JP3570224B2 - Continuous casting method for large section slabs for thick steel plates - Google Patents

Continuous casting method for large section slabs for thick steel plates Download PDF

Info

Publication number
JP3570224B2
JP3570224B2 JP18319098A JP18319098A JP3570224B2 JP 3570224 B2 JP3570224 B2 JP 3570224B2 JP 18319098 A JP18319098 A JP 18319098A JP 18319098 A JP18319098 A JP 18319098A JP 3570224 B2 JP3570224 B2 JP 3570224B2
Authority
JP
Japan
Prior art keywords
slab
solidification
continuous casting
casting
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18319098A
Other languages
Japanese (ja)
Other versions
JP2000015397A (en
Inventor
宏 清水
健太郎 森
政美 小松
正之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP18319098A priority Critical patent/JP3570224B2/en
Publication of JP2000015397A publication Critical patent/JP2000015397A/en
Application granted granted Critical
Publication of JP3570224B2 publication Critical patent/JP3570224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、厚みが250mm以上、幅が1500mm以上の断面サイズを有する厚鋼板用大断面鋳片の連続鋳造方法に関するもので、詳しくは、内質が優れた鋳片を安定して鋳造する方法に関するものである。
【0002】
【従来の技術】
鉄鋼製造業における連続鋳造法の普及は、品質向上、歩留り向上、省エネルギー及び省力化等の面でコスト合理化に大きく寄与しているが、従来、連続鋳造法による厚鋼板用鋳片の断面サイズは、厚みが250mm以下が一般的であり、厚鋼板製品の一部は寸法制約により、普通造塊法や一方向凝固法が適用されているのが実情である。しかし、これらの方法では分塊圧延を必要とする上、普通造塊法では、逆V偏析やV偏析及び沈殿晶の生成が避けられず、そのため、これらの品質欠陥部を避けて使用するために歩留りが悪く、又、一方向凝固法では、鋼塊表面の研削が必要のために歩留りが悪い上、生産性にも劣るという問題がある。このような状況の中、大断面鋳片を連続鋳造法により製造する方法が幾つか提案されている。
【0003】
例えば、特開昭63−278653号公報(以下、「先行技術1」と記す)には、垂直型連続鋳造機の水冷鋳型の下方に設けた圧下装置にて凝固途中の鋳片を圧下しつつ凝固を完了させて大断面鋳片を製造する方法が開示されている。先行技術1によれば、鋳片を圧下することで、鋳片の表面割れや内部割れが防止され、且つ、不純物の濃化した溶鋼の移動も防止されて偏析のない健全な鋳片が得られるとしている。又、特開昭61−212457号公報(以下、「先行技術2」と記す)には、鋳片の未凝固層率が最適の値となる位置に未凝固層を攪拌する電磁攪拌装置を設置した大断面鋳片の垂直型連続鋳造設備が開示されている。先行技術2によれば、鋳片の中心偏析が改善され、品質の良い大断面鋳片を製造することができるとしている。
【0004】
【発明が解決しようとする課題】
しかしながら、先行技術1及び先行技術2には以下の問題点がある。即ち、大断面鋳片を連続鋳造機、特に垂直型連続鋳造機で鋳造すると、鋳片軸心部には上方から沈降する等軸晶が堆積して等軸晶によるブリッジングが発生し、最終凝固部への溶鋼の補給が断たれ、鋳片の中心偏析や鋳片軸心部でのザクが悪化する。従って、大断面鋳片を連続鋳造機で鋳造する際には、等軸晶によるブリッジングが発生しないように、凝固界面の形状を制御する必要があるが、先行技術1及び先行技術2は、最終凝固部への溶鋼の補給があることを前提とした時の中心偏析の防止対策であり、そのため、常に最終凝固部への溶鋼補強が確保されるわけではなく、時として中心偏析の悪化やザクの悪化が発生し、高品質の鋳片を安定して製造する点で未だ改善の余地が高い。尚、ザクとは溶鋼の補給が断たれて発生する鋳片軸心部の気孔のことである。
【0005】
本発明は上記事情に鑑みなされたもので、その目的とするところは、鋳片の中心偏析及び鋳片軸心部のザクが少なく、高品質の厚鋼板用大断面鋳片を安定して製造することができる連続鋳造方法を提供することである。
【0006】
【課題を解決するための手段】
第1の発明による厚鋼板用大断面鋳片の連続鋳造方法は、鋳片厚みが250mm以上で、鋳片幅が1500mm以上の厚鋼板用大断面鋳片の連続鋳造方法であって、鋳片引抜き速度と二次冷却強度とを制御して、鋳片厚みとメニスカスから凝固完了位置までの距離とで(1)式により定まる凝固界面角度を0.25度以上とすることを特徴とするものである。
【0007】
tan θ=Do/(4×Le)……(1)
但し、(1)式において各記号は以下を表すものである。
