher However, it is important to regulate the mold vibration condition and the mold long side inclination angle β, which are not considered in Japanese Patent Laid-Open No. 4-40103, within a specific range.
The present invention is based on the above findings.
[0008]
That is, the present invention is used for continuous casting of steel using a hot water surface coating agent having a viscosity η at 1300 ° C of 0.5 Pa · s (5 poise) or more and a solidification temperature (break point) Tm of 1000 ° C or more. The relationship between the inclination angle β (°) of the long side surface of the vertical mold (where the mold thickness narrows in the mold exit direction is positive) and the mold vibration stroke S (mm) is expressed by the following equation (1)
2 × 10 −3 mm ≦ S sinβ ≦ 8 × 10 −3 mm --- (1)
The ratio of the maximum mold rising speed Vm (m / min) to the casting speed Vc (m / min) in the mold vibration is expressed by the following equation (2).
0.8 ≤ Vm / Vc ≤ 1.6 --- (2)
It is a continuous casting method of steel characterized by casting a steel slab under the condition satisfying the above range.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
In continuous casting of steel, the movement of the mold wall during mold vibration (also called mold oscillation), which is generally performed to maintain lubrication and prevent fracture of the solidified shell due to friction, Because (°) exists, the mold wall approaches the solidified shell when the mold is raised and leaves when the mold is lowered. That is, the interval between the mold wall surface and the solidified shell fluctuates periodically.
This variation thickness Δd is expressed by the following equation using the mold inclination angle β and the vibration stroke S.
Δd = S sinβ
If this Δd is large, for example, when there is almost no liquid-phase lubricating film between the mold and the solidified shell due to poor lubrication, the rising mold wall surface slides directly on the solidified shell, causing a large pull on the shell. Power will act.
[0010]
Here, the frequency at which there is almost no liquid-phase lubricating film between the mold and the solidified shell increases as the viscosity of the powder increases and the break point increases, and the risk of constraining breakout increases.
Further, the increase in the ratio Vm / Vc between the maximum value Vm of the mold rising speed Vm (in the case of a sine vibration waveform, Vm = πSf) and the casting speed Vc also increases the risk.
[0011]
Therefore, the inventors considered that it is necessary to regulate the above-described Δd and Vm / Vc to specific ranges, and conducted experiments in which these were variously changed.
As a result, even when the viscosity of the mold powder is 0.5 Pa · s (5 poise) or more and the break point is 1000 ° C. or more, Vm / Vc satisfies the appropriate range, that is, the following formula (2)
0.8 ≤ Vm / Vc ≤ 1.6 --- (2)
When the above range is satisfied, it has been found that casting can be performed with almost no restraint breakout.
[0012]
However, a decrease in Δd, that is, a decrease in β tends to increase the local increase in powder consumption and its instability, and tends to increase depletion, vertical cracks, or near-corner cracks on the slab surface. It has also been found that it is necessary to limit the β value to a predetermined range.
Therefore, when an appropriate range of this β value was examined, this β (°) was related to the vibration stroke S (mm) of the mold, and the following equation (1)
2 × 10 −3 mm ≦ S sinβ ≦ 8 × 10 −3 mm --- (1)
It has been found that the desired effect can be obtained by controlling the relationship to satisfy the above relationship.
[0013]
Here, the upper limit exists in Vm / Vc in order to prevent excessive tensile frictional force acting on the shell when the mold is raised, leading to an increase in the restrictive breakout. Viscosity: 0.5 When Pa · s (5 poise) or more, break point: 1000 ° C. or more and Δd is within an appropriate range, it is optimal to set it to 1.6 or less.
On the other hand, the reason why the lower limit value exists in Vm / Vc is that when Vm is too small, the compressive force acting on the solidified shell is reduced every time the mold is vibrated, the coupling force of the oscillation mark part is weakened, and the mold is raised This is because the shell is easily broken. Theoretically, compression force acts on the solidification start position shell when Vm / Vc> 1.0, but empirically it should be 0.8 or more due to the influence of the melt level fluctuation speed, solidification shell strength, steel type, lubricating film thickness, etc. Found no problem.
[0014]
【Example】
Using a vertical mold with cross-sectional size, mold bottom thickness Td of 220mm, 265mm and long side of 1560mm, C: 0.03-0.06mass%, Si: tr, Mn: 0.3-0.6mass%, P: 0.015-0.035mass %, S: 0.007 to 0.020 mass% and Al: 0.025 to 0.045 mass%, and the balance was continuously casted with a low carbon steel having a composition of Fe and inevitable impurities. At this time, the superheat degree of the molten steel in the tundish was 15 to 40 ° C., the casting speed at a steady state was 1.1 to 2.7 m / min, the waveform of the mold vibration was a sine wave, and the stroke S was 4 to 10 mm. The length from the upper end to the lower end of the mold used (mold length) was 907 mm, and the mold taper β was processed to 0 to 0.07 ° in this state. The mold powder shown in Table 1 was used.
The short side taper was set at 0.58 ° on one side for both the inventive mold and the conventional mold.
[0015]
Alarm generation rate (1000) according to the constraint breakout (BO) prediction system (based on the method described in Japanese Patent Publication No. 1-143748) based on mold temperature measurement during continuous casting under the conditions shown in Table 1 and Table 2. Lubricity was evaluated using the number of times per charge as an index of in-mold lubricity.
In addition, in order to evaluate the cracks on the slab surface, the surface black skin oxide film of the slab for investigation (300 mm length, full width) was removed by 0.1 to 0.2 mm with a polishing machine, and then mixed acid of hydrogen peroxide and hydrochloric acid. Corrosion was applied and cracks (number of cracks per 1 m of slab, pieces / m 2) were investigated. The depletion (number per slab, piece / m 2) was evaluated by appearance observation on both sides of two slabs per charge (8-12 slabs). Subsequent hot rolling was carried out with the slab surface left untreated.
And the powdery defect rate (number / coil length × 100) of the product cold-rolled sheet (thickness: 0.3 mm) coil was also investigated.
The obtained results are also shown in Table 2.
[0016]
[Table 1]
Figure 0004654554
[0017]
[Table 2]
Figure 0004654554
[0018]
As shown in Table 2, it can be seen from the number of occurrences of the BO alarm that the present invention achieves stable in-mold lubrication even when a powder having a viscosity twice or more that of the prior art is used. In addition, it can be seen that there is almost no deterioration in product quality (powder defect rate and surface cracking), and a good product is obtained.
[0019]
For reference, FIG. 1 shows a region where stable casting conditions are obtained, in which no constraining breakout, slab surface cracking, and depletion occur.
[0020]
【The invention's effect】
Thus, according to the present invention, even when a mold powder having a viscosity η of 0.5 Pa · s (5 poise) or more and a solidification temperature (break point) of 1000 ° C. or more is used during high speed casting. In addition to achieving in-mold lubrication, it is possible to stably produce slabs free from product defects such as vertical cracks and powder defects.
[Brief description of the drawings]
FIG. 1 is a diagram showing a region of stable casting conditions in which no constraining breakout, slab surface cracking, or depletion occurs.

