JP4469092B2 - Slab with fine solidification structure - Google Patents

Slab with fine solidification structure Download PDF

Info

Publication number
JP4469092B2
JP4469092B2 JP2001002650A JP2001002650A JP4469092B2 JP 4469092 B2 JP4469092 B2 JP 4469092B2 JP 2001002650 A JP2001002650 A JP 2001002650A JP 2001002650 A JP2001002650 A JP 2001002650A JP 4469092 B2 JP4469092 B2 JP 4469092B2
Authority
JP
Japan
Prior art keywords
molten steel
slab
mass
solidified
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001002650A
Other languages
Japanese (ja)
Other versions
JP2002205146A (en
Inventor
隆 諸星
昌文 瀬々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001002650A priority Critical patent/JP4469092B2/en
Publication of JP2002205146A publication Critical patent/JP2002205146A/en
Application granted granted Critical
Publication of JP4469092B2 publication Critical patent/JP4469092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶鋼中にMgSを安定して形成し、微細な凝固組織を備え、鋳片の内部に発生する割れや中心偏析、センターポロシティ等の欠陥の無い微細な凝固組織を備えた鋳片に関する。
【0002】
【従来の技術】
従来、鋳片は、溶鋼から造塊法や連続鋳造法により、スラブ、ブルーム、ビレット、薄鋳片等を鋳造し、これを所定のサイズに切断して製造している。
また、鋼材は、前記の鋳片を加熱炉等を用いて加熱した後に、粗圧延や仕上げ圧延等を施すことにより、鋼板や形鋼等に加工される。
この鋳片は、溶鋼を鋳造してから凝固させることで製造するため、凝固過程において、冷却や凝固収縮の不均一等により表面に割れ等の表面欠陥が生じたり、内部の凝固収縮時の負圧に起因するセンターポロシティ(ザク)、バルジングや前記凝固収縮時の負圧に起因する中心偏析、あるいはバルジング等凝固途中に凝固シェル(凝固殻)に加わる歪みに起因する内部割れ等の内部欠陥が生じる。
こうして、鋳片に発生した内部欠陥は、圧延後も鋼板や形鋼等の鋼材に残存して、鋼材の品質が低下したり、場合によっては製品として使用できない(屑化)等の問題が生じる。
この対策として、鋳片の凝固組織を微細な等軸晶にし、鋳片に発生する内部欠陥を防止することが試みられている。
鋳片の凝固組織を等軸晶(微細)化する方法としては、1)溶鋼の温度を低くして低温鋳造する方法、2)凝固過程の溶鋼を電磁攪拌する方法、3)溶鋼が凝固する際に凝固核となる金属や酸化物を添加する、又は、これ等1)〜3)を組合せて行う方法が知られている。
低温鋳造の具体例としては、例えば特公平7−84617号公報に記載されているように、溶鋼を連続鋳造する際に、過熱温度(実際の溶鋼温度からこの溶鋼の液相線温度を差し引いた温度)を40℃以下にして鋳型内で冷却しながら引き抜きを行って、凝固した鋳片の等軸晶の割合を70%以上にして、フェライト系ステンレス鋼板に発生するリジングを防止する方法が行われている。
更に、溶鋼の電磁攪拌については、特開昭50−16616号公報に記載されているように、凝固過程の溶鋼に電磁攪拌を行って、成長する柱状晶を抑制することにより、鋳片の凝固組織の等軸晶を60%以上にしてクロムを含むフェライト系ステンレス鋼に発生するリジングを防止する方法が行われている。
また、特開昭53−90129号公報に記載されているように、溶鋼が凝固する際に接種核(凝固核)となる金属酸化物の添加と電磁攪拌を組合せて、鋳片の厚み方向の全断面の凝固組織を殆ど等軸晶にする方法が行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、特公平7−84617号公報に記載された方法では、過熱温度が低いため、鋳造途中で溶鋼が凝固し、注湯に用いるノズルの詰まりが生じたり、また、鋳型内湯面に皮張りを生じて鋳造が困難になる。
更に、溶鋼の粘性が増加するため、介在物の浮上が阻害され、介在物に起因した欠陥等が発生するなどから、十分な等軸晶を備えた鋳片ができる程の低い過熱温度にすることが困難となる。
また、特開昭50−16616号公報に記載された方法では、鋳片の表面層の凝固組織を改善してリジング等の表面欠陥の発生を抑制できるが、鋳片の表面層から内部にわたって凝固組織を微細にすることが難しく、内部に割れや中心偏析、センターポロシティ等が発生する場合がある。
この鋳片の内部の凝固組織を改善するため、電磁攪拌装置を多段に配置して、内部の溶鋼を攪拌することも考えられるが、設備制約から設置そのものが困難であり、しかも、多大の設備費用を伴う等の問題がある。
更に、特開昭53−90129号公報に記載された方法では、溶鋼が凝固する際に接種核(凝固核)として作用する酸化物等を鋳型内に添加しているが、鋼種によって酸化物の種類やその量が異なり、溶鋼が凝固した鋳片の等軸晶(微細組織)化を図ることができない。しかも、如何なる種類の凝固核を用いれば微細組織を備えた鋳片を安定して製造することができるか明確でない。
しかも、電磁攪拌を併用しても、特開昭50−16616号公報に記載された方法と同様に設置そのものが困難であり、しかも、多大の設備費用を伴う等の問題がある。
特に、炭素含有量の多い溶鋼(高炭素溶鋼)を用いて鋳片を製造する際に、如何なる種類の凝固核を用いれば良いか、更に、その添加条件をどのようにすれば微細な凝固組織を有する鋳片にすることができ、しかも、低コストで工業的に生産することが可能であるか明確でなかった。
【0004】
本発明はかかる事情に鑑みてなされたもので、炭素を多く含む溶鋼中に凝固核を安定して形成し、凝固組織を微細にして内部割れや中心偏析、センターポロシティ等の内部欠陥の無い微細な凝固組織を備えた鋳片を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明の微細な凝固組織を備えた鋳片は、凝固初晶がγ−Fe(γ相)であり炭素量が0.5質量%以上の溶鋼に、下式を満たすMg合金を添加して凝固させる。
〔%Mg〕≧(4×10-5)/〔%S〕+1.5×〔%T・O〕
ここで、〔%Mg〕は溶鋼中のMg質量%、〔%S〕は溶鋼中のS質量%、〔%T・O〕は溶鋼中の総酸素質量%を表す(ただし、〔%T・O〕は、0.0020質量%以下の場合を除く)
これにより、溶鋼中に含まれる酸素量及びS濃度に応じてMg合金を添加するので、溶鋼中にMgとSが結合した接種核(凝固核)として作用するMgSを十分に生成させることができる。なお、ここでMg合金とは、金属Mg、又はMgを含む合金をいう。
また、炭素量が0.5質量%以上の高炭素溶鋼とすることにより、中心偏析、センターポロシティ等の発生し易い溶鋼に、凝固核として有効なMgSが生成するので、凝固組織の微細化を図ることができる。なお、炭素量が0.5質量%未満になると、Mgを添加して溶鋼中にMgSを生成しても凝固組織を微細にすることができない。
【0006】
更に、前記溶鋼は、連続鋳造によって凝固させると良い。
鋳型内の一次冷却と鋳型下方での散水による二次冷却によって凝固させるので、凝固核の生成を促進し、この凝固核を起点にして溶鋼を凝固させることができる。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
通常溶鋼を凝固させて鋳片を製造する場合、表層部の凝固組織は、最表層に極薄いチル晶と、このチル晶の内側に大きな結晶組織の柱状晶を備えている。
更に、内部は、表層部で形成された柱状晶が緩慢な冷却に伴って成長し、粗大柱状晶が形成され、内部割れ、センターポロシティ(ザク)や中心偏析等の内部欠陥が生じ易い。
この内部欠陥を防止するために、Mg合金を溶鋼中に添加し、生成させたMgSを凝固核として作用させ、微細な凝固組織の鋳片を製造することが行われている。
しかし、高炭素濃度の溶鋼にMg合金を添加した際に、溶鋼中のMgの量が増加したにも係わらず、鋳片の凝固組織を微細にできない場合があることが判った。そこで、添加したMgを高い歩留りで溶鋼中に維持させ、しかも、有効な凝固核を生成する条件について鋭意研究を行った結果、溶鋼中に含まれる総酸素(T・O)と硫黄(S)に極めて関連性があることを知見し、本発明の完成に至った。図1は本発明の一実施の形態に係る微細な凝固組織を備えた鋳片の製造に適用する連続鋳造装置の全体断面図、図2は0.8%C鋼の等軸晶率とMg、S、総酸素量の関係を表すグラフである。
図1に示すように、本発明の一実施の形態に係る微細な凝固組織を備えた鋳片の製造に適用する連続鋳造装置10は、タンディッシュ11に貯湯された溶鋼12を浸漬ノズル13から鋳型14に注湯し、鋳型14の冷却により溶鋼12を凝固させながら、支持セグメント15に設けた図示しない冷却水ノズルから冷却水を散水し、凝固した鋳片16を圧下セグメント17により圧下してからピンチロール18により引き抜き、引き抜いた鋳片16は所定の長さに図示しない切断装置で切断される。
【0009】
次に、本発明の一実施の形態に係る微細な凝固組織を備えた鋳片について説明する。
予め取鍋等でMg合金の一例である金属Mgを添加した炭素濃度が0.5質量%以上の溶鋼12を、タンディッシュ11に設けた浸漬ノズル13から鋳型14に注湯する。
そして、鋳型14により冷却され、凝固殻を形成して鋳片16となり、更に、支持セグメント15の下流側に進むにつれて、支持セグメント15に付設した冷却水ノズルからの散水によって抜熱される。そして、鋳片16は、順次凝固殻の厚みを増しながらピンチロール28により引き抜かれ、途中で圧下セグメント17により圧下されてから完全に凝固する。
図2に示すように、例えば、溶鋼中の総酸素質量%〔%T・O〕が0.0010質量%の場合、金属Mgの量即ち、溶鋼中のMg質量%〔%Mg〕が比較的低くても80%以上の等軸晶率(図中●印で示す)が得られる。
しかし、総酸素質量%〔%T・O〕が0.0050質量%の場合及び総酸素質量%〔%T・O〕が0.0100質量%の場合では、Mg質量%〔%Mg〕を総酸素質量%〔%T・O〕の増加量に応じて高くすることにより、目標の等軸晶率(図中▲印、■印で示す)が得られる。