θ ;凝固界面角度(度)
Do;鋳片厚み(mm)
Le;メニスカスから凝固完了位置までの距離(mm)
第2の発明による厚鋼板用大断面鋳片の連続鋳造方法は、第1の発明において、垂直型連続鋳造機により鋳造することを特徴とするものである。
【0008】
本発明者等は、大断面鋳片の連続鋳造の際には凝固界面の形状を制御する必要があるとの観点から、凝固界面の形状を表わす指標として凝固完了位置における凝固シェルの接線と鋳片中心線とのなす角度を凝固界面角度(θ)と定義し、鋳片内質を凝固界面角度(θ)で整理することを試みた。先ず最初に、本発明者等が定義した凝固界面角度(θ)について説明する。
【0009】
鋳片長辺面での凝固シェル厚みをd(mm)、鋳片引抜き速度をVc(mm/min)、凝固係数をK(mm/min1/2 )、メニスカスからの距離をL(mm)とすると、凝固シェル厚み(d)は(2)式で表わされる。
d=K×(L/Vc)1/2 ……(2)
【0010】
(2)式に基づき、横軸をメニスカスからの距離(L)とし、縦軸を凝固シェル厚み(d)として図示すると、図1が得られる。図1に示すように、凝固シェル厚み(d)はメニスカスからの距離(L)の増加と共に増大し、そして、メニスカスからの距離(L)がLeとなった時に、凝固シェル厚み(d)は鋳片厚み(Do)の1/2となり、鋳片軸心までの凝固が完了する。(2)式を微分してメニスカスからの距離(L)にLeを代入すると、凝固完了位置(L=Le)における接線の傾きが定まり、従って、凝固完了位置(L=Le)における凝固シェルとの接線は(3)式で表わされる。
d=[Do/(4×Le)]×L+Do/4……(3)
【0011】
(3)式による接線の傾きがtan θに等しいので、従って、凝固界面角度(θ)は(1)式で表わすことができる。
【0012】
発明者等は、連続鋳造機にて鋳片厚みが250mm以上の大断面鋳片を各種の鋳造条件で鋳造し、鋳片の中心偏析及び鋳片軸心部のザクの発生状況と、このように定義した凝固界面角度(θ)との関係について調査した。その結果、凝固界面角度(θ)を0.25度以上とすること、即ち、凝固界面の形状を鉛直上方に向かって凝固界面角度(θ)が0.25度以上に開いた形状とすることで、沈降する等軸晶によるブリッジングを防止することができ、中心偏析及び軸心部のザクが防止されることが判明した。
【0013】
厚鋼板用大断面鋳片は断面サイズが大きいので、通常の湾曲型又は垂直曲げ型連続鋳造機のように、鋳片を曲げると鋳片表面に曲げ応力による表面疵が発生する。垂直型連続鋳造機を用いることで、鋳片の曲げ又は曲げ戻しを必要とせず、これによる表面疵の発生を未然に防止できる。
【0014】
【発明の実施の形態】
本発明を図面に基づき説明する。図2は、本発明の実施の形態の1例を示す鋳片断面が矩形型の垂直型連続鋳造機の鋳片幅中央位置における側断面の概略図である。
【0015】
図2において、鋳型2は、鋳片厚み(Do)が250mm以上、鋳片幅が1500mm以上の断面サイズを有する鋳片7の鋳造を可能とし、そして、鋳型2の下方には、サポートロール11、ガイドロール12、ガイドロール13、駆動ロール14からなる鋳片案内ロールが設置されている。これらの鋳片案内ロールには、鋳型2の直下側から下方に向かって、第1冷却ゾーン4a、第2冷却ゾーン4b、第3冷却ゾーン4c、及び、第4冷却ゾーン4dの4つに分割された冷却ゾーンからなる二次冷却帯4が設置されており、二次冷却帯4は、水スプレー又はエアーミストスプレー、及び、これらを併用したものとする。ガイドロール13は、鋳造方向に次第にロール間隔を狭めて鋳片に圧下力を加えることが可能な、所謂軽圧下帯を構成するもので、又、駆動ロール14は鋳片引抜き用ロールである。軽圧下帯は本発明に必須のものではないが、鋳片の中心偏析を軽減するために設置することが望ましい。そして、鋳型2の上方所定位置には、底部に浸漬ノズル3が設けられたタンディッシュ1が配置されている。
【0016】
このような構成の連続鋳造機における鋳造方法は、先ず、取鍋(図示せず)からタンディッシュ1内に溶鋼5を注入し、次いで、浸漬ノズル3の先端をモールドパウダー(図示せず)で覆われたメニスカス6に浸漬させながら、タンディッシュ1内の溶鋼5を浸漬ノズル3を介して鋳型2内に連続的に注入する。鋳型2内に注入された溶鋼5は鋳型2に接触して冷却され、外周に凝固層9を形成し、次いで、凝固層9はサポートロール11、ガイドロール12、ガイドロール13、駆動ロール14を通り、下方に連続的に引抜かれる。この引抜き途中、凝固層9の表面は二次冷却帯4で冷却され、凝固層9の内部の未凝固層8の厚みを減少させ、凝固完了位置10にて凝固を完了して鋳片7となる。
【0017】
その際に、鋳片厚み(Do)とメニスカス6から凝固完了位置10までの距離(Le)とで(1)式により定義される凝固界面角度(θ)を0.25度以上となる範囲で、鋳片引抜き速度及び二次冷却強度を制御する。
tan θ=Do/(4×Le)……(1)
【0018】
そのためには、メニスカス6から凝固完了位置10までの距離(Le)を予め知る必要があるので、伝熱解析による理論計算や、Fe−S合金等を封入した鋲を凝固完了位置10近傍の鋳片7に打ち込み、鋲を含む断面を塩酸腐食して直接凝固シェル厚みを測定する方法等により、二次冷却強度及び鋳片引抜き速度の条件別に距離(Le)を把握しておき、凝固界面角度(θ)が0.25度以上となる二次冷却強度及び鋳片引抜き速度で鋳造する。
【0019】
又、伝熱解析や鋲打ち込み法により、前述の凝固係数(K)を二次冷却強度別に予め求めておき、そして、(1)式により距離(Le)を凝固界面角度(θ)が0.25度以上となる範囲内として設定し、この設定した距離(Le)と求めた凝固係数(K)とで(4)式により鋳片引抜き速度(Vc)を算出し、凝固係数(K)を求めた二次冷却強度条件において算出した鋳片引抜き速度(Vc)で鋳造しても良い。