Claims (1)

1300℃における粘度ηが0.5 Pa・s 以上で、かつ凝固温度(ブレークポイント)Tm が1000℃以上の湯面被覆剤を使用して鋼を連続鋳造するに際し、垂直鋳型の長辺面の傾斜角度β(°)(但し、鋳型の出口方向に鋳型厚みが狭まる方向を正とする)と鋳型の振動ストロークS(mm)の関係が、次式(1)
2×10-3mm≦S sinβ≦8×10-3mm --- (1)
の関係を満足し、かつ鋳型振動における鋳型の最大上昇速度Vm (m/min)と鋳造速度Vc (m/min)との比が、次式(2)
0.8 ≦Vm /Vc ≦ 1.6 --- (2)
の範囲を満足する条件下で、鋼片を鋳造することを特徴とする鋼の連続鋳造方法。
The inclination angle of the long side surface of the vertical mold during continuous casting of steel using a surface coating agent with a viscosity η at 1300 ° C of 0.5 Pa · s or more and a solidification temperature (breakpoint) Tm of 1000 ° C or more The relationship between β (°) (however, the direction in which the mold thickness narrows in the mold exit direction is positive) and the mold vibration stroke S (mm) is expressed by the following equation (1)
2 × 10 −3 mm ≦ S sinβ ≦ 8 × 10 −3 mm --- (1)
The ratio of the maximum mold rising speed Vm (m / min) to the casting speed Vc (m / min) in the mold vibration is expressed by the following equation (2).
0.8 ≤ Vm / Vc ≤ 1.6 --- (2)
A continuous casting method of steel, characterized in that steel slabs are cast under conditions that satisfy the above range.
JP2001288460A 2001-09-21 2001-09-21 Steel continuous casting method Expired - Fee Related JP4654554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001288460A JP4654554B2 (en) 2001-09-21 2001-09-21 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288460A JP4654554B2 (en) 2001-09-21 2001-09-21 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2003094155A JP2003094155A (en) 2003-04-02
JP4654554B2 true JP4654554B2 (en) 2011-03-23