しかし、溶鋼中の総酸素質量%〔%T・O〕が0.0010質量%の場合、Mg質量%〔%Mg〕が同じで、溶鋼中のS質量%〔%S〕が低い(図中○印で示す)と、溶鋼中にMgSが生成されにくくなり目標の等軸晶率が得られない。同様に、溶鋼中の総酸素質量%〔%T・O〕が0.0100質量%の場合、総酸素質量%〔%T・O〕が0.0050質量%の場合も、Mg質量%〔%Mg〕が同じでS質量%〔%S〕が低い(図中□印、△印で示す)と、いずれも目標の等軸晶率が得られない。
これは、溶鋼に添加した金属Mgが、溶鋼12中に含まれるフリー酸素(O)と結びついたり、SiO2、MnO、Al23等を還元して、金属MgがMg酸化物(MgO、MgO・Al23)となり、スラグ中へ吸収されたり、また、例え溶鋼12中に残留しても凝固初晶であるγ−Fe(γ相)の凝固核として作用しなくなるためである。
【0010】
従って、鋳片16の凝固組織の粗大化を防止し、前述した内部割れ、センターポロシティ(ザク)や中心偏析等の内部欠陥の発生を抑制するには、溶鋼中の総酸素質量%〔%T・O〕と溶鋼中のS質量%〔%S〕に応じて、溶鋼に添加するMg質量%〔%Mg〕を調整することが必要である。
即ち、下記式を満たす条件で、金属Mgを添加することにより、溶鋼中にMgを残留させることができ、通常0.005〜0.030質量%程度含まれているS(硫黄)と金属Mgを接触させ、MgSを形成することができる。
〔%Mg〕≧(4×10-5)/〔%S〕+1.5×〔%T・O〕
なお、(4×10-5)は、溶鋼におけるMgとSの溶解度積であり、〔%Mg〕×〔%S〕を(4×10-5)以上にする必要があり、この値が低いと、溶鋼の凝固前にMgSが生成せず、溶鋼の凝固時に接種核として作用するMgSが不足する。
更に、Mgは溶鋼中のOと反応してMgOを生成して1.5倍の〔%T・O〕に見合う量が消費されるので、1.5×〔%T・O〕以上のMgを添加しないと、溶鋼中にMgSが生成できず、溶鋼の凝固組織を微細にすることができない。
このMgSは、凝固初晶のγ−Feとの格子歪が7%以下であり、溶鋼12が凝固する際に、凝固核として作用するので、この凝固核を起点に凝固が開始される。
また、凝固核として有効なMgSを形成するMg合金としては、上記した金属Mg、Si−Mg、Ni−Mg等を単体あるいは組み合わせて添加することができる。この場合、合金中のMg量を求め、Mg質量%とする。
なお、MgSとγ−Feとの格子歪は、溶鋼12の凝固初晶であるγ−Feの格子定数と接種核として利用する介在物(硫化物、酸化物)の格子定数の差を溶鋼12の凝固初晶のγ−Feの格子定数で除した値であり、この値が小さい程凝固核(接種核)として有効であることを示している。
【0011】
このようにして、溶鋼12が鋳型14及び支持セグメント15に設けた図示しない冷却水ノズルからの散水等により凝固する際、溶鋼中に分散したMgSが凝固核となり、この凝固核を起点に溶鋼12の結晶の形成が促進されるので、鋳片16を微細な凝固組織にすることができる。
鋳造された鋳片16は、表層部から内部にいたる全断面の凝固組織をより微細(等軸晶)で、且つ均一なものにでき、内部の割れ等の発生が少なく、内部の溶鋼12の供給不足に起因するセンターポロシティや中心偏析等の内部欠陥の発生も防止でき、しかも、凝固組織が微細な鋳片16は、良好な加工特性を備えている。
そして、鋳造された鋳片16は、ピンチロール18により引き抜かれて、図示しない切断機により所定のサイズに切断されてから圧延等の後工程に搬送される。
【0012】
ここで、等軸晶とは、溶鋼12が凝固する際の溶鋼12の溶質成分の固液分配に起因するミクロ偏析を境界とする凝固組織単位を1個の等軸晶組織としたものである。また、等軸晶率とは、凝固した鋳片16の厚み方向の断面が出るように切断し、その断面を研磨してから、例えばピクリン酸を用いてミクロ偏析の境界のエッチングを行い、この組織を1〜10倍に拡大して観察し、鋳片16の断面に対する等軸晶(全等軸晶組織)の比率を求めたものである。
更に、等軸晶率は、ミクロ偏析の境界をエッチングを行なった後、組織を撮像し、この画像を画像処理することにより求めることができる。
【0013】
【実施例】
次に、本発明の一実施例に係る微細な凝固組織を備えた鋳片について説明する。凝固初晶がγ−Feであり炭素濃度が0.8質量%の軌条用高炭素溶鋼に、溶鋼中の総酸素質量%〔%T・O〕、溶鋼中のS質量%〔%S〕、金属Mgの添加量を調整して溶鋼中のMg質量%〔%Mg〕を変化させ、連続鋳造により鋳片を製造した。そして、鋳片断面の凝固組織をもとに等軸晶率を調査した。その結果を表1に示す。
実施例1は、炭素濃度が0.8質量%の高炭素溶鋼を用い、〔%T・O〕を0.0021質量%、〔%S〕を0.0081質量%とし、〔%Mg〕を0.0088質量%にした場合であり、等軸晶率を83%にすることができた。
実施例2は、〔%T・O〕を0.0049質量%、〔%S〕を0.0079質量%とし、〔%Mg〕を0.0127質量%にした場合であり、等軸晶率を87%にすることができた。
実施例3は、〔%S〕がさらに高い場合であるが、〔%Mg〕を0.0105質量%に調整することで、等軸晶率を86%にできた。
更に、実施例1〜3の鋳片は、いずれも凝固組織が微細になり、内部の割れやセンターポロシティ、中心偏析等の内部欠陥が見られなかった。
【0014】
【表1】

Figure 0004469092
【0015】
これに対し、比較例1〜3は、〔%T・O〕と〔%S〕から決まる〔%Mg〕がいずれも本発明の範囲を満足しない場合であり、等軸晶率がそれぞれ10%、18%、17%と低くなった。その結果、鋳片の凝固組織が粗大になり、内部の割れやセンターポロシティ、中心偏析等の内部欠陥の発生が生じた。
【0016】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、Mgの添加方法は、金属Mg、又はMg合金等を溶鋼12に直接添加する方法か、あるいは金属MgやMg合金等を薄鋼で覆った線状に加工したワイヤーを連続的に供給する方法を用いることができる。
更に、Mgを添加した溶鋼を、低温鋳造や電磁攪拌あるいはこれ等を組合せて鋳造することもできる。
また、鋳片16は、連続鋳造の他に、造塊法やベルトキャスター、ロール等の鋳造法により鋳造することができる。
【0017】
【発明の効果】
請求項1、2記載の微細な凝固組織を備えた鋳片は、凝固初晶がγ−Feである溶鋼に、所定量のMg合金を添加して凝固させているので、凝固核として有効なMgSを溶鋼中に生成させ、鋳片の凝固組織を微細にし、内部割れや中心偏析、センターポロシティ等の内部欠陥を防止して鋳片の品質を向上することができる。
また、溶鋼に、炭素量が0.5質量%以上の高炭素溶鋼を用いるので、鋳片の凝固組織の微細化が図れ、中心偏析、センターポロシティ等の発生を確実に防止することができ、製品品質をより向上させることができる。
【0018】
特に、請求項2記載の微細な凝固組織を備えた鋳片は、溶鋼を連続鋳造によって凝固させるので、凝固核となるMgSの生成を促進させ、鋳片を微細な凝固組織にすることができるため、鋳片の品質をより向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る凝固組織を備えた鋳片の製造方法を適用する連続鋳造装置の全体断面図である。
【図2】0.8%C鋼の等軸晶率とMg、S、総酸素量の関係を表すグラフである。
【符号の説明】
10:連続鋳造装置、11:タンディッシュ、12:溶鋼、13:浸漬ノズル、14:鋳型、15:支持セグメント、16:鋳片、17:圧下セグメント、18:ピンチロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a slab comprising MgS stably formed in molten steel, having a fine solidified structure, and having a fine solidified structure free from defects such as cracks, central segregation, and center porosity generated inside the slab. About.
[0002]
[Prior art]
Conventionally, slabs are manufactured by casting slabs, blooms, billets, thin slabs and the like from molten steel by an ingot-making method or a continuous casting method and cutting them into a predetermined size.
Moreover, after heating the said slab using a heating furnace etc., steel materials are processed into a steel plate, a shape steel, etc. by performing rough rolling, finish rolling, etc.
Since this slab is manufactured by casting the molten steel and then solidifying it, surface defects such as cracks may occur on the surface due to cooling and non-uniformity of solidification shrinkage during the solidification process, and negative effects during internal solidification shrinkage may occur. Internal defects such as center porosity (Zaku) due to pressure, central segregation due to bulging and negative pressure during solidification shrinkage, or internal cracks due to strain applied to the solidified shell (solidified shell) during solidification such as bulging Arise.
Thus, the internal defects generated in the slab remain in the steel material such as the steel plate and the shape steel even after rolling, resulting in a problem that the quality of the steel material is deteriorated and in some cases cannot be used as a product (scraping). .
As a countermeasure, attempts have been made to prevent the internal defects generated in the slab by making the solidified structure of the slab a fine equiaxed crystal.
As a method of making the solidification structure of the slabs equiaxed (fine), 1) a method of lowering the temperature of the molten steel and casting at a low temperature, 2) a method of electromagnetically stirring the molten steel in the solidification process, and 3) the molten steel solidifies. At this time, a method of adding a metal or an oxide which becomes a solidification nucleus or combining these 1) to 3) is known.
As a specific example of low temperature casting, for example, as described in Japanese Patent Publication No. 7-84617, when continuously casting the molten steel, the superheated temperature (the liquidus temperature of the molten steel is subtracted from the actual molten steel temperature). A method of preventing ridging that occurs in ferritic stainless steel sheets is performed by pulling while cooling in the mold at a temperature of 40 ° C. or less, and setting the ratio of equiaxed crystals in the solidified slab to 70% or more. It has been broken.
Further, regarding electromagnetic stirring of molten steel, as described in JP-A-50-16616, the molten steel in the solidification process is subjected to electromagnetic stirring to suppress the growing columnar crystals, thereby solidifying the slab. A method for preventing ridging that occurs in ferritic stainless steel containing chromium by setting the equiaxed crystal of the structure to 60% or more has been performed.
Further, as described in JP-A-53-90129, the addition of a metal oxide that becomes an inoculation nucleus (solidification nucleus) when molten steel solidifies and electromagnetic stirring are combined to increase the thickness of the slab. A method of making the solidification structure of the entire cross section almost equiaxed has been performed.
[0003]
[Problems to be solved by the invention]
However, in the method described in Japanese Patent Publication No. 7-84617, since the superheating temperature is low, the molten steel is solidified during casting, the nozzle used for pouring is clogged, and the surface of the molten metal in the mold is covered with skin. As a result, casting becomes difficult.
Furthermore, since the viscosity of the molten steel increases, the floating of inclusions is hindered, and defects due to the inclusions are generated. Therefore, the superheating temperature is set low enough to produce a slab with sufficient equiaxed crystals. It becomes difficult.
Further, according to the method described in Japanese Patent Laid-Open No. 50-16616, the solidification structure of the surface layer of the slab can be improved to suppress the generation of surface defects such as ridging. It is difficult to make the structure fine, and cracks, center segregation, center porosity, etc. may occur inside.
In order to improve the solidification structure inside this slab, it is possible to arrange the electromagnetic stirrer in multiple stages and stir the molten steel inside, but it is difficult to install due to equipment restrictions, and a lot of equipment There are problems such as costs.
Furthermore, in the method described in JP-A-53-90129, an oxide or the like that acts as an inoculation nucleus (solidification nucleus) when the molten steel solidifies is added to the mold. The types and amounts thereof are different, and it is impossible to achieve equiaxed crystal (microstructure) of the slab solidified by molten steel. Moreover, it is not clear what kind of solidification nucleus can be used to stably produce a slab having a fine structure.
Moreover, even when electromagnetic stirring is used in combination, the installation itself is difficult as in the method described in Japanese Patent Laid-Open No. 50-16616, and there are problems such as enormous equipment costs.
In particular, when producing slabs using molten steel with a high carbon content (high carbon molten steel), what kind of solidification nuclei should be used, and how the addition conditions should be finely solidified Moreover, it was not clear whether it was possible to produce industrially at low cost.
[0004]
The present invention has been made in view of such circumstances, stably forming solidification nuclei in molten steel containing a large amount of carbon, making the solidification structure fine, and having no internal defects such as internal cracks, center segregation, and center porosity. An object of the present invention is to provide a slab having a solidified structure.
[0005]