Vc≦[(2×K)/Do]×Le……(4)
【0020】
このようにして鋳造することで、沈降する等軸晶によるブリッジングを防止することができ、中心偏析及び鋳片軸心部のザクが未然に防止され、高品質の厚鋼板用大断面鋳片を安定して製造することができる。
【0021】
尚、上記説明では垂直型連続鋳造機で説明したが、本発明は垂直型連続鋳造機に限定されるものではなく、湾曲型連続鋳造機や垂直曲げ型連続鋳造機であっても適用できる。又、上記説明では二次冷却帯4の冷却ゾーンの数は4であるが、冷却ゾーンの数は4に限るものではなく、1又は2以上であれば幾つであっても良く、更に、鋳片案内ロールの配置及び数は上記に限るものではないことはいうまでもない。
【0022】
【実施例】
機長が41mの図2に示す垂直型連続鋳造機を用い、タンディッシュ内の溶鋼過熱度を35℃とし、鋳片幅を2100mm一定として鋳片厚みを250mm、300mm、400mm、及び500mmとし、炭素濃度が0.15wt%、1ヒートが250トンの溶鋼を合計48ヒート試験鋳造した。二次冷却強度は、比水量2.0l/kg.steel(以下、「強冷却鋳造」と記す)と比水量0.8l/kg.steel(以下、「弱冷却鋳造」と記す)との2水準とし、鋳片引抜き速度(Vc)を、強冷却鋳造では350〜1500mm/min、弱冷却鋳造では250〜1500mm/minとして、鋳片厚み(Do)とメニスカスから凝固完了位置までの距離(Le)とで(1)式により凝固界面角度(θ)を求めた。
【0023】
その際に、各鋳造におけるメニスカスから凝固完了位置までの距離(Le)は伝熱解析により求めた。伝熱解析によれば、凝固係数(K)は、強冷却鋳造では30.5mm/min1/2 、弱冷却鋳造では27.5mm/min1/2 となる。又、鋳片の中心偏析を改善するために、凝固末期の圧下速度が0.80〜1.20mm/minとなるように、各試験鋳造で軽圧下帯のガイドロール間隔を調整した。尚、鋳型内には強度が0.2テスラの回転磁場を印加して等軸晶の生成を各試験鋳造で同一となるようにした。表1に、各試験鋳造における鋳片厚み(Do)、鋳片引抜き速度(Vc)、メニスカスから凝固完了位置までの距離(Le)、及び、凝固界面角度(θ)を示す。
【0024】
【表1】

Figure 0003570224
【0025】
そして、鋳造後、鋳片の中心偏析及び鋳片軸心部のザクを検査し、凝固界面角度(θ)と鋳片内質との関係を調査した。中心偏析は、鋳片幅方向中央部(以下、「W/2位置」と記す。Wは鋳片幅である)と短辺側から300mmの位置(以下、「W/7位置」と記す)とから鋳片軸心部を含む5mmφの試料をそれぞれ20個採取して炭素分析し、この分析値(Ci)とタンディッシュ内で採取した試料の炭素分析値(Co)との比(Ci/Co)の平均値を中心偏析度として評価した。中心偏析度は、1.08以下を合格とし、1.08を越えるものを不合格とした。
【0026】
鋳片軸心部のザクは、W/2位置とW/7位置とから、鋳片軸心部より幅10mm×厚み10mm×鋳造方向長さ200mmの試料を採取し、これら試料を鏡面研磨して顕微鏡観察し、ザクの最大開口幅をザク指数として評価し、ザク指数が1.5mm以下を合格とし、1.5mmを越えるものを不合格とした。このようにして評価した鋳片品質の調査結果を表2に示す。
【0027】
【表2】
Figure 0003570224
【0028】
表2に示すように、W/2位置では中心偏析は全ての試験鋳造で合格であり、軸心部のザクも試験No.48で不合格となったのみで、他の試験鋳造は全て合格であったが、W/7位置では、中心偏析及び軸心部のザクが、不合格となる試験鋳造が発生した。
【0029】
図3は、強冷却鋳造の試験鋳造での凝固界面角度(θ)とW/7位置におけるザクの最大開口幅との関係を示した図であるが、凝固界面角度(θ)が0.25度以上の試験鋳造では、ザクの最大開口幅は1.5mm以下であり、合格範囲であった。図4は、弱冷却鋳造の試験鋳造での凝固界面角度(θ)とW/7位置におけるザクの最大開口幅との関係を示した図であるが、図3と同様に、凝固界面角度(θ)が0.25度以上の試験鋳造では、ザクの最大開口幅は1.5mm以下であり、合格範囲であった。又、図3及び図4より、凝固界面角度(θ)が小さくなるほど、ザクの最大開口幅が増大することが分かった。
【0030】
中心偏析及び軸心部のザクが共に合格となったものを総合評価で合格として表2に○印で表示した。このように、凝固界面角度θを0.25度以上とすることで、中心偏析及び軸心部のザクは品質上問題の無い範囲に改善され、高品質の大断面鋳片を安定して製造することが可能となった。尚、表2の備考欄に本発明の範囲内の試験鋳造を実施例とし、それ以外の試験鋳造を比較例として表示した。
【0031】
【発明の効果】
本発明によれば、鋳片の中心偏析及び鋳片軸心部のザクが少なく、高品質である厚鋼板用大断面鋳片を安定して製造することができ、その工業的効果は格別である。
【図面の簡単な説明】
【図1】メニスカスからの距離と凝固シェル厚みとの関係から、凝固界面角度の定義を説明する図である。
【図2】本発明の実施の形態の1例を示す鋳片断面が矩形型の垂直型連続鋳造機の鋳片幅中央位置における側断面の概略図である。
【図3】強冷却鋳造において、凝固界面角度とW/7位置におけるザクの最大開口幅との関係を調査した結果を示す図である。
【図4】弱冷却鋳造において、凝固界面角度とW/7位置におけるザクの最大開口幅との関係を調査した結果を示す図である。
【符号の説明】
1 タンディッシュ
2 鋳型
3 浸漬ノズル
4 二次冷却帯
5 溶鋼
6 メニスカス
7 鋳片
8 未凝固層
9 凝固層
10 凝固完了位置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous casting method of a large-section slab for a thick steel plate having a cross-sectional size of a thickness of 250 mm or more and a width of 1500 mm or more, and more particularly, to a method of stably casting a slab having excellent internal quality. It is about.
[0002]
[Prior art]
The spread of the continuous casting method in the steel manufacturing industry has greatly contributed to cost rationalization in terms of quality improvement, yield improvement, energy saving and labor saving, but conventionally, the cross-sectional size of steel plate slabs by the continuous casting method has been The thickness is generally 250 mm or less, and the fact is that the ordinary ingot making method and the unidirectional solidification method are applied to some steel plate products due to dimensional restrictions. However, these methods require bulk rolling, and the ordinary ingot making method cannot avoid reverse V segregation, V segregation, and the formation of precipitated crystals. In addition, the unidirectional solidification method has a problem that the yield is poor because the surface of the steel ingot needs to be ground, and the productivity is also poor. Under such circumstances, several methods have been proposed for producing a large-section cast piece by a continuous casting method.
[0003]
For example, Japanese Unexamined Patent Publication (Kokai) No. 63-278655 (hereinafter referred to as "prior art 1") discloses that a slab during solidification is reduced by a reduction device provided below a water-cooled mold of a vertical continuous casting machine. A method for producing a large-section slab by completing solidification is disclosed. According to the prior art 1, by rolling down the slab, the surface cracks and internal cracks of the slab are prevented, and the movement of molten steel in which impurities are concentrated is also prevented, so that a sound slab without segregation can be obtained. It is going to be. In Japanese Patent Application Laid-Open No. 61-212457 (hereinafter referred to as "prior art 2"), an electromagnetic stirrer for stirring an unsolidified layer is provided at a position where an unsolidified layer ratio of a slab becomes an optimum value. A vertical continuous casting facility for large cast slabs is disclosed. According to Prior Art 2, the center segregation of the slab is improved, and a large-section slab of good quality can be manufactured.