Family

ID=19111108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288460A Expired - Fee Related JP4654554B2 (en) 2001-09-21 2001-09-21 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4654554B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777090B2 (en) * 2006-02-28 2011-09-21 新日本製鐵株式会社 Vertical continuous casting method for large section slabs for thick steel plates
JP5130485B2 (en) * 2008-04-10 2013-01-30 新日鐵住金株式会社 Vibration method of continuous casting mold of steel and continuous casting method of steel
KR101505143B1 (en) 2013-04-30 2015-03-23 현대제철 주식회사 Method of manufacturing coil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158106A (en) * 1998-11-30 2000-06-13 Shinagawa Refract Co Ltd Continuous steel casting method
JP2001047200A (en) * 1999-08-04 2001-02-20 Nippon Steel Metal Prod Co Ltd Powder for continuously casting steel
JP2001239352A (en) * 2000-02-29 2001-09-04 Nkk Corp Continuous casting method for steel and mold powder used therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235053A (en) * 1985-04-10 1986-10-20 Nippon Steel Corp Preventing method for restrained breakout
JP3128676B2 (en) * 1993-06-24 2001-01-29 新日本製鐵株式会社 Continuous casting of steel
JPH10109142A (en) * 1996-10-01 1998-04-28 Sumitomo Metal Ind Ltd Mold for continuous casting and continuous casting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158106A (en) * 1998-11-30 2000-06-13 Shinagawa Refract Co Ltd Continuous steel casting method
JP2001047200A (en) * 1999-08-04 2001-02-20 Nippon Steel Metal Prod Co Ltd Powder for continuously casting steel
JP2001239352A (en) * 2000-02-29 2001-09-04 Nkk Corp Continuous casting method for steel and mold powder used therefor

Also Published As

Publication number Publication date
JP2003094155A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
JP2000351049A (en) Continuous casting method
CN106536087B (en) Method and apparatus for thin slab continuous casting
WO2007125871A1 (en) Method of continuous casting of high-aluminum steel and mold powder
JP2007290007A (en) Method for continuous casting of high aluminum steel
JP4654554B2 (en) Steel continuous casting method
WO2018055799A1 (en) Continuous steel casting method
JP2010131635A (en) Die-cast molding method for iron and die-cast molded body
CN109689247B (en) Method for continuously casting steel
JP4527693B2 (en) Continuous casting method of high Al steel slab
JPH0565263B2 (en)
JP5131992B2 (en) Continuous casting method for medium carbon steel
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP2016196035A (en) Manufacturing method of cast slab using continuous casting machine
JP4717357B2 (en) High-speed continuous casting method for carbon steel
JPS5838646A (en) Continuous casting method for slab of middle carbon region steel
JPH07303951A (en) Secondary cooling method for continuous casting and the device thereof
JP3712338B2 (en) Method for producing spheroidal graphite cast iron
JP4001264B2 (en) Manufacturing method of steel with few surface defects
JPH11285788A (en) Method for continuously casting large cross sectional cast bloom for thick steel plate
JP2518618B2 (en) Mold for continuous casting of steel
JPH11179507A (en) Method for oscillating mold for continuous casting
JPH09285855A (en) Manufacture of ni containing steel
JP3570224B2 (en) Continuous casting method for large section slabs for thick steel plates
JP2004122139A (en) Method for continuously casting extra-low carbon steel and mold powder for continuous casting
JP2005074460A (en) Continuous casting method of slab of extremely low carbon steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4654554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees