JPH07303951A - Secondary cooling method for continuous casting and the device thereof - Google Patents

Secondary cooling method for continuous casting and the device thereof

Info

Publication number
JPH07303951A
JPH07303951A JP5346794A JP5346794A JPH07303951A JP H07303951 A JPH07303951 A JP H07303951A JP 5346794 A JP5346794 A JP 5346794A JP 5346794 A JP5346794 A JP 5346794A JP H07303951 A JPH07303951 A JP H07303951A
Authority
JP
Japan
Prior art keywords
slab
water
secondary cooling
cooling
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5346794A
Other languages
Japanese (ja)
Inventor
Yoji Kanechika
洋二 金近
Yasutami Fukami
泰民 深見
Yuji Takagi
祐治 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP5346794A priority Critical patent/JPH07303951A/en
Publication of JPH07303951A publication Critical patent/JPH07303951A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To execute the secondary cooling having a little variation of molten metal surface caused by bulging phenomenon. CONSTITUTION:A cast slab 5 is cooled by water with gas for secondary cooling as the mixed cooling medium of the water and the compressed air while being guided through foot rolls 8a, 8b, support rolls 9a, 9b and guide rolls 10a, 10b having plural pairs in a roll guide device 6a, 6b. In a drawing-out straightening device 7a, 7b at the downstream side, the cast slab 5 almost perfectly solidified is drawn out with pinch rolls 11a, 11b. In the roll guide device 6a, 6b, the secondary cooling is executed under the condition non suitable to the continuous casting of molten alloy steel, such as stainless steel and the bulging strain is made to be <=0.3%, and the variation of the molten steel surface 4 can be restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造される鋳片の
表面を、水と圧縮空気とを混合した冷却媒体を用いて二
次冷却する方法および設備、特に合金鉄の溶鋼を連続鋳
造する際の二次冷却に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and equipment for secondarily cooling the surface of a continuously cast slab using a cooling medium in which water and compressed air are mixed, and more particularly to continuous casting of molten steel of ferroalloy. It relates to the secondary cooling when doing.

【0002】[0002]

【従来の技術】ステンレス鋼の連続鋳造の二次冷却に関
する先行技術は、たとえば特公平3−46218号公報
に開示されている。この先行技術では、鋳片の表面に水
を特定の好適な条件下で直接スプレーして良好な矩形断
面形状の連鋳スラグを得ることを目的としている。ただ
し、この二次冷却が不充分となると、鋳片内部の未凝固
溶鋼の静圧により、鋳片の厚みが変動するバルジング現
象が発生しやすくなる。このバルジング現象が発生する
と、鋳型内の溶鋼の湯面が変動したり、鋳片に内部割れ
が発生するという不具合が発生する場合がある。なお、
本発明者らの調査によれば、このバルジング現象におけ
る不具合を防止するためのバルジング歪の許容量は、
0.3%以下であることが経験的に判っている。しかし
ながら、このように冷却媒体として水のみを用いる場合
は、内部が未凝固である鋳片の表面で水が蒸発して水蒸
気膜が形成され、伝熱の妨げになり冷却能力が低いとい
うことも判っていた。このため、特開昭57−1871
50号公報、特公平5−10184号公報、特公平5−
55222号公報などでは、水と圧縮空気とを混合した
冷却媒体を用いて、伝熱の妨げとなる伝熱面の水蒸気膜
を破壊し、鋳片の表面と冷却媒体との接触効率を上げ
て、二次冷却の能力を向上させる先行技術が開示されて
いる。この二次冷却における冷却能力が向上すれば、鋳
片の凝固が促進され、バルジング現象を起こさせない程
度の凝固シェル厚みが早期に安定して得られるようにな
る。
2. Description of the Related Art Prior art relating to secondary cooling in continuous casting of stainless steel is disclosed in, for example, Japanese Patent Publication No. 3-46218. The purpose of this prior art is to directly spray water on the surface of a slab under specific preferable conditions to obtain a continuous casting slag having a good rectangular cross-sectional shape. However, if this secondary cooling becomes insufficient, a bulging phenomenon in which the thickness of the slab varies will be likely to occur due to the static pressure of the unsolidified molten steel inside the slab. When this bulging phenomenon occurs, the molten metal level in the mold may fluctuate, and internal defects may occur in the slab. In addition,
According to the investigation by the present inventors, the allowable amount of bulging distortion for preventing the problem in the bulging phenomenon is
It is empirically known that it is 0.3% or less. However, when only water is used as the cooling medium in this way, water evaporates on the surface of the slab whose interior is not solidified to form a water vapor film, which hinders heat transfer and has a low cooling capacity. I knew. For this reason, JP-A-57-1871
Japanese Patent No. 50, Japanese Patent Publication No. 5-10184, Japanese Patent Publication No. 5-
In Japanese Patent No. 55222, etc., a cooling medium in which water and compressed air are mixed is used to destroy the steam film on the heat transfer surface, which hinders heat transfer, to increase the contact efficiency between the surface of the slab and the cooling medium. , Prior art for improving the capacity of secondary cooling is disclosed. If the cooling capacity in the secondary cooling is improved, the solidification of the slab is promoted, and the solidified shell thickness that does not cause the bulging phenomenon can be stably obtained at an early stage.

【0003】[0003]

【発明が解決しようとする課題】ステンレス鋼や高ニッ
ケル鉄などの合金鉄は、溶鋼の粘度が大きく、凝固して
いく過程で比較的熱伝導率も小さく、偏析現象なども生
じやすい。したがって、普通鋼などに比べて鋳造速度も
低く、難連続鋳造性を示す。しかも水と圧縮空気とを混
合した冷却媒体を二次冷却に用いる先行技術でも、ステ
ンレス鋼などの合金鉄の連続鋳造に対しては、どのよう
に、またどういう具合に実施すればよいのか明らかでな
く、実施するとしても下記のような課題を果たさねばな
らない。
In ferroalloys such as stainless steel and high nickel iron, the viscosity of molten steel is high, the thermal conductivity is relatively low in the process of solidification, and segregation phenomenon is likely to occur. Therefore, the casting speed is lower than that of ordinary steel and the continuous castability is difficult. Moreover, even in the prior art that uses a cooling medium in which water and compressed air are mixed for secondary cooling, it is clear how and how to perform continuous casting of alloy iron such as stainless steel. Even if it is implemented, the following issues must be fulfilled.

【0004】この一般的な鋳造速度範囲〔0.5〜
1.2(m/min)〕において、極力高速鋳造しても
安定な鋳造操業が可能となり、高品質の鋳片が得られる
こと。
This general casting speed range [0.5-
1.2 (m / min)], stable casting operation is possible even with extremely high speed casting, and high quality slabs can be obtained.

【0005】二次冷却を強化し、鋳片の内部割れを防
ぐとともに、連続鋳造後の鋳片断面形状を矩形形状に保
持すること。
Secondary cooling should be strengthened to prevent internal cracking of the slab, and the cross-sectional shape of the slab after continuous casting should be kept rectangular.

【0006】鋳造中に発生するバルジング歪の許容量
を0.3%以下に極力抑制できるように二次冷却するこ
と。
Secondary cooling is performed so that the allowable amount of bulging strain generated during casting can be suppressed to 0.3% or less as much as possible.

【0007】鋳型内の溶鋼の湯面変動を極力防止し、
安定な一次冷却が行えるようにして正常な凝固シェルが
安定に形成されるようにすること。
[0007] To prevent fluctuations in the molten steel level in the mold as much as possible,
To allow stable primary cooling so that a normal solidified shell is stably formed.

【0008】以上のような課題は相互に関連し、バルジ
ング現象を抑えて鋳型内の溶鋼の湯面変動を極力減少さ
せれば解決される。したがって本発明の目的は、許容量
を超えるバルジング量、すなわちその歪を発生させず、
溶鋼の湯面変動を抑え、最高の鋳造速度でも安定な操業
が可能で、連続鋳造後の鋳片の内外とも高品質が確保さ
れ、その断面形状が良好な鋳片を得ることができる連続
鋳造の二次冷却方法および設備を提供することである。
The above problems are related to each other and can be solved by suppressing the bulging phenomenon and reducing the fluctuation of the molten steel level in the mold as much as possible. Therefore, an object of the present invention is to generate a bulging amount exceeding an allowable amount, that is, not to generate the distortion,
Continuous casting that suppresses fluctuations in molten steel level, enables stable operation even at the highest casting speed, ensures high quality both inside and outside the cast piece after continuous casting, and obtains a cast piece with a good cross-sectional shape To provide a secondary cooling method and equipment.

【0009】[0009]

【課題を解決するための手段】本発明は、合金鉄の溶鋼
を広面内壁と狭面内壁との矩形断面形状を有する筒状の
鋳型内に連続注入して、前記鋳型を介して一次冷却を行
い、前記鋳型から連続的に引き出される内部が未凝固で
ある鋳片の表面を二次冷却するに際し、前記鋳片の表面
に、水と圧縮空気との混合冷却媒体を、圧縮空気/水の
重量比で定義される気水比が0.05〜0.15の範囲
で、その表面単位面積・単位時間あたり36〜120
〔l/m2 ・min〕噴射して冷却することを特徴とす
る連続鋳造の二次冷却方法である。
According to the present invention, molten steel of ferroalloy is continuously poured into a cylindrical mold having a rectangular cross-section with a wide inner wall and a narrow inner wall, and primary cooling is performed through the mold. When performing the secondary cooling of the surface of the slab that is continuously undrawn from the mold is continuously extracted from the mold, the surface of the slab, a mixed cooling medium of water and compressed air, compressed air / water The air-water ratio defined by the weight ratio is in the range of 0.05 to 0.15, and the surface area per unit area / unit time is 36 to 120.
[1 / m 2 · min] A secondary cooling method for continuous casting characterized by spraying and cooling.

【0010】また本発明は、前記冷却媒体の気水比が
0.05〜0.15の範囲に選ばれ、かつ水量密度をD
〔l/m2 ・min〕、鋳片の引き出し速度Vcを0.
5〜1.2〔m/min〕の範囲とするとき、 20Vc+26≦D≦50Vc+60 を満足する条件下で二次冷却を行うことを特徴とする。
In the present invention, the air-water ratio of the cooling medium is selected in the range of 0.05 to 0.15, and the water amount density is D.
[L / m 2 · min], the withdrawal speed Vc of the slab is 0.
When the range is 5 to 1.2 [m / min], the secondary cooling is performed under the condition of 20 Vc + 26 ≦ D ≦ 50 Vc + 60.

【0011】また本発明は、前記鋳片の表面に対して、
両広面を水と圧縮空気とが混合された前記冷却媒体で冷
却し、両狭面を水で冷却することを特徴とする。
The present invention also relates to the surface of the slab,
Both wide surfaces are cooled with the cooling medium in which water and compressed air are mixed, and both narrow surfaces are cooled with water.

【0012】また本発明は、前記合金鉄の溶鋼がステン
レス鋼の溶鋼であることを特徴とする。
Further, the present invention is characterized in that the molten steel of the alloy iron is a molten steel of stainless steel.

【0013】また本発明は、合金鉄の溶鋼を広面内壁と
狭面内壁との矩形断面形状を有する筒状の鋳型内に連続
注入して前記鋳型を介して一次冷却を行い、前記鋳型か
ら0.5〜1.2〔m/min〕の範囲の鋳造速度で内
部が未凝固である鋳片を引き出しながら二次冷却を行っ
て、厚さ150〜200〔mm〕、幅700〜1380
〔mm〕の合金鉄の連鋳鋳片を連続鋳造することを特徴
とする。
Further, according to the present invention, molten steel of ferroalloy is continuously poured into a cylindrical mold having a rectangular cross-sectional shape having a wide inner wall and a narrow inner wall, primary cooling is performed through the mold, and 0 Secondary cooling is performed while pulling out a slab whose inside is not solidified at a casting speed in the range of 0.5 to 1.2 [m / min] to obtain a thickness of 150 to 200 [mm] and a width of 700 to 1380.
A continuous cast slab of [mm] ferroalloy is continuously cast.

【0014】また本発明の前記鋳片は、鋳片の引き出し
方向に沿って非周期的に配置されるロール群によって案
内されることを特徴とする。
Further, the slab of the present invention is characterized in that it is guided by a group of rolls which are arranged aperiodically along the drawing direction of the slab.

【0015】また本発明の前記冷却媒体を用いる内部が
未凝固である鋳片の二次冷却は、鋳片の前記鋳型の引き
出し直後からほぼ完全に凝固するに至る範囲まで行うこ
とを特徴とする。
Further, the second cooling of the slab using the cooling medium of the present invention, which has not been solidified in the inside, is carried out to a range from immediately after the slab is pulled out of the mold to the point where it is almost completely solidified. .

【0016】また本発明は、合金鉄の溶鋼を広面内壁と
狭面内壁との矩形断面形状を有する筒状の鋳型内に連続
注入して、前記鋳型を介して一次冷却を行い、前記鋳型
から連続的に引き出される内部が未凝固である鋳片の表
面を二次冷却する設備において、引き出される鋳片の上
流側に配置され、無駆動で鋳片を所定方向に案内するた
めのペアーロールを複数ペアー有する案内ロール群と、
前記鋳片の両広面に、水と圧縮空気との混合冷却媒体を
気水比(圧縮空気/水の重量比)0.05〜0.15の
範囲で、その表面単位面積・単位時間あたり36〜12
0〔l/m2 ・min〕噴射して冷却するための複数の
気水ノズルとを備えるロール案内装置と、引き出される
鋳片の下流側に配置され、回転駆動されて鋳片を引き抜
くための複数のピンチロールを有する引き抜き装置とを
備えることを特徴とする連続鋳造の二次冷却設備であ
る。
Further, according to the present invention, molten steel of ferroalloy is continuously poured into a cylindrical mold having a rectangular cross-sectional shape with a wide inner wall and a narrow inner wall, primary cooling is performed through the mold, and In a facility for secondary cooling of the surface of a continuously cast slab that has not solidified, a pair roll for guiding the slab in a predetermined direction without driving is arranged on the upstream side of the slab to be withdrawn. A group of guide rolls having a plurality of pairs,
A mixed cooling medium of water and compressed air was applied to both wide surfaces of the slab in a steam-water ratio (compressed air / water weight ratio) of 0.05 to 0.15, and its surface unit area / unit time was 36. ~ 12
A roll guide device provided with a plurality of steam nozzles for cooling by injecting 0 [l / m 2 · min], and arranged downstream of the cast slab to be drawn out, and driven to rotate to pull out the slab A secondary cooling equipment for continuous casting, comprising: a drawing device having a plurality of pinch rolls.

【0017】[0017]

【作用】本発明に従えば、鋳片の表面に水と圧縮空気と
の混合冷却媒体を気水比(圧縮空気/水の重量比)0.
05〜0.15の範囲で、その単位表面積・単位時間あ
たり36〜120〔l/m2 ・min〕噴射して冷却す
ると、鋳片を素早く充分に冷却して、シェルの凝固を大
幅にかつ好適に促進することができる。こうすることに
よって素早く凝固シェル厚が増大され、凝固シェルの機
械的強度が向上するので、バルジング現象などが発生し
にくくなり、鋳型内の溶鋼の湯面変動も抑制される。
According to the present invention, a mixed cooling medium of water and compressed air is added to the surface of the cast slab in the air-water ratio (compressed air / water weight ratio) of 0.
In the range of 05 to 0.15, by injecting 36 to 120 [l / m 2 · min] per unit surface area / unit time and cooling, the slab can be quickly and sufficiently cooled, and the solidification of the shell can be significantly increased. It can be favorably promoted. By doing so, the thickness of the solidified shell is quickly increased and the mechanical strength of the solidified shell is improved, so that the bulging phenomenon is less likely to occur, and fluctuations in the molten steel level in the mold are suppressed.

【0018】また本発明に従えば、鋳片の鋳造速度Vc
〔m/min〕に対応して水量密度D〔l/m2・mi
n〕を決定し、決定された水量密度Dに対して圧縮空気
を気水比が0.05〜1.15の範囲となるように混合
して冷却媒体を生成する。これによって低速から高速域
までの鋳造速度Vcに対応して適切な二次冷却を容易に
行うことができる。
Further, according to the present invention, the casting speed Vc of the slab is
Corresponding to [m / min], water density D [l / m 2 · mi
n] is determined, and compressed air is mixed with the determined water amount density D so that the air / water ratio is in the range of 0.05 to 1.15 to generate a cooling medium. Thereby, appropriate secondary cooling can be easily performed corresponding to the casting speed Vc from the low speed to the high speed range.

【0019】また本発明に従えば、水と圧縮空気との混
合された冷却媒体は、鋳片の表面に対して両広面の冷却
に用い、両狭面は水で冷却する。バルジング現象の抑制
や連続鋳造後の矩形断面形状の確保に対しては、各種ロ
ールに接触し面積の大きな両広面の冷却が重要であり、
水と圧縮空気との混合された高冷却能を有する冷却媒体
で迅速に冷却することが好ましい。両狭面の冷却は、両
広面の冷却に対して、通常鋳型直下の一対のサイドロー
ル以外に接触するロールもなく、相対的に表面積が小さ
く、従来から行われている如く水のみによる冷却で充分
である。このため全体に圧縮空気を混合する場合よりも
必要となる動力費などのコストが低減される。
Further, according to the invention, the cooling medium in which water and compressed air are mixed is used for cooling both wide surfaces with respect to the surface of the cast slab, and both narrow surfaces are cooled with water. In order to suppress the bulging phenomenon and to secure the rectangular cross-sectional shape after continuous casting, it is important to cool both wide surfaces that are in contact with various rolls and have a large area.
It is preferable to rapidly cool with a cooling medium having a high cooling capacity, which is a mixture of water and compressed air. The cooling of both narrow surfaces is relatively small compared to the cooling of both wide surfaces, since there is usually no roll other than the pair of side rolls directly below the mold, the surface area is relatively small, and cooling with only water as is done conventionally. Is enough. For this reason, the cost such as the power cost that is required as compared with the case where the compressed air is mixed in the whole is reduced.

【0020】また本発明に従えば、溶鋼の粘度が普通鋼
などに比較して大きく、凝固した状態での熱伝導率も比
較的小さいステンレス鋼の連続鋳造においても、良好な
二次冷却を行うことができ、鋳造速度が比較的高速な
1.2〔m/min〕に達しても安定な連続鋳造を行う
ことができる。
Further, according to the present invention, good secondary cooling is carried out even in continuous casting of stainless steel in which the viscosity of molten steel is higher than that of ordinary steel and the thermal conductivity in the solidified state is relatively small. Therefore, stable continuous casting can be performed even when the casting speed reaches a relatively high speed of 1.2 [m / min].

【0021】また本発明に従えば、0.5〜1.2〔m
/min〕の鋳造速度で鋳片を引き出しながら、厚さ1
50〜200〔mm〕、幅700〜1380〔mm〕の
鋳片を、バルジング歪を極力抑えて鋳型内の溶鋼の湯面
変動を少なくした状態で連続鋳造することができる。
Further, according to the present invention, 0.5 to 1.2 [m
/ Min] while pulling out the slab at a casting speed of 1
It is possible to continuously cast a slab having a width of 50 to 200 [mm] and a width of 700 to 1380 [mm] while suppressing the bulging strain as much as possible and reducing the fluctuation of the molten steel level in the mold.

【0022】また本発明に従えば、鋳片を案内するため
のペアーロールを複数ペアー有するロール群において、
このペアーロール同士間の距離またはペアーロール芯々
間の距離を不規則に構成するか、あるいはこのロール群
全体として不規則に構成する。すなわち鋳片を案内する
ロール群を非周期的に配置するので、各ロール間で発生
するバルジングの共振が生じにくく、溶鋼の湯面変動を
低位に抑制することができる。
According to the invention, in a roll group having a plurality of pair rolls for guiding the slab,
The distance between the pair rolls or the distance between the pair roll cores is irregularly configured, or the roll group as a whole is irregularly configured. That is, since the roll group that guides the slab is arranged aperiodically, resonance of bulging that occurs between the rolls is unlikely to occur, and fluctuations in the molten metal level can be suppressed to a low level.

【0023】また本発明に従えば、内部が未凝固である
鋳片の二次冷却は、水と圧縮空気とを混合した冷却媒体
によって、鋳片の鋳型からの引き出し直後からほぼ完全
に凝固するに至る範囲まで行われるので、高速鋳造を行
うことが可能となり、高速鋳造してもバルジング歪を抑
制し鋳型内の溶鋼の湯面変動を少なくした状態で連続鋳
造することができる。
Further, according to the present invention, in the secondary cooling of the slab which is not solidified inside, the slab is almost completely solidified immediately after the slab is pulled out from the mold by the cooling medium in which water and compressed air are mixed. Since it is performed up to the range up to, it is possible to perform high speed casting, and it is possible to perform continuous casting in a state in which bulging distortion is suppressed even when high speed casting is performed, and fluctuations in the molten metal level in the mold are reduced.

【0024】また本発明に従えば、連続鋳造されて連続
的に引き出される鋳片の表面を、上流側のロール案内装
置では、水と圧縮空気とを混合した冷却媒体によって効
率的に冷却する。ロール案内装置の上部では、鋳片の凝
固シェル厚が小さく、凝固シェル強度も弱いので、バル
ジング現象が生じやすい。このため水と圧縮空気とを混
合した高冷却能を有する冷却媒体を用いて、強力に冷却
能力を向上させて、強力で迅速な冷却を行い、素早く凝
固シェル厚の増大を図ることができる。
Further, according to the present invention, the surface of the slab continuously cast and continuously withdrawn is efficiently cooled by the cooling medium in which water and compressed air are mixed in the upstream side roll guide device. At the upper part of the roll guide device, the solidified shell thickness of the slab is small and the solidified shell strength is weak, so that the bulging phenomenon easily occurs. Therefore, by using a cooling medium having a high cooling capacity in which water and compressed air are mixed, it is possible to strongly improve the cooling capacity, perform strong and quick cooling, and quickly increase the solidified shell thickness.

【0025】[0025]

【実施例】以下、図面により本発明の実施例を詳細に説
明する。図1は本発明の一実施例のための連続鋳造装置
の構成概要を示し、図2はロール案内装置に配置される
気水ノズルの鋳片幅方向に沿った配置状態を略示し、図
3は気水ノズルの鋳片狭面側から見た配置状態を略示
し、図4は水と圧縮空気とを混合した冷却媒体を噴射す
る気水ノズルの構造例を略示し、図5はバルジング現象
の概略を示し、図6は連続鋳造装置において鋳型直下か
らの距離に対応する複数ペアーロール同士間の距離、す
なわちロールピッチを、従来と本発明のものとを比較し
た事例を示し、図7は各気水比における水量密度と鋳片
/二次冷却用気水間の熱伝達係数との関係を示し、図8
は鋳造速度Vcと水量密度Dとの関係を示し、図9は各
鋳造速度Vcにおけるバルジング歪の鋳型内の溶鋼の湯
面変動量に及ぼす影響を示した。
Embodiments of the present invention will now be described in detail with reference to the drawings. 1 shows an outline of the structure of a continuous casting apparatus for one embodiment of the present invention, FIG. 2 schematically shows an arrangement state of a steam nozzle arranged in a roll guide apparatus along a slab width direction, and FIG. Is a schematic view of the arrangement of the steam nozzle as viewed from the narrow side of the slab, FIG. 4 is a schematic structure example of a steam nozzle for injecting a cooling medium in which water and compressed air are mixed, and FIG. 5 is a bulging phenomenon. FIG. 6 shows an example in which the distance between a plurality of pair rolls corresponding to the distance from immediately below the mold in the continuous casting apparatus, that is, the roll pitch, is compared between the conventional and the present invention, and FIG. 8 shows the relationship between the water amount density and the heat transfer coefficient between the slab / secondary cooling steam in each steam / water ratio, and FIG.
Shows the relationship between the casting speed Vc and the water amount density D, and FIG. 9 shows the effect of the bulging strain at each casting speed Vc on the molten steel level variation of the molten steel in the mold.

【0026】図1に示す鋳型1の内壁面の外周は、水冷
されている。鋳型1内には、ステンレス鋼や高ニッケル
合金など合金鉄の溶鋼が取鍋からタンディッシュを介し
て供給される。鋳型1内の溶鋼2はその湯面4の高さが
極力一定となり変動しないように供給され、鋳型1の内
壁面で冷却され、その外周部に凝固シェル3を次第に形
成していく。鋳型1から引き出される内部が未凝固の鋳
片5は、それぞれペアーロールとなるフットロール8
a,8b、サポートロール9a,9bおよびガイドロー
ル10a,10bによって順次案内される。以上のよう
なそれぞれペアーロールとなり複数ペアーを有し、ロー
ル群を構成するフットロール8a,8b、サポートロー
ル9a,9bおよびガイドロール10a,10bは、無
駆動で鋳片5の引き出しに合わせて回転し、全体として
ロール案内装置6a,6bを構成する。ロール案内装置
6a,6bの下流側には、複数のピンチロール11a,
11bを有する引き抜き矯正装置7a,7bが配置され
る。引き抜き矯正装置7a,7bにより引き抜かれなが
ら鋳片5の形状が次第に矯正されて、凝固の完了した鋳
片5は連続鋳造設備の出側で、所定の長さ毎に切断さ
れ、次工程では熱間圧延などが行われる。
The outer periphery of the inner wall surface of the mold 1 shown in FIG. 1 is water-cooled. Molten steel of ferroalloy such as stainless steel or high nickel alloy is supplied into the mold 1 from a ladle through a tundish. The molten steel 2 in the mold 1 is supplied so that the height of the molten metal surface 4 is as constant as possible and does not fluctuate, is cooled by the inner wall surface of the mold 1, and the solidified shell 3 is gradually formed on the outer peripheral portion thereof. The slabs 5 that are not solidified inside are drawn out from the mold 1, and the foot rolls 8 are pair rolls.
a, 8b, support rolls 9a, 9b and guide rolls 10a, 10b are sequentially guided. The foot rolls 8a, 8b, the support rolls 9a, 9b, and the guide rolls 10a, 10b, each of which has a plurality of pairs as a pair of rolls as described above, rotate without driving in accordance with the withdrawal of the slab 5. Then, the roll guide devices 6a and 6b are configured as a whole. On the downstream side of the roll guide devices 6a and 6b, a plurality of pinch rolls 11a,
Pullout straightening devices 7a, 7b having 11b are arranged. The shape of the slab 5 is gradually corrected while being pulled out by the pull-out straightening devices 7a and 7b, and the slab 5 that has been solidified is cut into predetermined lengths at the exit side of the continuous casting equipment, and in the next step, heat treatment is performed. Hot rolling is performed.

【0027】図2、図3には、鋳片5の二次冷却のため
の気水ノズル12a,12bの配置を示したが、気水ノ
ズル12a,12bはロール案内装置6a,6bの各ロ
ール8a,8b,9a,9b,10a,10bの間隙に
複数個配置され、噴出される二次冷却用気水13a,1
3bにより、鋳片5は強力に迅速に冷却される。
2 and 3 show the arrangement of the steam nozzles 12a, 12b for the secondary cooling of the slab 5, the steam nozzles 12a, 12b are the rolls of the roll guide devices 6a, 6b. A plurality of secondary cooling steams 13a, 1 which are arranged and ejected in the gaps 8a, 8b, 9a, 9b, 10a, 10b
The slab 5 is strongly and quickly cooled by 3b.

【0028】図4は気水ノズル12の構造例を示した
が、気水ノズル12内部において、水14と圧縮された
空気15とは混合され、ノズルチップ16の開口部より
二次冷却用気水13a,13bとして広角(広幅)状に
勢いよく噴出される。
FIG. 4 shows an example of the structure of the water / water nozzle 12. Inside the water / water nozzle 12, the water 14 and the compressed air 15 are mixed, and the air for secondary cooling is supplied from the opening of the nozzle tip 16. Water 13a, 13b is jetted vigorously in a wide-angle (wide) shape.

【0029】図5はバルジング現象の概略を示したが、
バルジング現象は鋳片5内部の未凝固状態である溶鋼2
の静圧により、凝固シェル3が、ペアーロールと次のペ
アーロールとを支点として、(図5ではペアーロールと
してのフットロール8a,8bと次のペアーロールとし
てのサポートロール9a,9bとを例示する)その支点
間で外方向に膨らむ現象である。その結果として、鋳片
5の断面積に変化が生じるとともに、鋳片5内部の溶鋼
2の存在する領域の断面積に変化が生じるので、鋳型1
内における溶鋼2の湯面4の高さが上下に変化し、湯面
4の変動となる。
FIG. 5 shows the outline of the bulging phenomenon.
The bulging phenomenon is caused by the unsolidified molten steel 2 inside the slab 5.
By the static pressure of, the solidification shell 3 uses the pair roll and the next pair roll as a fulcrum (in FIG. 5, the foot rolls 8a and 8b as the pair rolls and the support rolls 9a and 9b as the next pair rolls are exemplified. Yes) is a phenomenon that bulges outward between the fulcrums. As a result, the cross-sectional area of the cast slab 5 changes and the cross-sectional area of the region where the molten steel 2 exists inside the slab 5 also changes.
The height of the molten metal 4 inside the molten steel 2 changes up and down, and the molten metal 4 changes.

【0030】この鋳型1内における溶鋼2の湯面4が極
力変動しないように、その許容幅を越えないように、前
述の如くタンディッシュ等を介して鋳型1内に溶鋼2を
供給することによって、冷却水による鋳型1内の溶鋼2
の安定な一次冷却、すなわち供給された溶鋼2から正常
で安定した凝固シェル3の形成、この形成される凝固シ
ェル3の鋳型1内壁面への焼付きや損傷や破損の防止、
鋳型1の振動や人工スラグ(鋳型パウダー)の鋳型1内
への供給などによる内部が未凝固状態にある鋳片5の鋳
型1内からの円滑な引出し、鋳型1内から引き出される
鋳片5内への不純物(介在物)の巻込み(混入)防止な
どを図っているのであるが、このような鋳型1直下の鋳
片5に生じるバルジング現象の発生もかかる湯面4の変
動に大きな影響を及ぼすのである。特に鋳型1直下のロ
ール案内装置6a,6b内にあって、凝固シェル3の増
大過程にある鋳片5が、複数のペアーロールの各支点間
において、一斉にバルジングしたり、逆に収縮したり、
その合計バルジング量や歪量が変動したりすると、これ
に応答してかかる湯面4が上下に大きく変動するので、
単に鋳片5の安定な二次冷却ができないばかりでなく、
前述の如き一次冷却へも大きな悪影響を及ぼし前記諸要
点が満足に達成されず、最終的に凝固の完了した鋳片5
の内外における品質面、ブレークアウト(B.O)等の
操業事故や操業不能といった操業面、能率や生産性の
面、そして歩留やコスト面などの問題点が生じるのであ
る。
By supplying the molten steel 2 into the mold 1 through the tundish or the like as described above, the molten steel surface 4 of the molten steel 2 in the mold 1 does not fluctuate as much as possible and does not exceed its allowable width. , Molten steel 2 in mold 1 with cooling water
Stable primary cooling, that is, formation of a normal and stable solidified shell 3 from the supplied molten steel 2, prevention of seizure, damage or damage to the inner wall surface of the mold 1 of the solidified shell 3 thus formed,
Smooth withdrawal of the slab 5 whose inside is in a non-solidified state due to vibration of the mold 1 or supply of artificial slag (mold powder) into the mold 1, and inside the slab 5 withdrawn from the inside of the mold 1. It is intended to prevent the inclusion (mixture) of impurities (inclusions) into the casting, but the occurrence of a bulging phenomenon occurring in the cast piece 5 directly under the casting mold 1 has a great influence on the fluctuation of the molten metal surface 4. To exert. In particular, in the roll guide devices 6a and 6b immediately below the mold 1, the slab 5 in the process of increasing the solidification shell 3 bulges in a lump or conversely contracts between the fulcrums of a plurality of pair rolls. ,
If the total amount of bulging or the amount of strain fluctuates, the molten metal surface 4 fluctuates greatly in response to this,
Not only can the stable secondary cooling of the slab 5 not be performed, but
As described above, the slab 5 which has a great adverse effect on the primary cooling and does not satisfactorily achieve the above-mentioned various points and is finally solidified is obtained.
There are problems in terms of quality in Japan and overseas, operational aspects such as breakout (BO) and other operational accidents and inability to operate, efficiency and productivity, and yield and cost.

【0031】そこで、このようにして発生し変動するバ
ルジングを低減しなければならないのであるが、このた
めには一般的に複数のペアーロールの各支点間の距離、
複数のペアーロール同士間の距離(複数のペアーロール
同士の芯々間の距離)、簡単に換言すれば、ロールピッ
チをできるだけ短縮することが必要であるが、充分とは
いえない。
Therefore, it is necessary to reduce the bulging which occurs and fluctuates in this way. For this purpose, generally, the distance between the fulcrums of a plurality of pair rolls,
The distance between the plurality of pair rolls (the distance between the cores of the plurality of pair rolls), in other words, it is necessary to shorten the roll pitch as much as possible, but it cannot be said to be sufficient.

【0032】それは、このロールピッチが一定である
と、前述の如く一斉にバルジングしたり収縮したりし易
くなり、そのバルジング量やその歪の大きな変動を必ず
しも回避できないからである。
This is because if the roll pitch is constant, it is easy to bulge or contract all at once, as described above, and it is not always possible to avoid large fluctuations in the bulging amount and its distortion.

【0033】これまでの説明において、バルジング現象
におけるバルジング量やバルジング歪の用語を使用して
説明してきたが、以下にこれらの用語の説明をしてお
く。
In the above description, the terms bulging amount and bulging distortion in the bulging phenomenon have been used, but these terms will be explained below.

【0034】ここでバルジング量(cm)をδB とし、
ロールの加圧力または静鉄圧(Kg/cm2 )をPと
し、ロールピッチ(cm)をLとし、凝固シェルの弾性
係数(Kg/cm2 )をEとし、凝固シェル厚み(c
m)をSとし、鋳造速度(m/min)をVcとする
と、次の第1式が成り立つ。
Here, the bulging amount (cm) is δ B ,
The pressing force or static iron pressure (Kg / cm 2 ) of the roll is P, the roll pitch (cm) is L, the elastic modulus (Kg / cm 2 ) of the solidified shell is E, and the solidified shell thickness (c
When m) is S and the casting speed (m / min) is Vc, the following first equation is established.

【0035】[0035]

【数1】 [Equation 1]

【0036】第1式のC1は定数であり、第2式のよう
に書直すことができる。
C1 in the first equation is a constant and can be rewritten as the second equation.

【0037】[0037]

【数2】 [Equation 2]

【0038】ηαは形状係数やその補正係数であり、鋳
片の場合は1となる。したがってバルジング歪εB は、
C2を定数として、次の第3式のように表される。
Ηα is a shape factor and its correction factor, which is 1 in the case of a cast piece. Therefore, the bulging strain ε B is
It is expressed as the following third equation, where C2 is a constant.

【0039】[0039]

【数3】 [Equation 3]

【0040】なお、TSを固相線の温度、TMを鋳型返
温度とすると、Eは次の第4式によって表される。
When TS is the solidus temperature and TM is the template return temperature, E is expressed by the following equation (4).

【0041】[0041]

【表4】 [Table 4]

【0042】ともかく、鋳型1内の溶鋼2の湯面4変動
を抑えるためには、取り分けロール案内装置6a,6b
における鋳片5のバルジング量やその歪の経時的に大き
な変動、すなわちバルジングの共振現象といえる変動を
抑制しなければならない。
In any case, in order to suppress the fluctuation of the molten steel surface 4 of the molten steel 2 in the mold 1, the roll guide devices 6a and 6b are specially arranged.
It is necessary to suppress a large variation in the bulging amount of the cast slab 5 and its strain with time, that is, a variation which can be called a bulging resonance phenomenon.

【0043】図6には、実線で本発明のロールピッチ
を、点線の従来のロールピッチと相対比較して示した
が、本発明の場合は、従来に比べて、ロールピッチを単
純に短縮するだけでなく、ロールピッチを細かく変化さ
せる、すなわちペアーロールとペアーロールとの距離を
変化させるか、あるいは複数のペアーロールを有するロ
ール群全体として変化させる、つまりロールピッチを非
周期的に配置することによって、バルジングの共振現象
ともいえる変動を抑制してかかる湯面4の変動を確実に
抑えることができるのである。
In FIG. 6, the roll pitch of the present invention is shown by a solid line in comparison with the conventional roll pitch shown by a dotted line. In the case of the present invention, the roll pitch is simply shortened as compared with the conventional roll pitch. Not only that, the roll pitch is finely changed, that is, the distance between the pair rolls is changed, or the roll group having a plurality of pair rolls is changed as a whole, that is, the roll pitch is arranged aperiodically. As a result, it is possible to suppress a variation that can be called a bulging resonance phenomenon and to reliably suppress such a variation in the molten metal surface 4.

【0044】図7には、各気水比(圧縮空気/水の重量
比)における、水量密度Dと鋳片/二次冷却用気水間の
熱伝達係数(W/m2・℃)の関係を示した。気水比を
増加させることにより圧縮空気の比率が増加し、伝達面
の水蒸気膜の除去効果の向上により熱伝達係数は向上す
るが、気水比が0.05を超えると熱伝達係数の向上は
緩やかになり、気水比が0.15において熱伝達係数は
飽和することが、本発明者らの調査により判った。した
がって、効率的な冷却を行う上で、気水比は0.05〜
0.15の範囲が適切である。
FIG. 7 shows the water quantity density D and the heat transfer coefficient (W / m 2 · ° C.) between the slab / secondary cooling steam at each steam / water ratio (compressed air / water weight ratio). Showed a relationship. The ratio of compressed air increases by increasing the air / water ratio, and the heat transfer coefficient improves by improving the removal effect of the water vapor film on the transfer surface. However, when the air / water ratio exceeds 0.05, the heat transfer coefficient improves. The present inventors have found that the heat transfer coefficient becomes saturated and the heat transfer coefficient becomes saturated at the air-water ratio of 0.15. Therefore, for efficient cooling, the steam-water ratio is 0.05-
A range of 0.15 is suitable.

【0045】図8は、次の表1に示すような条件で実験
を行った結果から求めた冷却条件を示す。
FIG. 8 shows cooling conditions obtained from the results of experiments conducted under the conditions shown in Table 1 below.

【0046】[0046]

【表1】 [Table 1]

【0047】図8に示す(A)の領域では、二次冷却が
急激であり表面割れなどが発生し易い。(B)の領域で
は、二次冷却が遅く、バルジング歪が大きく発生し変動
し易く、湯面変動が大きくなる。このような、図8に斜
線を施して示す領域は二次冷却条件としては好ましくな
く、斜線を施さない白ヌキの(C)領域が適正である。
In the region (A) shown in FIG. 8, the secondary cooling is rapid and surface cracks are likely to occur. In the region (B), the secondary cooling is slow, large bulging distortion is generated, and the fluctuation easily occurs, and the fluctuation of the molten metal surface becomes large. Such a shaded area in FIG. 8 is not preferable as the secondary cooling condition, and a white-colored (C) area without a shaded area is appropriate.

【0048】図9には各鋳造速度Vcにおける、バルジ
ング歪の湯面変動量(mm)に及ぼす影響を示したが、
ロールピッチとして本発明による非周期配置を適用して
も、表1のパターン3の条件による水量密度Dが図8
(B)の領域となると、バルジング歪が0.3%を越
え、鋳造速度Vcの増加に伴い湯面変動量(mm)が増
加する。特に湯面変動量が6mmを超えると凝固シェル
の損傷による鋳片表面の不良化やブレークアウト(B.
O.)の危険性がある。なお、水量密度Dが図8(C)
の領域では、湯面変動量は4mm以下に抑制されてお
り、また鋳片表面や鋳片断面形状も良好であることが確
認された。この条件は、水量密度Dと鋳造速度Vcの間
に、次の第5式が成立する範囲を含んでいる。
FIG. 9 shows the influence of the bulging strain on the molten metal level variation (mm) at each casting speed Vc.
Even if the aperiodic arrangement according to the present invention is applied as the roll pitch, the water amount density D according to the condition of pattern 3 in Table 1 is shown in FIG.
In the region (B), the bulging strain exceeds 0.3%, and the fluctuation amount (mm) in the molten metal surface increases as the casting speed Vc increases. In particular, when the fluctuation amount of the molten metal surface exceeds 6 mm, the surface of the slab becomes defective due to damage to the solidified shell or breakout (B.
O. There is a risk of. The water amount density D is shown in FIG. 8 (C).
It was confirmed that, in the region (2), the fluctuation amount of the molten metal surface was suppressed to 4 mm or less, and the surface of the cast piece and the cross-sectional shape of the cast piece were good. This condition includes a range between the water amount density D and the casting speed Vc in which the following fifth equation is satisfied.

【0049】 20Vc+26≦D≦50Vc+60 …(5) 以上に詳細に説明した本発明の構成条件を個々にあるい
は必要に応じて組み合わせて実施するとともに、水と圧
縮空気との混合冷却媒体(気水)を用いて内部が未凝固
状態にある鋳片を二次冷却するには、鋳片の鋳型直下か
らの引き出し直後からほぼ完全に凝固するに至る範囲ま
で行うことが必要であり、かつ好適である。
20Vc + 26 ≦ D ≦ 50Vc + 60 (5) The constituent conditions of the present invention described in detail above are carried out individually or in combination as necessary, and a mixed cooling medium (water and water) of water and compressed air is used. In order to secondarily cool the slab whose interior is in a non-solidified state by using, it is necessary to perform up to the range from immediately after the slab is pulled out from directly below the mold to almost completely solidified, and it is preferable. .

【0050】なお以上の実施例では湾曲型の連続鋳造設
備について説明しているけれども、垂直型など、他の型
式の連続鋳造設備であっても同様に二次冷却を行うこと
ができる。またステンレス鋼の溶鋼ばかりでなく高ニッ
ケル鉄など、他の合金鉄であっても同様に二次冷却の効
果を奏することができる。
Although the curved type continuous casting equipment has been described in the above embodiments, the secondary cooling can be similarly performed in other types of continuous casting equipment such as a vertical type. Further, not only molten steel such as stainless steel but also other alloyed iron such as high nickel iron can similarly exert the secondary cooling effect.

【0051】以上のような実験結果から、次の表2に示
すような一次冷却条件を含むステンレス鋼鋳造スラグの
連続鋳造条件が得られている。
From the above experimental results, the continuous casting conditions of the stainless steel casting slag including the primary cooling conditions as shown in the following Table 2 are obtained.

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【発明の効果】本発明に関して以上に詳述したが、この
実施により前記本発明の課題ならびに目的を達成するの
はもちろんのこと、以下に列挙する効果を奏し、工業上
に大きく貢献するものである。
Although the present invention has been described in detail above, the present invention not only achieves the above-mentioned objects and objects of the present invention but also exerts the effects listed below, which greatly contributes to the industry. is there.

【0054】1)連続鋳造設備で合金鉄を連続鋳造する
際の二次冷却において、従来の冷却水に代えて高冷却能
を有する気水を用いてより高い二次冷却能力で冷却でき
ることと、本発明に係る好適な二次冷却の構成諸条件の
実施により、鋳片の均一冷却、高速鋳造速度時のバルジ
ング量およびその歪の低減、この低減による鋳型内の溶
鋼の湯面変動抑制が可能となる。
1) In secondary cooling when continuously casting ferroalloys in a continuous casting facility, it is possible to cool with a higher secondary cooling capacity by using steam having a high cooling capacity instead of conventional cooling water, By implementing the preferred secondary cooling configuration conditions according to the present invention, it is possible to uniformly cool the slab, reduce the bulging amount and its distortion at high casting speed, and suppress the molten steel level fluctuation in the mold by this reduction. Becomes

【0055】2)二次冷却能力の向上により、内部が未
凝固である鋳片は、その鋳型直下から完全凝固に至るク
レータエンド位置までの長さを大幅に短縮できるととも
に、以下の諸効果を奏しながら、鋳造速度の増加が可能
となり、安定した連続鋳造全体の能力、生産性の向上が
可能となる。
2) By improving the secondary cooling capacity, the slab that is not solidified inside can greatly reduce the length from immediately below the mold to the crater end position where it completely solidifies, and the following effects are obtained. While playing, it is possible to increase the casting speed, and it is possible to improve the capacity and productivity of the entire stable continuous casting.

【0056】3)前記1)項に記載する如く、適切な二
次冷却の構成諸条件の実施によって、湯面変動が抑制さ
れ低減するので、鋳型内で凝固シェルが損傷や破損する
ことなく正常に形成されるとともに、鋳片内への不純物
(介在物)の巻込みも防止される。この鋳型内での凝固
シェルの損傷等に起因する湯漏れによる鋳片表面欠陥不
良も防止され、また二次冷却における鋳片の内部割れも
防止され、さらに鋳片の断面形状は鋳片狭面の端部から
100mm〜150mm位置の広面表面に発生し易い凹
み深さが問題なくなり、矩形断面形状を確保できる。
3) As described in the above item 1), by performing appropriate secondary cooling constitutional conditions, fluctuations in the molten metal surface are suppressed and reduced, so that the solidified shell is not damaged or damaged in the mold and is kept normal. In addition to being formed, the inclusion of impurities (inclusions) in the cast piece is prevented. The surface defects of the slab due to molten metal leakage due to damage to the solidified shell in the mold are also prevented, and internal cracking of the slab during secondary cooling is also prevented. There is no problem with the depth of the dent that tends to occur on the wide surface at a position 100 mm to 150 mm from the end, and a rectangular cross-sectional shape can be secured.

【0057】したがって、凝固完了し製造された鋳片
は、内部および表面とも高品質のものが得られる。
Therefore, the solidified and produced cast slab can be of high quality both inside and on the surface.

【0058】4)鋳造時にブレークアウト(B.O)す
ることもなく、安定な操業が可能となる。
4) Stable operation is possible without breakout (BO) during casting.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を用いる連続鋳造設備の構成
を示す簡略化した断面図である。
FIG. 1 is a simplified cross-sectional view showing a configuration of a continuous casting facility using an embodiment of the present invention.

【図2】図1の連続鋳造設備における気水ノズルの鋳片
幅方向に沿った配置を略示する図である。
FIG. 2 is a diagram schematically showing the arrangement of steam nozzles in the continuous casting equipment of FIG. 1 along the width direction of a cast piece.

【図3】図1の連続鋳造設備における気水ノズルの鋳片
狭面側から見た配置を略示する図である。
FIG. 3 is a diagram schematically showing the arrangement of the steam nozzle in the continuous casting facility of FIG. 1 as viewed from the narrow surface side of the slab.

【図4】図1の連続鋳造設備における気水ノズルの一事
例の断面を略示する図である。
4 is a diagram schematically showing a cross section of an example of a steam nozzle in the continuous casting facility of FIG. 1. FIG.

【図5】バルジング現象の概略を鋳片狭面側から見た断
面図である。
FIG. 5 is a cross-sectional view showing an outline of the bulging phenomenon as seen from the narrow surface side of the slab.

【図6】図1の連続鋳造設備において鋳型直下からの距
離に対応する複数ペアーロール同士間の距離、すなわち
ロールピッチについて、従来と本発明のものとを比較し
た事例を示す図である。
FIG. 6 is a view showing an example in which the conventional and the present invention are compared with respect to the distance between a plurality of pair rolls corresponding to the distance from directly under the mold, that is, the roll pitch, in the continuous casting equipment of FIG. 1.

【図7】各気水比における水量密度Dと鋳片/二次冷却
用気水間の熱伝達係数の関係を示す図である。
FIG. 7 is a diagram showing the relationship between the water amount density D and the heat transfer coefficient between the slab / steam for secondary cooling at each steam / water ratio.

【図8】鋳造速度Vcと水量密度Dとの関係において、
適正範囲を白ヌキで示す図である。
FIG. 8 shows the relationship between the casting speed Vc and the water amount density D.
It is a figure which shows an appropriate range with a white blank.

【図9】各鋳造速度Vcにおけるバルジング歪の鋳型内
の溶鋼の湯面変動量(mm)に及ぼす影響を示す図であ
る。
FIG. 9 is a diagram showing the influence of bulging strain at each casting speed Vc on the molten metal level variation (mm) in the mold.

【符号の説明】[Explanation of symbols]

1 鋳型 2 溶鋼(溶湯) 3 凝固シェル 4 湯面 5 鋳片 6a,6b ロール案内装置 7a,7b 引き抜き矯正装置 8a,8b フットロール 9a,9b サポートロール 10a,10b ガイドロール 11a,11b ピンチロール 12,12a,12b 気水ノズル 13a,13b 二次冷却用気水 14 水 15 空気 16 ノズルチップ DESCRIPTION OF SYMBOLS 1 Mold 2 Molten steel (molten metal) 3 Solidified shell 4 Molten surface 5 Cast slab 6a, 6b Roll guide device 7a, 7b Pull-out correction device 8a, 8b Foot roll 9a, 9b Support roll 10a, 10b Guide roll 11a, 11b Pinch roll 12, 12a, 12b Steam nozzle 13a, 13b Steam for secondary cooling 14 Water 15 Air 16 Nozzle tip

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 合金鉄の溶鋼を広面内壁と狭面内壁との
矩形断面形状を有する筒状の鋳型内に連続注入して、前
記鋳型を介して一次冷却を行い、前記鋳型から連続的に
引き出される内部が未凝固である鋳片の表面を二次冷却
するに際し、 前記鋳片の表面に、水と圧縮空気との混合冷却媒体を、
圧縮空気/水の重量比で定義される気水比が0.05〜
0.15の範囲で、その表面単位面積・単位時間あたり
36〜120〔l/m2 ・min〕噴射して冷却するこ
とを特徴とする連続鋳造の二次冷却方法。
1. A molten steel of ferroalloy is continuously poured into a cylindrical mold having a rectangular cross-sectional shape with a wide inner wall and a narrow inner wall, primary cooling is performed through the mold, and continuous casting is performed from the mold. When secondary cooling the surface of the cast piece that is not solidified is pulled out, on the surface of the cast piece, a mixed cooling medium of water and compressed air,
The air / water ratio defined by the compressed air / water weight ratio is 0.05 to
A secondary cooling method for continuous casting, characterized in that the surface unit area / unit time is 36 to 120 [l / m 2 · min] for cooling in the range of 0.15.
【請求項2】 前記冷却媒体の気水比が0.05〜0.
15の範囲に選ばれ、かつ水量密度をD〔l/m2 ・m
in〕、鋳片の引き出し速度Vcを0.5〜1.2〔m
/min〕の範囲とするとき、 20Vc+26≦D≦50Vc+60 を満足する条件下で二次冷却を行うことを特徴とする請
求項1に記載の連続鋳造の二次冷却方法。
2. The air-water ratio of the cooling medium is 0.05 to 0.
It is selected in the range of 15 and the water density is D [l / m 2 · m
in], the withdrawing speed Vc of the slab is 0.5 to 1.2 [m
/ Min], the secondary cooling is performed under the condition that 20 Vc + 26 ≦ D ≦ 50 Vc + 60 is satisfied, the secondary cooling method for continuous casting according to claim 1.
【請求項3】 前記鋳片の表面に対して、両広面を水と
圧縮空気とが混合された前記冷却媒体で冷却し、両狭面
を水で冷却することを特徴とする請求項1または2に記
載の連続鋳造の二次冷却方法。
3. With respect to the surface of the cast slab, both wide surfaces are cooled by the cooling medium in which water and compressed air are mixed, and both narrow surfaces are cooled by water. 2. The continuous casting secondary cooling method according to 2.
【請求項4】 前記合金鉄の溶鋼がステンレス鋼の溶鋼
であることを特徴とする請求項1〜3までのいずれかに
記載の連続鋳造の二次冷却方法。
4. The secondary cooling method for continuous casting according to claim 1, wherein the molten steel of the ferroalloy is a molten steel of stainless steel.
【請求項5】 合金鉄の溶鋼を広面内壁と狭面内壁との
矩形断面形状を有する筒状の鋳型内に連続注入して前記
鋳型を介して一次冷却を行い、前記鋳型から0.5〜
1.2〔m/min〕の範囲の鋳造速度で内部が未凝固
である鋳片を引き出しながら二次冷却を行って、厚さ1
50〜200〔mm〕、幅700〜1380〔mm〕の
合金鉄の連鋳鋳片を連続鋳造することを特徴とする請求
項1〜4のいずれかに記載の連続鋳造の二次冷却方法。
5. Molten steel of ferroalloy is continuously poured into a cylindrical mold having a rectangular cross-sectional shape with a wide inner wall and a narrow inner wall, primary cooling is performed through the mold, and 0.5 to
Secondary cooling is performed while pulling out a slab whose interior is not solidified at a casting speed in the range of 1.2 [m / min] to obtain a thickness of 1
The continuous cooling secondary cooling method according to any one of claims 1 to 4, wherein a continuous cast slab of alloy iron having a width of 50 to 200 [mm] and a width of 700 to 1380 [mm] is continuously cast.
【請求項6】 前記鋳片は、鋳片の引き出し方向に沿っ
て非周期的に配置されるロール群によって案内されるこ
とを特徴とする請求項1〜5のいずれかに記載の連続鋳
造の二次冷却方法。
6. The continuous casting according to claim 1, wherein the slab is guided by a group of rolls arranged aperiodically along the slab withdrawal direction. Secondary cooling method.
【請求項7】 前記冷却媒体を用いる内部が未凝固であ
る鋳片の二次冷却は、鋳片の前記鋳型の引き出し直後か
らほぼ完全に凝固するに至る範囲まで行うことを特徴と
する請求項1〜6のいずれかに記載の連続鋳造の二次冷
却方法。
7. The secondary cooling of a slab using the cooling medium, the interior of which is not solidified, is secondarily cooled to a range from immediately after the slab is pulled out from the mold to almost completely solidifying. The secondary cooling method of continuous casting according to any one of 1 to 6.
【請求項8】 合金鉄の溶鋼を広面内壁と狭面内壁との
矩形断面形状を有する筒状の鋳型内に連続注入して、前
記鋳型を介して一次冷却を行い、前記鋳型から連続的に
引き出される内部が未凝固である鋳片の表面を二次冷却
する設備において、 引き出される鋳片の上流側に配置され、無駆動で鋳片を
所定方向に案内するためのペアーロールを複数ペアー有
する案内ロール群と、前記鋳片の両広面に、水と圧縮空
気との混合冷却媒体を気水比(圧縮空気/水の重量比)
0.05〜0.15の範囲で、その表面単位面積・単位
時間あたり36〜120〔l/m2 ・min〕噴射して
冷却するための複数の気水ノズルとを備えるロール案内
装置と、 引き出される鋳片の下流側に配置され、回転駆動されて
鋳片を引き抜くための複数のピンチロールを有する引き
抜き装置とを備えることを特徴とする連続鋳造の二次冷
却設備。
8. Molten steel of ferroalloy is continuously poured into a cylindrical mold having a rectangular cross-sectional shape with a wide inner wall and a narrow inner wall, primary cooling is performed through the mold, and continuous casting is performed from the mold. In a facility that secondarily cools the surface of a cast piece whose inside is not solidified, it has multiple pairs of pair rolls that are placed upstream of the drawn piece and that guide the cast piece in a predetermined direction without driving. A mixed cooling medium of water and compressed air is provided in the guide roll group and both wide surfaces of the slab with a vapor-water ratio (compressed air / water weight ratio).
A roll guide device including a plurality of steam nozzles for cooling by spraying 36 to 120 [l / m 2 · min] per unit surface area / unit time in the range of 0.05 to 0.15; A secondary cooling facility for continuous casting, comprising: a drawing device having a plurality of pinch rolls, which are arranged on the downstream side of the drawn slab and are driven to rotate to draw out the slab.
JP5346794A 1994-03-16 1994-03-24 Secondary cooling method for continuous casting and the device thereof Withdrawn JPH07303951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5346794A JPH07303951A (en) 1994-03-16 1994-03-24 Secondary cooling method for continuous casting and the device thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-46098 1994-03-16
JP4609894 1994-03-16
JP5346794A JPH07303951A (en) 1994-03-16 1994-03-24 Secondary cooling method for continuous casting and the device thereof

Publications (1)

Publication Number Publication Date
JPH07303951A true JPH07303951A (en) 1995-11-21

Family

ID=26386218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5346794A Withdrawn JPH07303951A (en) 1994-03-16 1994-03-24 Secondary cooling method for continuous casting and the device thereof

Country Status (1)

Country Link
JP (1) JPH07303951A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721922B1 (en) * 2005-10-20 2007-05-28 주식회사 포스코 Foot roll mounting structure of continuous casting machine
JP2010253525A (en) * 2009-04-28 2010-11-11 Jfe Steel Corp Secondary cooling method for continuously cast slab by two fluid mist spray nozzle
CN101992275A (en) * 2010-11-26 2011-03-30 首钢总公司 Method for controlling narrow face bulging of thick continuous casting slab
CN111992686A (en) * 2020-09-03 2020-11-27 福建三钢闽光股份有限公司 Aerial fog full-water combined cooling high-carbon steel continuous casting production method
CN114054710A (en) * 2021-11-13 2022-02-18 攀钢集团研究院有限公司 Method for improving center quality of large-section rectangular continuous casting billet
CN114905022A (en) * 2022-04-28 2022-08-16 重庆钢铁股份有限公司 Secondary cooling water distribution method for controlling internal cracking of continuous casting slab

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721922B1 (en) * 2005-10-20 2007-05-28 주식회사 포스코 Foot roll mounting structure of continuous casting machine
JP2010253525A (en) * 2009-04-28 2010-11-11 Jfe Steel Corp Secondary cooling method for continuously cast slab by two fluid mist spray nozzle
CN101992275A (en) * 2010-11-26 2011-03-30 首钢总公司 Method for controlling narrow face bulging of thick continuous casting slab
CN111992686A (en) * 2020-09-03 2020-11-27 福建三钢闽光股份有限公司 Aerial fog full-water combined cooling high-carbon steel continuous casting production method
CN111992686B (en) * 2020-09-03 2021-12-17 福建三钢闽光股份有限公司 Aerial fog full-water combined cooling high-carbon steel continuous casting production method
CN114054710A (en) * 2021-11-13 2022-02-18 攀钢集团研究院有限公司 Method for improving center quality of large-section rectangular continuous casting billet
CN114054710B (en) * 2021-11-13 2023-01-20 攀钢集团研究院有限公司 Method for improving center quality of large-section rectangular continuous casting billet
CN114905022A (en) * 2022-04-28 2022-08-16 重庆钢铁股份有限公司 Secondary cooling water distribution method for controlling internal cracking of continuous casting slab
CN114905022B (en) * 2022-04-28 2023-07-21 重庆钢铁股份有限公司 Two-cooling water distribution method for controlling internal crack of continuous casting slab

Similar Documents

Publication Publication Date Title
JP2989737B2 (en) Continuous casting and continuous casting / rolling of steel
JPH07303951A (en) Secondary cooling method for continuous casting and the device thereof
JP4337565B2 (en) Steel slab continuous casting method
JP3186631B2 (en) Termination method of constant speed drawing casting in continuous casting
JP3149834B2 (en) Steel slab continuous casting method
JP2009136908A (en) Method for drawing out slab after completion of casting in continuous casting
JP3362703B2 (en) Continuous casting method
JPS6021150A (en) Production of billet having high quality
JP3111954B2 (en) Continuous casting method
JP3507263B2 (en) Continuous casting method of molten steel
JPS60162560A (en) Continuous casting method of steel
JP3390606B2 (en) Steel continuous casting method
WO2024004364A1 (en) Steel continuous casting method
JP3082834B2 (en) Continuous casting method for round slabs
JP4654554B2 (en) Steel continuous casting method
JP4285288B2 (en) Steel continuous casting method
JP7273307B2 (en) Steel continuous casting method
JPH08206806A (en) Vertical type continuous casting method of large cross sectional cast bloom
JP2001259809A (en) Continuous casting method
JP3124466B2 (en) Steel continuous casting apparatus and continuous casting method
JP3498586B2 (en) Continuous casting method
JP2003285146A (en) Continuous casting method
JPH0550200A (en) Continuous casting apparatus
JP4458796B2 (en) Continuous casting equipment
JP2010269328A (en) Method for manufacturing continuous cast slab

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605