[0004]
[Problems to be solved by the invention]
However, Prior Art 1 and Prior Art 2 have the following problems. That is, when a large-section slab is cast by a continuous casting machine, particularly a vertical continuous casting machine, equiaxed crystals settling from above are deposited at the slab axis, and bridging due to the equiaxed crystal occurs. The supply of molten steel to the solidified portion is interrupted, and the segregation of the center of the slab and the backlash in the slab shaft center portion are deteriorated. Therefore, when casting a large-section slab with a continuous casting machine, it is necessary to control the shape of the solidification interface so that bridging by an equiaxed crystal does not occur. This is a measure to prevent center segregation when it is assumed that molten steel will be supplied to the final solidified part.Therefore, reinforcement of molten steel in the final solidified part is not always ensured. There is still much room for improvement in the stable production of high quality slabs due to the deterioration of Zak. Zaku refers to pores in the shaft center of the slab generated when supply of molten steel is cut off.
[0005]
The present invention has been made in view of the above circumstances, and aims to stably produce a high-quality large-section cast slab for a thick steel plate with little segregation of the center of the slab and a small amount of zigzag in the axial center of the slab. It is to provide a continuous casting method that can be performed.
[0006]
[Means for Solving the Problems]
The continuous casting method for a large-section slab for a thick steel plate according to the first invention is a continuous casting method for a large-section slab for a thick steel plate having a slab thickness of 250 mm or more and a slab width of 1500 mm or more. By controlling the drawing speed and the secondary cooling strength, the solidification interface angle determined by the equation (1) based on the slab thickness and the distance from the meniscus to the solidification completion position is set to 0.25 degrees or more. It is.
[0007]
tan θ = Do / (4 × Le) (1)
However, in the formula (1), each symbol represents the following.
θ: solidification interface angle (degree)
Do; slab thickness (mm)
Le: Distance from meniscus to solidification completion position (mm)
A continuous casting method of a large-section cast piece for a steel plate according to a second invention is characterized in that, in the first invention, casting is performed by a vertical continuous casting machine.
[0008]
From the viewpoint that it is necessary to control the shape of the solidification interface during continuous casting of a large-section slab, the present inventors considered that the tangent of the solidified shell at the solidification completion position and the casting The angle formed with the center line of the slab was defined as the solidification interface angle (θ), and an attempt was made to arrange the slab contents by the solidification interface angle (θ). First, the solidification interface angle (θ) defined by the present inventors will be described.
[0009]
The solidified shell thickness on the long side of the slab is d (mm), the slab withdrawal speed is Vc (mm / min), the solidification coefficient is K (mm / min 1/2 ), and the distance from the meniscus is L (mm). Then, the thickness (d) of the solidified shell is expressed by equation (2).
d = K × (L / Vc) 1/2 (2)
[0010]
FIG. 1 is obtained by plotting the horizontal axis as the distance (L) from the meniscus and the vertical axis as the solidified shell thickness (d) based on equation (2). As shown in FIG. 1, the solidified shell thickness (d) increases with an increase in the distance (L) from the meniscus, and when the distance (L) from the meniscus becomes Le, the solidified shell thickness (d) becomes It becomes 1/2 of the slab thickness (Do), and the solidification up to the slab axis is completed. When Le is substituted into the distance (L) from the meniscus by differentiating the equation (2), the inclination of the tangent line at the solidification completion position (L = Le) is determined. Is represented by equation (3).
d = [Do / (4 × Le)] × L + Do / 4 (3)
[0011]
Since the inclination of the tangent according to equation (3) is equal to tan θ, the solidification interface angle (θ) can be expressed by equation (1).
[0012]
The present inventors cast a large-section slab having a slab thickness of 250 mm or more with a continuous casting machine under various casting conditions, the center segregation of the slab and the occurrence of zigzag at the slab axis, and The relationship with the solidification interface angle (θ) defined in the above was investigated. As a result, the solidification interface angle (θ) is set to 0.25 degrees or more, that is, the shape of the solidification interface is set to a shape in which the solidification interface angle (θ) is opened to 0.25 degrees or more vertically upward. It was found that bridging due to sedimented equiaxed crystals could be prevented, and that segregation at the center and zigzag at the axial center were prevented.
[0013]
Since the large-section slab for a thick steel plate has a large cross-sectional size, when a slab is bent as in a normal curved-type or vertical-bending-type continuous casting machine, surface flaws are generated on the surface of the slab due to bending stress. By using a vertical continuous casting machine, it is not necessary to bend or bend back the cast slab, and the occurrence of surface flaws due to this can be prevented.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described with reference to the drawings. FIG. 2 is a schematic side cross-sectional view of a vertical continuous caster having a rectangular slab cross section at the center position of the slab width showing an example of the embodiment of the present invention.
[0015]
In FIG. 2, a mold 2 enables casting of a slab 7 having a cross-sectional size having a slab thickness (Do) of 250 mm or more and a slab width of 1500 mm or more, and a support roll 11 below the mold 2. , A guide roll 12, a guide roll 13, and a drive roll 14 are provided. These slab guide rolls are divided into four parts, a first cooling zone 4a, a second cooling zone 4b, a third cooling zone 4c, and a fourth cooling zone 4d, from directly below the mold 2 to below. A secondary cooling zone 4 including a cooled zone is provided, and the secondary cooling zone 4 is a water spray or an air mist spray, or a combination thereof. The guide roll 13 constitutes a so-called light reduction band capable of gradually reducing the roll interval in the casting direction to apply a rolling force to the slab, and the drive roll 14 is a slab drawing roll. The light reduction zone is not essential to the present invention, but is preferably installed to reduce the center segregation of the slab. At a predetermined position above the mold 2, a tundish 1 provided with a submerged nozzle 3 at the bottom is arranged.
[0016]
In the casting method in the continuous casting machine having such a configuration, first, molten steel 5 is poured into a tundish 1 from a ladle (not shown), and then the tip of the immersion nozzle 3 is molded with mold powder (not shown). The molten steel 5 in the tundish 1 is continuously injected into the mold 2 through the immersion nozzle 3 while being immersed in the covered meniscus 6. The molten steel 5 injected into the mold 2 is cooled by contacting the mold 2 and forms a solidified layer 9 on the outer periphery. Then, the solidified layer 9 is formed by the support roll 11, the guide roll 12, the guide roll 13, and the drive roll 14. As a result, it is continuously pulled downward. During this drawing, the surface of the solidified layer 9 is cooled in the secondary cooling zone 4, the thickness of the unsolidified layer 8 inside the solidified layer 9 is reduced, solidification is completed at the solidification completion position 10, and the slab 7 is formed. Become.
[0017]
At this time, the solidification interface angle (θ) defined by the expression (1) is set to be 0.25 degrees or more based on the slab thickness (Do) and the distance (Le) from the meniscus 6 to the solidification completion position 10. And control the slab drawing speed and the secondary cooling strength.
tan θ = Do / (4 × Le) (1)
[0018]
For this purpose, it is necessary to know the distance (Le) from the meniscus 6 to the solidification completion position 10 in advance. Therefore, a theoretical calculation based on heat transfer analysis, or a stud filled with an Fe-S alloy or the like is cast near the solidification completion position 10 The distance (Le) is grasped for each condition of the secondary cooling strength and the slab drawing speed by, for example, measuring the thickness of the solidified shell by corroding the section including the studs with hydrochloric acid and corroding the cross section including the studs. Casting is performed at a secondary cooling strength and a slab drawing speed at which (θ) becomes 0.25 degrees or more.
[0019]
In addition, the above-mentioned solidification coefficient (K) is previously determined for each secondary cooling strength by heat transfer analysis or a driving method, and the distance (Le) is determined by the equation (1) to obtain a solidification interface angle (θ) of 0.1. The slab drawing speed (Vc) is calculated from the set distance (Le) and the obtained solidification coefficient (K) by equation (4) using the set distance (Le) and the solidification coefficient (K). Casting may be performed at the slab drawing speed (Vc) calculated under the determined secondary cooling strength conditions.
Vc ≦ [(2 × K) / Do] 2 × Le (4)
[0020]
By casting in this manner, bridging due to sedimented equiaxed crystals can be prevented, center segregation and zigzag at the axis of the slab are prevented beforehand, and high-quality large-section slabs for thick steel plates can be prevented. Can be manufactured stably.
[0021]
In the above description, the vertical type continuous casting machine has been described. However, the present invention is not limited to the vertical type continuous casting machine, and can be applied to a curved type continuous casting machine or a vertical bending type continuous casting machine. In the above description, the number of cooling zones in the secondary cooling zone 4 is four, but the number of cooling zones is not limited to four, and may be any number as long as it is 1 or 2 or more. It goes without saying that the arrangement and the number of the single guide rolls are not limited to the above.
[0022]
【Example】
Using a vertical continuous casting machine shown in FIG. 2 having a length of 41 m, the superheat degree of molten steel in the tundish was set to 35 ° C., the slab width was kept constant at 2100 mm, and the slab thickness was set to 250 mm, 300 mm, 400 mm, and 500 mm. Molten steel having a concentration of 0.15 wt% and one heat of 250 tons was subjected to a total of 48 heat test castings. The secondary cooling strength was 2.0 l / kg. steel (hereinafter referred to as "strong cooling casting") and a specific water amount of 0.8 l / kg. steel (hereinafter referred to as “weakly cooled casting”), and the slab drawing speed (Vc) is 350 to 1500 mm / min for strongly cooled casting and 250 to 1500 mm / min for weakly cooled casting. The solidification interface angle (θ) was obtained from the thickness (Do) and the distance (Le) from the meniscus to the solidification completion position by the equation (1).
[0023]
At that time, the distance (Le) from the meniscus to the solidification completion position in each casting was determined by heat transfer analysis. According to the heat transfer analysis, coagulation factor (K) is, 30.5 mm / min 1/2 in strong cooling casting, a 27.5 mm / min 1/2 in weak cooling casting. Further, in order to improve the center segregation of the slab, the guide roll interval of the light reduction zone was adjusted in each test casting so that the reduction speed at the end of solidification was 0.80 to 1.20 mm / min. A rotating magnetic field having a strength of 0.2 Tesla was applied in the mold so that the formation of equiaxed crystals was the same in each test casting. Table 1 shows the slab thickness (Do), the slab withdrawal speed (Vc), the distance from the meniscus to the solidification completion position (Le), and the solidification interface angle (θ) in each test casting.
[0024]
[Table 1]
Figure 0003570224
[0025]
Then, after casting, the center segregation of the slab and the zigzag of the slab axis were inspected, and the relationship between the solidification interface angle (θ) and the slab content was investigated. The center segregation is represented by a central portion in the slab width direction (hereinafter referred to as “W / 2 position”; W is the slab width) and a position 300 mm from the short side (hereinafter referred to as “W / 7 position”). From the above, 20 samples each of 5 mmφ including the slab shaft center were collected and analyzed for carbon, and the ratio (Ci / Ci) between the analysis value (Ci) and the carbon analysis value (Co) of the sample collected in the tundish was obtained. The average value of Co) was evaluated as the center segregation degree. Regarding the degree of center segregation, a value of 1.08 or less was regarded as acceptable, and a value exceeding 1.08 was regarded as unacceptable.
[0026]
Zaku of the slab shaft center portion, from the W / 2 position and the W / 7 position, a sample of width 10 mm × thickness 10 mm × casting direction length 200 mm from the slab shaft center portion is collected, and these samples are mirror-polished. The maximum opening width of the Zaku was evaluated as a Zaku index. A Zaku index of 1.5 mm or less was judged as acceptable, and a Zaku index exceeding 1.5 mm was judged as unacceptable. Table 2 shows the results of investigating the quality of the cast slab thus evaluated.
[0027]
[Table 2]
Figure 0003570224
[0028]
As shown in Table 2, at the W / 2 position, the center segregation was successful in all test castings, and the Zaku at the axial center was also No. The test casting was rejected only at 48, and all other test castings were passed. However, at the W / 7 position, the test casting in which the center segregation and the zigzag of the axial center portion were rejected occurred.
[0029]
FIG. 3 is a diagram showing the relationship between the solidification interface angle (θ) in the test casting of the deep cooling casting and the maximum opening width of the Zaku at the W / 7 position, where the solidification interface angle (θ) is 0.25. In the test casting at a temperature higher than or equal to the degree, the maximum opening width of Zaku was 1.5 mm or less, which was within the acceptable range. FIG. 4 is a diagram showing the relationship between the solidification interface angle (θ) in the test casting of the weak cooling casting and the maximum opening width of the Zaku at the W / 7 position. In the test casting in which θ) was 0.25 ° or more, the maximum opening width of Zaku was 1.5 mm or less, which was within the acceptable range. 3 and 4 that the smaller the solidification interface angle (θ), the larger the Zaku maximum opening width.
[0030]
A sample that passed both the center segregation and the zigzag at the center of the shaft was indicated by a circle in Table 2 as a pass in the overall evaluation. As described above, by setting the solidification interface angle θ to 0.25 degrees or more, center segregation and zigzag at the axial center are improved to a range where there is no problem in quality, and a high-quality large-section slab is stably manufactured. It became possible to do. In the remarks column of Table 2, test castings within the scope of the present invention were shown as examples, and other test castings were shown as comparative examples.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the center segregation of a slab and the backlash of a slab axis part are few, and the large-section slab for thick steel plates which is high quality can be manufactured stably, and the industrial effect is exceptional. is there.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the definition of a solidification interface angle based on a relationship between a distance from a meniscus and a solidification shell thickness.
FIG. 2 is a schematic view of a side cross section at a center position of a slab width of a vertical continuous casting machine having a rectangular slab section, showing an example of an embodiment of the present invention.
FIG. 3 is a diagram showing the results of an investigation on the relationship between the solidification interface angle and the maximum opening width of Zaku at the W / 7 position in high cooling casting.