[Means for Solving the Problems]
Slab having a fine solidification structure of the present invention along the object, coagulation primary crystals gamma-Fe (gamma phase) der Ri carbon content in the molten steel more than 0.5 wt%, satisfying the formula Mg Add alloy to solidify.
[% Mg] ≧ (4 × 10 −5 ) / [% S] + 1.5 × [% T · O]
Here, [% Mg] represents the Mg mass% in the molten steel, [% S] represents the S mass% in the molten steel, and [% T · O] represents the total oxygen mass% in the molten steel (provided that [% T · O] excludes the case of 0.0020% by mass or less) .
Thereby, since Mg alloy is added according to the amount of oxygen contained in molten steel and S concentration, MgS which acts as an inoculation nucleus (solidification nucleus) which Mg and S couple | bonded in molten steel can fully be produced | generated. . Here, the Mg alloy refers to metal Mg or an alloy containing Mg.
In addition, by making high-carbon molten steel with a carbon content of 0.5% by mass or more, MgS effective as solidification nuclei is produced in molten steel that is susceptible to center segregation, center porosity, etc. Can be planned. When the carbon content is less than 0.5% by mass, the solidification structure cannot be made fine even if Mg is added to produce MgS in the molten steel.
[0006]
Furthermore, the molten steel is preferably solidified by continuous casting.
Since it is solidified by primary cooling in the mold and secondary cooling by sprinkling under the mold, the formation of solidification nuclei can be promoted, and the molten steel can be solidified starting from the solidification nuclei.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Usually, when producing a slab by solidifying molten steel, the solidified structure of the surface layer portion includes an extremely thin chill crystal on the outermost layer and a columnar crystal having a large crystal structure inside the chill crystal.
In addition, the columnar crystals formed in the surface layer portion grow with slow cooling to form coarse columnar crystals, and internal defects such as internal cracks, center porosity (zaku), and center segregation are likely to occur.
In order to prevent this internal defect, an Mg alloy is added to molten steel, and the produced MgS is made to act as a solidification nucleus to produce a slab having a fine solidified structure.
However, it has been found that when an Mg alloy is added to molten steel with a high carbon concentration, the solidification structure of the slab may not be made fine despite the increase in the amount of Mg in the molten steel. Therefore, as a result of earnest research on the conditions for generating added solidified nuclei while maintaining the added Mg in the molten steel at a high yield, total oxygen (T · O) and sulfur (S) contained in the molten steel Has been found to be extremely relevant, and the present invention has been completed. FIG. 1 is an overall cross-sectional view of a continuous casting apparatus applied to manufacture of a slab having a fine solidified structure according to an embodiment of the present invention, and FIG. 2 is an equiaxed crystal ratio and Mg of 0.8% C steel. , S is a graph showing the relationship between the total oxygen amount.
As shown in FIG. 1, a continuous casting apparatus 10 applied to manufacture of a slab having a fine solidified structure according to an embodiment of the present invention uses molten steel 12 stored in a tundish 11 from an immersion nozzle 13. While pouring into the mold 14 and solidifying the molten steel 12 by cooling the mold 14, cooling water is sprinkled from a cooling water nozzle (not shown) provided in the support segment 15, and the solidified slab 16 is pressed down by the reduction segment 17. The slab 16 pulled out by the pinch roll 18 is cut to a predetermined length by a cutting device (not shown).
[0009]
Next, a slab provided with a fine solidified structure according to an embodiment of the present invention will be described.
Molten steel 12 having a carbon concentration of 0.5 mass % or more to which metal Mg, which is an example of an Mg alloy, is added in advance using a ladle or the like is poured into a mold 14 from an immersion nozzle 13 provided in the tundish 11.
And it cools with the casting_mold | template 14, forms a solidified shell, becomes the slab 16, and is further heat-removed by the water spray from the cooling water nozzle attached to the support segment 15 as it goes downstream of the support segment 15. The slab 16 is sequentially pulled out by the pinch roll 28 while increasing the thickness of the solidified shell, and is completely solidified after being squeezed by the squeezing segment 17 on the way.
As shown in FIG. 2, for example, when the total oxygen mass % [% T · O] in molten steel is 0.0010 mass %, the amount of metallic Mg, that is, Mg mass % [% Mg] in molten steel is relatively An equiaxed crystal ratio of 80% or more (indicated by a black circle in the figure) can be obtained even at the lowest.
However, when the total oxygen mass % [% T · O] is 0.0050 mass % and the total oxygen mass % [% T · O] is 0.0100 mass %, the Mg mass % [% Mg] is By increasing the oxygen mass % [% T · O] according to the increase amount, the target equiaxed crystal ratio (indicated by ▲ and ■ in the figure) can be obtained.
However, when the total oxygen mass % [% T · O] in the molten steel is 0.0010 mass %, the Mg mass % [% Mg] is the same and the S mass % [% S] in the molten steel is low (in the figure). When indicated by a circle, MgS is difficult to be generated in the molten steel, and the target equiaxed crystal ratio cannot be obtained. Similarly, when the total oxygen mass % [% T · O] in the molten steel is 0.0100 mass %, the total oxygen mass % [% T · O] is 0.0050 mass %, and the Mg mass % [% When Mg] is the same and S mass % [% S] is low (indicated by □ and Δ in the figure), the target equiaxed crystal ratio cannot be obtained.
This is because the metal Mg added to the molten steel is combined with free oxygen (O) contained in the molten steel 12, or SiO 2 , MnO, Al 2 O 3 or the like is reduced, so that the metal Mg becomes Mg oxide (MgO, This is because MgO.Al 2 O 3 ) is absorbed into the slag, and even if it remains in the molten steel 12, it does not act as a solidification nucleus of γ-Fe (γ phase) that is a solidification primary crystal.
[0010]
Therefore, in order to prevent the solidification structure of the slab 16 from becoming coarse and to suppress the occurrence of internal defects such as internal cracks, center porosity (zaku) and center segregation, the total oxygen mass % in molten steel [% T It is necessary to adjust Mg mass % [% Mg] added to the molten steel according to O] and S mass % [% S] in the molten steel.
That is, by adding metal Mg under the conditions satisfying the following formula, Mg can be left in the molten steel, and usually S (sulfur) and metal Mg contained in an amount of about 0.005 to 0.030 mass %. To form MgS.
[% Mg] ≧ (4 × 10 −5 ) / [% S] + 1.5 × [% T · O]
(4 × 10 −5 ) is the solubility product of Mg and S in the molten steel, and it is necessary to set [% Mg] × [% S] to (4 × 10 −5 ) or more, which is low. And MgS is not produced | generated before solidification of molten steel, but MgS which acts as an inoculation nucleus at the time of solidification of molten steel is insufficient.
Further, Mg reacts with O in the molten steel to produce MgO, which consumes 1.5 times the amount corresponding to [% T · O], so that 1.5 × [% T · O] or more Mg Without addition of MgS, MgS cannot be generated in the molten steel, and the solidified structure of the molten steel cannot be made fine.
This MgS has a lattice strain of 7% or less with the solidified primary crystal γ-Fe and acts as a solidified nucleus when the molten steel 12 solidifies, so that solidification starts from this solidified nucleus.
Further, as the Mg alloy that forms MgS effective as solidification nuclei, the above-described metals Mg, Si—Mg, Ni—Mg, and the like can be added alone or in combination. In this case, the amount of Mg in the alloy is determined and is Mg mass %.
The lattice strain between MgS and γ-Fe is the difference between the lattice constant of γ-Fe, which is the solidification primary crystal of molten steel 12, and the lattice constant of inclusions (sulfides, oxides) used as seed nuclei. The value is divided by the lattice constant of γ-Fe of the solidified primary crystal, and the smaller this value, the more effective the solidified nucleus (inoculated nucleus).
[0011]
Thus, when the molten steel 12 is solidified by sprinkling or the like from a cooling water nozzle (not shown) provided in the mold 14 and the support segment 15, the MgS dispersed in the molten steel becomes a solidified nucleus, and the molten steel 12 starts from this solidified nucleus. Therefore, the slab 16 can be made into a fine solidified structure.
The cast slab 16 can make the solidified structure of the entire cross-section from the surface layer portion to the inside finer (equal axis) and uniform, less likely to cause internal cracks, and the like. The occurrence of internal defects such as center porosity and center segregation due to insufficient supply can be prevented, and the slab 16 having a fine solidified structure has good processing characteristics.
The cast slab 16 is pulled out by a pinch roll 18 and cut into a predetermined size by a cutting machine (not shown), and then conveyed to a subsequent process such as rolling.
[0012]
Here, the equiaxed crystal is one equiaxed crystal structure in which a solidified structure unit is defined by a microsegregation caused by solid-liquid distribution of a solute component of the molten steel 12 when the molten steel 12 is solidified. . In addition, the equiaxed crystal ratio means that the solidified slab 16 is cut so that a cross section in the thickness direction is obtained, the cross section is polished, and then the boundary of microsegregation is etched using, for example, picric acid. The structure was observed by enlarging it 1 to 10 times, and the ratio of equiaxed crystal (total equiaxed crystal structure) to the cross section of the slab 16 was obtained.
Further, the equiaxed crystal ratio can be obtained by etching the boundary of micro-segregation, imaging the structure, and processing the image.
[0013]
【Example】
Next, a slab provided with a fine solidified structure according to an embodiment of the present invention will be described. In the high carbon molten steel for rails whose solidification primary crystal is γ-Fe and the carbon concentration is 0.8 mass %, the total oxygen mass % [% T · O] in the molten steel, S mass % [% S] in the molten steel, The amount of Mg metal was adjusted to change the Mg mass % [% Mg] in the molten steel, and a slab was produced by continuous casting. And the equiaxed crystal ratio was investigated based on the solidification structure of the slab cross section. The results are shown in Table 1.
Example 1 uses a high carbon molten steel having a carbon concentration of 0.8% by mass , [% T · O] is 0.0021% by mass , [% S] is 0.0081% by mass , and [% Mg] is a case where the 0.0088 wt%, it was possible to equiaxed Akiraritsu 83%.
Example 2 is a case where [% T · O] is 0.0049 mass %, [% S] is 0.0079 mass %, and [% Mg] is 0.0127 mass %. Was 87%.
In Example 3, [% S] is even higher, but by adjusting [% Mg] to 0.0105% by mass , the equiaxed crystal ratio could be made 86%.
Furthermore, the slabs of Examples 1 to 3 each had a fine solidified structure, and internal defects such as internal cracks, center porosity, and center segregation were not observed.
[0014]
[Table 1]
Figure 0004469092
[0015]
In contrast, Comparative Examples 1 to 3 are cases in which [% Mg] determined from [% T · O] and [% S] does not satisfy the scope of the present invention, and the equiaxed crystal ratio is 10%. 18% and 17%. As a result, the solidified structure of the slab became coarse, and internal defects such as internal cracks, center porosity, and center segregation occurred.
[0016]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, the addition method of Mg is a method of directly adding metal Mg or Mg alloy or the like to the molten steel 12 or continuously supplying a wire processed into a wire in which metal Mg or Mg alloy or the like is covered with thin steel. The method can be used.
Further, molten steel to which Mg is added can be cast by combining low temperature casting, electromagnetic stirring, or the like.
The slab 16 can be cast by a casting method such as an ingot casting method, a belt caster, or a roll in addition to continuous casting.
[0017]
【The invention's effect】
The cast slab having the fine solidification structure according to claim 1 or 2 is effective as a solidification nucleus because a predetermined amount of Mg alloy is added to a molten steel whose solidification primary crystal is γ-Fe and solidified. MgS can be produced in the molten steel, the solidification structure of the slab can be made fine, and internal defects such as internal cracks, center segregation, and center porosity can be prevented, and the quality of the slab can be improved.
In addition, since high-carbon molten steel having a carbon content of 0.5% by mass or more is used for molten steel, the solidification structure of the slab can be refined, and the occurrence of center segregation, center porosity, etc. can be reliably prevented. Product quality can be further improved.
[0018]
In particular, the slab having a finely solidified structure according to claim 2 solidifies molten steel by continuous casting. Therefore, the production of MgS serving as a solidification nucleus can be promoted, and the slab can be made into a finely solidified structure. Therefore, the quality of the slab can be further improved.
[Brief description of the drawings]
FIG. 1 is an overall cross-sectional view of a continuous casting apparatus to which a method for producing a slab having a solidified structure according to an embodiment of the present invention is applied.
FIG. 2 is a graph showing the relationship between the equiaxed crystal ratio of 0.8% C steel and the amounts of Mg, S, and total oxygen.
[Explanation of symbols]
10: continuous casting apparatus, 11: tundish, 12: molten steel, 13: immersion nozzle, 14: mold, 15: support segment, 16: slab, 17: reduction segment, 18: pinch roll

Claims (2)

凝固初晶がγ−Feであり炭素量が0.5質量%以上の溶鋼に、下式を満たすMg合金を添加して凝固させたことを特徴とする微細な凝固組織を備えた鋳片。
〔%Mg〕≧(4×10-5)/〔%S〕+1.5×〔%T・O〕
ここで、〔%Mg〕は溶鋼中のMg質量%、〔%S〕は溶鋼中のS質量%、〔%T・O〕は溶鋼中の総酸素質量%である(ただし、〔%T・O〕は、0.0020質量%以下の場合を除く)
Slab solidification primary crystal gamma-Fe der Ri carbon content in the molten steel more than 0.5 mass%, with a fine solidification structure, characterized in that solidified with addition of Mg alloy satisfying the following expression .
[% Mg] ≧ (4 × 10 −5 ) / [% S] + 1.5 × [% T · O]
Here, [% Mg] is Mg mass% in the molten steel, [% S] is S mass% in the molten steel, and [% T · O] is total oxygen mass% in the molten steel (however, [% T · O] excludes the case of 0.0020% by mass or less) .
請求項1記載の微細な凝固組織を備えた鋳片において、前記溶鋼は、連続鋳造によって凝固させたことを特徴とする微細な凝固組織を備えた鋳片。  2. A slab having a fine solidified structure according to claim 1, wherein the molten steel is solidified by continuous casting.
JP2001002650A 2001-01-10 2001-01-10 Slab with fine solidification structure Expired - Fee Related JP4469092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001002650A JP4469092B2 (en) 2001-01-10 2001-01-10 Slab with fine solidification structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002650A JP4469092B2 (en) 2001-01-10 2001-01-10 Slab with fine solidification structure

Publications (2)

Publication Number Publication Date
JP2002205146A JP2002205146A (en) 2002-07-23
JP4469092B2 true JP4469092B2 (en) 2010-05-26

Family

ID=18871125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002650A Expired - Fee Related JP4469092B2 (en) 2001-01-10 2001-01-10 Slab with fine solidification structure

Country Status (1)

Country Link
JP (1) JP4469092B2 (en)

Also Published As

Publication number Publication date
JP2002205146A (en) 2002-07-23

Similar Documents

Publication Publication Date Title
WO2018179181A1 (en) Steel continuous casting method
JP3488093B2 (en) Continuous casting method of molten steel
JP4469092B2 (en) Slab with fine solidification structure
JP4303578B2 (en) Method for reducing center defects in continuous cast slabs of steel
JP4081222B2 (en) A slab having a fine solidification structure and a steel material processed from the slab
JP4026792B2 (en) Billet continuous casting method
JP3994848B2 (en) Continuous casting method of steel
JP4592974B2 (en) Continuous casting method of molten steel for non-oriented electrical steel sheet and slab for non-oriented electrical steel sheet
JP2894131B2 (en) Large slab production method
JP7273307B2 (en) Steel continuous casting method
JP4250008B2 (en) Manufacturing method of steel for strip steel
CN116571707B (en) Method for improving center shrinkage cavity quality of high-carbon steel continuous casting billet
JP2721382B2 (en) Method for refining organization of steel slab
JP2004276042A (en) Method for continuously casting molten steel for non-oriented magnetic steel sheet and its cast slab
JP4081218B2 (en) Continuous casting method
JP3342777B2 (en) Silicon steel casting method
JP3732006B2 (en) Casting method for ferritic stainless steel
JP2000334559A (en) Method for continuously casting steel excellent in quality
JP2000288698A (en) Cast slab excellent in rolling characteristic and steel material using this cast slab
JP2003205348A (en) Method for continuously casting cast slab excellent in solidifying structure, and its cast slab
JP4501223B2 (en) Continuous casting method
JP2024004032A (en) Continuous casting method
JP2020146735A (en) Continuous casting method of steel
JPH06328200A (en) Manufacture of billet for rheo-working semi-molten metal
JP2004276041A (en) Method for continuously casting molten steel for non-oriented magnetic steel sheet and steel slab for non-oriented magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

R151 Written notification of patent or utility model registration

Ref document number: 4469092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees