JP2848231B2 - Mold powder for continuous casting - Google Patents

Mold powder for continuous casting

Info

Publication number
JP2848231B2
JP2848231B2 JP1053394A JP1053394A JP2848231B2 JP 2848231 B2 JP2848231 B2 JP 2848231B2 JP 1053394 A JP1053394 A JP 1053394A JP 1053394 A JP1053394 A JP 1053394A JP 2848231 B2 JP2848231 B2 JP 2848231B2
Authority
JP
Japan
Prior art keywords
mold
mold powder
powder
continuous casting
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1053394A
Other languages
Japanese (ja)
Other versions
JPH07214263A (en
Inventor
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11752907&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2848231(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1053394A priority Critical patent/JP2848231B2/en
Publication of JPH07214263A publication Critical patent/JPH07214263A/en
Application granted granted Critical
Publication of JP2848231B2 publication Critical patent/JP2848231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造時、浸漬ノズ
ルを介してモールド内に供給される溶鋼表面上に添加す
るモールドパウダーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold powder to be added to the surface of molten steel supplied into a mold through a dipping nozzle during continuous casting.

【0002】[0002]

【従来の技術】モールドパウダーは粉体あるいは顆粒状
であり、一般にCaO,SiO2 を主成分とし、他にAl
2O3 ,MgO等の金属化合物、Na2CO3等の炭酸塩、フッ
化物、カーボンから構成されている。そして、その役割
としては、モールド内溶鋼表面の酸化防止、モール
ド内溶鋼表面の保温、モールドと鋳片間の潤滑、浮
上介在物の溶かし込み、の4点が従来からよく知られて
いる。
BACKGROUND ART mold powder is a powder or granular form, typically CaO, SiO 2 is the main component, other Al
It is composed of metal compounds such as 2 O 3 and MgO, carbonates such as Na 2 CO 3 , fluorides, and carbon. The role of preventing the oxidation of the surface of the molten steel in the mold, keeping the surface of the molten steel in the mold warm, lubricating between the mold and the slab, and melting the floating inclusions are well known in the art.

【0003】しかし、最近では上記した基本的な役割に
加えてモールドと鋳片間に介在するパウダーフィルム層
の総括熱伝達係数を変化させることにより、モールド内
熱流束を制御する試みがなされるようになってきてい
る。これは、炭素含有量が0.1重量%程度(一般には
0.08〜0.17重量%)のいわゆる亜包晶鋼の連続
鋳造時には、凝固途中で包晶反応を含むδ→γ変態に伴
う急激な凝固収縮が起こり鋳片をモールドよりかい離さ
せて局部的な凝固遅れを生じさせ、縦割れ等の欠陥の原
因となるからである。従って、このδ→γ変態に伴う凝
固収縮を緩和させるべくモールド内熱流束を低下させて
緩冷却化するのである。
However, recently, attempts have been made to control the heat flux in the mold by changing the overall heat transfer coefficient of the powder film layer interposed between the mold and the slab, in addition to the basic role described above. It is becoming. This is because, during continuous casting of a so-called hypoperitectic steel having a carbon content of about 0.1% by weight (generally 0.08 to 0.17% by weight), a δ → γ transformation including a peritectic reaction during solidification occurs. This is because rapid solidification shrinkage occurs and the slab is separated from the mold to cause a local solidification delay, which causes defects such as vertical cracks. Therefore, in order to alleviate the solidification shrinkage due to the δ → γ transformation, the heat flux in the mold is reduced to cool slowly.

【0004】従来、前記パウダーフィルム層の総括熱伝
達係数を低減させる手段として、CaOとSiO2 との
成分比率〔CaO/SiO2 〕(以下、「塩基度」とい
う)と凝固温度を共に高めるとともに、ZrO2 を添加
するものや〔CAMP−ISIJ Vol.6(1993)-28
3〕、ZrO2 やCeO2 を添加するもの〔特開平3−
198961号公報〕等がある。
Conventionally, as means for reducing the overall heat transfer coefficient of the powder film layer, both the component ratio of CaO and SiO 2 [CaO / SiO 2 ] (hereinafter referred to as “basicity”) and the solidification temperature have been increased. , ZrO 2 or [CAMP-ISIJ Vol. 6 (1993) -28
3], one containing ZrO 2 or CeO 2 [Japanese Unexamined Patent Publication No.
198961].

【0005】[0005]

【発明が解決しようとする課題】しかしながら、塩基度
が0.9を超えた場合には、図1に○印で示すように、
モールドと鋳片間に流入したモールドパウダーが凝固す
る際の結晶化率が高くなってしまう。結晶化は体積収縮
を伴うので、結晶化率が高くなると凝固時に体積が収縮
し、モールドと鋳片間に空隙が発生する。この空隙発生
部位は熱流束が著しく低下するので、局部的な凝固遅れ
やそれに伴う縦割れが発生したり、ブレークアウト予知
検出用の熱電対の指示温度が変動したりして操業阻害の
原因となる。
However, when the basicity exceeds 0.9, as shown by a circle in FIG.
The crystallization ratio when the mold powder flowing between the mold and the slab solidifies is increased. Since crystallization involves volume shrinkage, when the crystallization rate increases, the volume shrinks during solidification, and voids occur between the mold and the slab. Since the heat flux at this void generation site is significantly reduced, local solidification delay and accompanying vertical cracking may occur, and the temperature indicated by the thermocouple for predicting breakout may fluctuate, causing operation hindrance. Become.

【0006】また、塩基度が0.9以下であっても、ガ
ラスの結晶化剤であるZrO2 やTiO2 ,CeO2
添加した場合には、結晶化率が高くなって上記と同様の
問題が生じる〔図1参照〕。
Even when the basicity is 0.9 or less, when ZrO 2 , TiO 2 , or CeO 2 as a crystallization agent for glass is added, the crystallization ratio increases, and A problem arises (see FIG. 1).

【0007】これらの問題はモールド内緩冷却化のため
の高凝固温度化が同時に結晶化率を過度に高めることに
なって生じるものであるから、モールドパウダーが凝固
する際の結晶化を抑制することによってのみ解決できる
ものである。
[0007] These problems are caused by the high solidification temperature for slow cooling in the mold, which simultaneously increases the crystallization rate excessively. Therefore, crystallization when the mold powder solidifies is suppressed. It can only be solved by

【0008】本発明は上記した問題点に鑑みてなされた
ものであり、パウダーフィルムの過度の結晶化が原因と
なる操業・品質上の問題を解決し、モールド内緩冷却化
とモールド内熱流束の変動幅を減少して高品質の鋼を安
定して製造できる連続鋳造用モールドパウダーを提供す
ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and solves problems in operation and quality caused by excessive crystallization of a powder film. It is an object of the present invention to provide a mold powder for continuous casting capable of stably producing high-quality steel by reducing the fluctuation range of the mold.

【0009】[0009]

【課題を解決するための手段】上記した目的を達成する
ために、本発明の連続鋳造用モールドパウダーは、塩基
度が0.6〜0.9の範囲内で、かつZrO2 ,TiO
2 ,CeO2 の濃度和が1重量%以下であり、しかも凝
固温度が1150℃以上となるようにしているのであ
る。
To achieve the above object SUMMARY OF THE INVENTION The continuous casting mold powder of the present invention are, within the scope of basicity 0.6-0.9, and ZrO 2, TiO
The total concentration of 2 , CeO 2 is 1% by weight or less, and the solidification temperature is 1150 ° C. or more.

【0010】本発明の連続鋳造用モールドパウダーにお
いて、塩基度を0.6〜0.9の範囲内としたのは、
0.6未満では、パウダーフィルムの結晶化率が完全に
ゼロとなり〔図1参照〕、モールド内緩冷却効果が失わ
れるからである。また0.9を超えると、モールドと鋳
片間に流入したモールドパウダーの凝固時における結晶
化率が高くなるからである〔図1参照〕。
In the mold powder for continuous casting of the present invention, the basicity is set in the range of 0.6 to 0.9.
If it is less than 0.6, the crystallization ratio of the powder film becomes completely zero (see FIG. 1), and the slow cooling effect in the mold is lost. On the other hand, if it exceeds 0.9, the crystallization ratio of the mold powder flowing between the mold and the slab at the time of solidification becomes high (see FIG. 1).

【0011】また、本発明の連続鋳造用モールドパウダ
ーにおいて、ZrO2 ,TiO2 ,CeO2 の濃度和を
1重量%以下としたのは、本発明者の実験結果によれば
ガラスの結晶化剤であるZrO2 やTiO2 ,CeO2
の濃度和が1重量%を超えた場合には、モールドと鋳片
間に流入したモールドパウダーの凝固時における結晶化
率が高くなって縦割れ性ブレークアウトが発生するから
である〔表3のf,h,i参照〕。
Further, in the mold powder for continuous casting according to the present invention, the concentration of ZrO 2 , TiO 2 , and CeO 2 is set to 1% by weight or less according to the experimental results of the present inventors. ZrO 2 , TiO 2 , CeO 2
When the sum of the concentrations exceeds 1% by weight, the crystallization rate during solidification of the mold powder flowing between the mold and the slab becomes high, and longitudinal cracking breakout occurs [Table 3]. f, h, i].

【0012】また、本発明の連続鋳造用モールドパウダ
ーにおいて、凝固温度を1150℃以上となるようにし
たのは、凝固温度が1150℃未満の場合には縦割れ疵
の発生率が急激に増加するからである〔図2参照〕。
Further, in the mold powder for continuous casting of the present invention, the solidification temperature is set to 1150 ° C. or more, because when the solidification temperature is lower than 1150 ° C., the incidence of vertical cracks increases rapidly. (See FIG. 2).

【0013】なお、本発明の連続鋳造用モールドパウダ
ーは塩基度,ガラスの結晶化剤であるZrO2 やTiO
2 ,CeO2 の濃度和及び凝固温度が上記した値を満足
するものであれば他の化学成分系はどのようなものであ
っても構わない。
The mold powder for continuous casting of the present invention has a basicity of ZrO 2 or TiO 2 which is a crystallization agent for glass.
Any other chemical component system may be used as long as the sum of the concentrations of 2 , CeO 2 and the solidification temperature satisfy the above-mentioned values.

【0014】[0014]

【作用】本発明の連続鋳造用モールドパウダーは凝固温
度が1150℃以上と高いので、モールド内緩冷却効果
〔図3参照〕によって亜包晶鋼鋳造時においても縦割れ
疵の発生率が減少する。また、塩基度を0.6〜0.9
の範囲内とし、かつZrO2 ,TiO2 ,CeO2 の濃
度和を1重量%以下としたので、パウダーフィルムの結
晶化率が低く、モールド内熱流束の局部変動が少なくな
る〔図4,図5参照〕。
Since the solidification temperature of the mold powder for continuous casting according to the present invention is as high as 1150 ° C. or more, the generation rate of longitudinal cracks is reduced even in the case of subperitectic steel casting due to the effect of slow cooling in the mold (see FIG. 3). . Further, the basicity is 0.6 to 0.9.
And the sum of the concentrations of ZrO 2 , TiO 2 , and CeO 2 is set to 1% by weight or less, so that the crystallization ratio of the powder film is low and the local fluctuation of the heat flux in the mold is reduced [FIG. 5].

【0015】なお、図5(a)は塩基度が1.25で凝
固温度が1180℃のモールドパウダー(比較例)を、
(b)は塩基度が0.85で凝固温度が1200℃のモ
ールドパウダー(本発明例)を使用し、それぞれ溶鋼中
の炭素濃度〔C〕が0.14重量%の溶鋼を2.0m/
分の速度で連続鋳造した場合の結果を示す図である。
FIG. 5A shows a mold powder (comparative example) having a basicity of 1.25 and a solidification temperature of 1180 ° C.
In (b), a mold powder having a basicity of 0.85 and a solidification temperature of 1200 ° C. was used (example of the present invention). Each of the molten steels having a carbon concentration [C] of 0.14% by weight was 2.0 m / m2.
It is a figure which shows the result at the time of continuous casting at the speed of minute.

【0016】[0016]

【実施例】以下、本発明の連続鋳造用モールドパウダー
の実施例について説明する。図6は溶鋼中の炭素濃度
〔C〕が0.18重量%の溶鋼を2.0m/分の鋳造速
度で連続鋳造する際に、モールド内の溶鋼表面上に下記
表1に示す化学組成及び凝固温度のモールドパウダー添
加した場合のモールド銅板温度指数をメニスカスからの
距離毎に測定した結果を示したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the mold powder for continuous casting according to the present invention will be described. FIG. 6 shows the chemical composition and the chemical composition shown in Table 1 below on the surface of molten steel in the mold when continuously casting molten steel having a carbon concentration [C] of 0.18% by weight at a casting speed of 2.0 m / min. It shows the result of measuring the mold copper plate temperature index for each distance from the meniscus when adding mold powder at the solidification temperature.

【0017】[0017]

【表1】 (単位:重量%)[Table 1] (Unit: wt%)

【0018】図6に示すように、低塩基度・低凝固温度
のモールドパウダーA(従来例)に対して高凝固温度の
モールドパウダーB(比較例),モールドパウダーC
(本発明例)はともにメニスカスより120mm下の点
におけるモールド銅板温度の平均値は同等に低下してお
り、メニスカス近傍における緩冷却効果は明らかであ
る。
As shown in FIG. 6, mold powder A having a low solidity and low solidification temperature (conventional example) is compared with mold powder B having a high solidification temperature (comparative example) and mold powder C.
In each of (Examples of the present invention), the average value of the mold copper plate temperature at a point 120 mm below the meniscus is equally reduced, and the slow cooling effect near the meniscus is apparent.

【0019】しかしながら、モールドパウダーBを添加
して連続鋳造した場合にはモールド銅板温度のばらつき
が大きく、さらにメニスカスから下方にゆくほどモール
ド銅板温度の低下が大きくなる。これはモールドパウダ
ーBが高塩基度であるためにパウダーフィルムの結晶化
率(体積収縮)が大きくモールドと鋳片間に空隙が発生
したこと、およびこの空隙がモールドの下部にゆくほど
大きくなっていることから生じたものである。
However, when the mold powder B is added for continuous casting, the temperature of the mold copper plate varies greatly, and the temperature of the mold copper plate decreases more as it goes downward from the meniscus. This is because the crystallization ratio (volume shrinkage) of the powder film is large due to the high basicity of the mold powder B, and voids are generated between the mold and the slab, and the voids are increased toward the lower part of the mold. It is the result of having

【0020】これらのモールド内抜熱特性により、モー
ルドパウダーAを添加して連続鋳造した場合には縦割れ
及び縦割れ性ブレークアウトが発生し、またモールドパ
ウダーBを添加して連続鋳造した場合には縦割れは発生
しなかったが、縦割れ性ブレークアウトが発生した。こ
れに対して、本発明のモールドパウダーCを添加して連
続鋳造した場合には縦割れ及び縦割れ性ブレークアウト
はともに全く発生しなかった。
Due to the heat removal characteristics in the mold, when the mold powder A is added and continuous casting is performed, a vertical crack and a vertical crack breakout occur, and when the mold powder B is added and continuous casting is performed. No vertical cracking occurred, but a vertical cracking breakout occurred. On the other hand, when the mold powder C of the present invention was added and continuous casting was performed, neither the vertical crack nor the vertical crack breakout occurred at all.

【0021】また本発明の他の実施例として、モールド
内の溶鋼表面上に表2に示す化学組成及び凝固温度のモ
ールドパウダーを添加して溶鋼中の炭素濃度〔C〕が
0.18重量%の溶鋼を3.0m/分の鋳造速度で連続
鋳造した場合の縦割れ及び縦割れ性ブレークアウトの発
生の有無を調べた結果を同じく表2に示すが、この表2
より明らかなように本発明のモールドパウダーを添加し
た場合にはいずれも縦割れ及び縦割れ性ブレークアウト
は全く発生しなかった。
In another embodiment of the present invention, a mold powder having a chemical composition and a solidification temperature shown in Table 2 was added to the surface of the molten steel in the mold so that the carbon concentration [C] in the molten steel was 0.18% by weight. Table 2 also shows the results of an examination of the occurrence of vertical cracks and breakage of vertical cracks when the molten steel was continuously cast at a casting speed of 3.0 m / min.
As is clear, when the mold powder of the present invention was added, neither vertical crack nor vertical crack breakout occurred at all.

【0022】[0022]

【表2】 (単位:重量%)[Table 2] (Unit: wt%)

【0023】なお、モールド内の溶鋼表面上に本発明の
範囲を外れた表3に示す化学組成及び凝固温度のモール
ドパウダーを添加して溶鋼中の炭素濃度〔C〕が0.1
8重量%の溶鋼を3.0m/分の鋳造速度で連続鋳造し
た場合の縦割れ及び縦割れ性ブレークアウトの発生の有
無を調べた結果を同じく表3に示すが、この表3より明
らかなように比較モールドパウダーを添加した場合には
いずれも縦割れあるいは縦割れ性ブレークアウトが発生
した。
In addition, a mold powder having a chemical composition and a solidification temperature shown in Table 3 outside the range of the present invention was added to the surface of the molten steel in the mold to reduce the carbon concentration [C] in the molten steel to 0.1.
Table 3 also shows the results of an examination of the occurrence of vertical cracks and breakage of vertical cracks when 8% by weight of molten steel was continuously cast at a casting speed of 3.0 m / min. As described above, when the comparative mold powder was added, a vertical crack or a vertical crack breakout occurred in each case.

【0024】[0024]

【表3】 (単位:重量%)[Table 3] (Unit: wt%)

【0025】[0025]

【発明の効果】以上説明したように、本発明の連続鋳造
用モールドパウダーによれば、モールドと鋳片間に流入
したモールドパウダーが凝固する際の結晶化率を高くす
ることなくモールド内の緩冷却化と局部的熱流束の変動
低下を実現でき、高品質の鋼を安定して連続鋳造するこ
とが可能となる。
As described above, according to the continuous casting mold powder of the present invention, the mold powder flowing between the mold and the slab does not have to increase the crystallization rate when solidifying, and thus the mold powder in the mold can be loosened. Cooling and local fluctuation of heat flux can be realized, and high-quality steel can be continuously cast stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】モールドパウダーの塩基度の変化に伴うパウダ
ーフィルム結晶化率の変化を示す図面である。
FIG. 1 is a view showing a change in the crystallization ratio of a powder film according to a change in basicity of a mold powder.

【図2】モールドパウダーの凝固温度の変化に伴う縦割
れ疵発生率の変化を示す図面である。
FIG. 2 is a graph showing a change in the rate of occurrence of vertical cracks due to a change in solidification temperature of mold powder.

【図3】本発明例と比較例における鋳造速度と抜熱量と
の関係を示す図面である。
FIG. 3 is a drawing showing a relationship between a casting speed and a heat removal amount in an example of the present invention and a comparative example.

【図4】モールドパウダーの塩基度の変化に伴うモール
ド内熱流束局部変動指数の変化を示す図面である。
FIG. 4 is a view showing a change in a heat flux local fluctuation index in a mold with a change in basicity of a mold powder.

【図5】本発明例と比較例における抜熱量の変動量を示
す図面である。
FIG. 5 is a diagram showing a variation in a heat removal amount according to an example of the present invention and a comparative example.

【図6】本発明例と比較例及び従来例におけるメニスカ
スからの距離とモールド銅板温度指数の関係を示す図面
である。
FIG. 6 is a drawing showing the relationship between the distance from the meniscus and the mold copper plate temperature index in the present invention example, the comparative example, and the conventional example.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 CaOとSiO2 との成分比率〔CaO
/SiO2 (重量比)〕が0.6〜0.9の範囲内で、
かつZrO2 ,TiO2 ,CeO2 の濃度和が1重量%
以下であり、しかも凝固温度が1150℃以上であるこ
とを特徴とする連続鋳造用モールドパウダー。
A composition ratio of CaO and SiO 2 [CaO
/ SiO 2 (weight ratio)] in the range of 0.6 to 0.9,
And the sum of the concentrations of ZrO 2 , TiO 2 , and CeO 2 is 1% by weight.
A mold powder for continuous casting, wherein the solidification temperature is 1150 ° C. or higher.
JP1053394A 1994-02-01 1994-02-01 Mold powder for continuous casting Expired - Lifetime JP2848231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1053394A JP2848231B2 (en) 1994-02-01 1994-02-01 Mold powder for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1053394A JP2848231B2 (en) 1994-02-01 1994-02-01 Mold powder for continuous casting

Publications (2)

Publication Number Publication Date
JPH07214263A JPH07214263A (en) 1995-08-15
JP2848231B2 true JP2848231B2 (en) 1999-01-20

Family

ID=11752907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1053394A Expired - Lifetime JP2848231B2 (en) 1994-02-01 1994-02-01 Mold powder for continuous casting

Country Status (1)

Country Link
JP (1) JP2848231B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105935750A (en) * 2016-06-21 2016-09-14 唐山钢铁集团有限责任公司 Continuous casting protective slag for high-boron steel
CN106041006A (en) * 2016-08-10 2016-10-26 中南大学 Continuous casting tundish covering agent of Mn-containing and Al-containing steel and application thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406673B (en) * 1998-03-04 2000-07-25 Treibacher Auermet Prod Gmbh USE OF METAL OXIDES FOR PREPARING CERAMIC MOLDS
JP4514407B2 (en) * 2003-01-27 2010-07-28 住友金属工業株式会社 Mold flux for continuous casting of steel and continuous casting method
JP5397214B2 (en) * 2009-12-24 2014-01-22 新日鐵住金株式会社 Steel continuous casting method
JP5370929B2 (en) * 2010-01-22 2013-12-18 新日鐵住金株式会社 Mold flux for continuous casting of steel
CN107498014B (en) * 2017-09-06 2019-11-15 中南大学 One kind containing ZrO2Automobile TWIP steel covering slag and its application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105935750A (en) * 2016-06-21 2016-09-14 唐山钢铁集团有限责任公司 Continuous casting protective slag for high-boron steel
CN106041006A (en) * 2016-08-10 2016-10-26 中南大学 Continuous casting tundish covering agent of Mn-containing and Al-containing steel and application thereof

Also Published As

Publication number Publication date
JPH07214263A (en) 1995-08-15

Similar Documents

Publication Publication Date Title
JP2848231B2 (en) Mold powder for continuous casting
JP2964452B2 (en) Flux for continuous casting of molten steel containing A1 and continuous casting method
JP3427804B2 (en) Mold powder and continuous casting method
JP6674093B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP6169648B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP3317258B2 (en) Mold powder for continuous casting of high Mn round section slabs
JP3141187B2 (en) Powder for continuous casting of steel
JP2004358485A (en) Mold flux for continuous casting of steel
JP2819190B2 (en) Ti-containing superalloy casting method and powder used therefor
JP4514407B2 (en) Mold flux for continuous casting of steel and continuous casting method
JPH0985404A (en) Flux for continuously casting a1-containing molten steel and continuous casting method
JPH05277680A (en) Flux for continuous casting
CN113333702A (en) High-carbon chromium bearing steel continuous casting crystallizer casting powder and application thereof
JP2000158105A (en) Mold powder for continuous steel casting and continuous casting method
JP3399387B2 (en) Steel continuous casting method
JP2001347351A (en) Mold powder and continuous casting method
JP2985671B2 (en) Mold powder for continuous casting of steel
JP2001191153A (en) Powder for continuously casting b-containing steel and continuous casting method
JP3717049B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP3256148B2 (en) Continuous casting method of steel with large shrinkage during solidification process
JP7284397B2 (en) Mold powder for continuous casting
JP4527832B2 (en) Steel continuous casting method
JP4598937B2 (en) Powder for continuous casting of steel
JP3869597B2 (en) Mold flux for continuous casting
JPH03210950A (en) Powder for continuous casting