FIG. 4 is a diagram showing the results of an investigation on the relationship between the solidification interface angle and the maximum Zaku opening width at the W / 7 position in weak cooling casting.
[Explanation of symbols]
Reference Signs List 1 tundish 2 mold 3 immersion nozzle 4 secondary cooling zone 5 molten steel 6 meniscus 7 slab 8 unsolidified layer 9 solidified layer 10 solidification completed position

Claims (2)

鋳片厚みが250mm以上で、鋳片幅が1500mm以上の厚鋼板用大断面鋳片の連続鋳造方法であって、鋳片引抜き速度と二次冷却強度とを制御して、鋳片厚みとメニスカスから凝固完了位置までの距離とで(1)式により定まる凝固界面角度を0.25度以上とすることを特徴とする厚鋼板用大断面鋳片の連続鋳造方法。
tan θ=Do/(4×Le)……(1)
但し、(1)式において各記号は以下を表すものである。
θ ;凝固界面角度(度)
Do;鋳片厚み(mm)
Le;メニスカスから凝固完了位置までの距離(mm)
A continuous casting method of a large-section slab for a thick steel plate having a slab thickness of 250 mm or more and a slab width of 1500 mm or more, wherein the slab drawing speed and the secondary cooling strength are controlled to obtain a slab thickness and a meniscus. Wherein the solidification interface angle determined by the formula (1) from the distance from the solidification completion position to the solidification completion position is 0.25 degrees or more.
tan θ = Do / (4 × Le) (1)
However, in the formula (1), each symbol represents the following.
θ: solidification interface angle (degree)
Do; slab thickness (mm)
Le: Distance from meniscus to solidification completion position (mm)
垂直型連続鋳造機により鋳造することを特徴とする請求項1に記載の厚鋼板用大断面鋳片の連続鋳造方法。The continuous casting method of a large-section cast piece for a thick steel plate according to claim 1, wherein the casting is performed by a vertical continuous casting machine.
JP18319098A 1998-06-30 1998-06-30 Continuous casting method for large section slabs for thick steel plates Expired - Fee Related JP3570224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18319098A JP3570224B2 (en) 1998-06-30 1998-06-30 Continuous casting method for large section slabs for thick steel plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18319098A JP3570224B2 (en) 1998-06-30 1998-06-30 Continuous casting method for large section slabs for thick steel plates

Publications (2)

Publication Number Publication Date
JP2000015397A JP2000015397A (en) 2000-01-18
JP3570224B2 true JP3570224B2 (en) 2004-09-29

Family

ID=16131356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18319098A Expired - Fee Related JP3570224B2 (en) 1998-06-30 1998-06-30 Continuous casting method for large section slabs for thick steel plates

Country Status (1)

Country Link
JP (1) JP3570224B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100335400C (en) * 2003-06-05 2007-09-05 三菱电机株式会社 Hoister and motor for elevator
JP4757661B2 (en) * 2006-02-28 2011-08-24 新日本製鐵株式会社 Vertical continuous casting method for large section slabs for thick steel plates

Also Published As

Publication number Publication date
JP2000015397A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
KR100432092B1 (en) How to cast steel strips
KR100462913B1 (en) Continuous casting billet and production method therefor
CN112743053B (en) Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
JP3570224B2 (en) Continuous casting method for large section slabs for thick steel plates
JP3119203B2 (en) Unsolidified rolling method of slab
JP3570225B2 (en) Continuous casting method for large section slabs for thick steel plates
JP3125664B2 (en) Continuous casting method of ultra low carbon steel slab
US4298050A (en) Process for continuous casting of a slightly deoxidized steel slab
JP2937707B2 (en) Steel continuous casting method
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JPH11285788A (en) Method for continuously casting large cross sectional cast bloom for thick steel plate
JP4422362B2 (en) Method for producing a slab having a fine solidified structure
JP4654554B2 (en) Steel continuous casting method
JP4592974B2 (en) Continuous casting method of molten steel for non-oriented electrical steel sheet and slab for non-oriented electrical steel sheet
RU2790333C1 (en) Method for production of thin microcrystal wide tapes of stainless nickel chromium steel of austenite grade by melt spinning
JP4250008B2 (en) Manufacturing method of steel for strip steel
JP4081218B2 (en) Continuous casting method
CN117463965A (en) Segregation control process for high-carbon steel continuous casting blank
JPH09285855A (en) Manufacture of ni containing steel
CN116669880A (en) Continuous casting method of steel
JP2000000638A (en) Method for continuously casting billet
JP4469092B2 (en) Slab with fine solidification structure
CN115634932A (en) Production method of 310S heat-resistant stainless steel pipe blank
JP2000334559A (en) Method for continuously casting steel excellent in quality
JPH0673727B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees