JPH0314541B2 - - Google Patents

Info

Publication number
JPH0314541B2
JPH0314541B2 JP4334180A JP4334180A JPH0314541B2 JP H0314541 B2 JPH0314541 B2 JP H0314541B2 JP 4334180 A JP4334180 A JP 4334180A JP 4334180 A JP4334180 A JP 4334180A JP H0314541 B2 JPH0314541 B2 JP H0314541B2
Authority
JP
Japan
Prior art keywords
slab
molten steel
stirring
mold
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4334180A
Other languages
Japanese (ja)
Other versions
JPS56148460A (en
Inventor
Kenzo Ayada
Yoshihito Kakihara
Wataru Takagi
Takashi Mori
Toshasu Oonishi
Kiichi Narita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4334180A priority Critical patent/JPS56148460A/en
Priority to IT20816/81A priority patent/IT1168118B/en
Priority to CA000374379A priority patent/CA1182619A/en
Priority to SE8102097A priority patent/SE447070B/en
Priority to DE3113192A priority patent/DE3113192C2/en
Priority to SU813279152A priority patent/SU1156587A3/en
Priority to BR8102004A priority patent/BR8102004A/en
Priority to FR8106677A priority patent/FR2481968A1/en
Priority to GB8110433A priority patent/GB2073075B/en
Priority to AU69023/81A priority patent/AU541510B2/en
Priority to ES501019A priority patent/ES501019A0/en
Publication of JPS56148460A publication Critical patent/JPS56148460A/en
Priority to US06/561,149 priority patent/US4515203A/en
Priority to US06/642,659 priority patent/US4637453A/en
Priority to FR8413263A priority patent/FR2569358B2/en
Priority to FR8413264A priority patent/FR2569359B2/en
Priority to US06/899,793 priority patent/US4671335A/en
Publication of JPH0314541B2 publication Critical patent/JPH0314541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Description

【発明の詳細な説明】 本発明は、鋳型内電磁撹拌を利用して連続鋳造
法により、表層部負偏析および中心偏析の小さい
キルド鋼、特に硬鋼材として、自動車部品の棒
材、タイヤのスチールコード、ピアノ線、バネ材
等として好適な鋼材の製法方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention produces killed steel with low surface negative segregation and small center segregation, particularly as a hard steel material, by a continuous casting method using electromagnetic stirring in a mold, as a bar material for automobile parts, and as a steel for tires. The present invention relates to a method for manufacturing steel materials suitable for cords, piano wire, spring materials, etc.

従来から、連続鋳造法において、キルド鋼を製
造することが種々こころみられたが、細径のノズ
ルを通して鋳造する為、鋳造温度を下げて鋳造す
ることが困難であり、この為、高温で鋳造するこ
とになるが、高温で鋳造した鋳片には強い中心部
欠陥、即ち、中心偏析が現れやすくなる。中心偏
析が強く生じた鋳片は中心偏析が大きくて絞りが
低くなり冷間加工性が悪くなる欠点があつた。
In the past, various attempts have been made to produce killed steel using the continuous casting method, but since it is cast through a small-diameter nozzle, it is difficult to lower the casting temperature. However, strong center defects, that is, center segregation, tend to appear in slabs cast at high temperatures. Slabs with strong center segregation had the drawback of large center segregation, low drawing area, and poor cold workability.

上記した中心偏析を無くすためには、鋳片中心
部の充填度を上げる必要があり、そのため、従
来、二次冷却帯において電磁撹拌を行い、成長し
つつある結晶の先端を溶鋼流動によつて切断し、
溶鋼プール内に微細な等軸晶核を多量に生成さ
せ、柱状晶凝固時に発生するブリツジを防止し、
鋳片中心部の充填簿を上げることにより、上記中
心偏析を改善している。
In order to eliminate the above-mentioned center segregation, it is necessary to increase the degree of filling in the center of the slab, and for this reason, conventionally, electromagnetic stirring is performed in the secondary cooling zone, and the tips of the growing crystals are removed by the flow of molten steel. cut,
Generates a large amount of fine equiaxed crystal nuclei in the molten steel pool, prevents bridging that occurs during columnar crystal solidification,
The above-mentioned center segregation is improved by increasing the packing density at the center of the slab.

しかし、溶鋼流動による等軸晶核の生成は、凝
固の初期で撹拌を行う程、鋳片表面より成長する
柱状晶が細くてその切断が容易であり、且つ微細
な等軸晶核を多量に発生させることができ、また
鋳片メニスカス部で溶鋼が流動することによるチ
ル効果によつても等軸晶核の生成が促進され、鋳
型内での撹拌が中心偏析を改善するのに効果があ
る。
However, in the generation of equiaxed crystal nuclei due to the flow of molten steel, the more stirring is performed in the early stages of solidification, the thinner the columnar crystals that grow from the surface of the slab are and the easier they are to cut. The generation of equiaxed crystal nuclei is also promoted by the chill effect caused by the flow of molten steel in the slab meniscus, and stirring within the mold is effective in improving center segregation. .

上記鋳型内電磁撹拌(M撹拌)を行うと共に、
二次冷却帯でも電磁撹拌(S撹拌)を行う技術
が、従来、米国特許第2963758号明細書に開示さ
れている。即ち、上記特許の第10図に示す実施
例において、鋳型内電磁撹拌を行う装置と、二次
冷却帯において鋳型直下とその一方との2箇所の
位置で電磁撹拌を行う装置を設置し、鋳型内電磁
撹拌(M撹拌)と二次冷却帯での電磁撹拌(S撹
拌)とを組み合わせた技術が開示されている。
While performing the above-mentioned in-mold electromagnetic stirring (M stirring),
A technique for performing electromagnetic stirring (S stirring) also in the secondary cooling zone has been disclosed in US Pat. No. 2,963,758. That is, in the embodiment shown in FIG. 10 of the above-mentioned patent, a device for electromagnetic stirring inside the mold and a device for electromagnetic stirring at two positions in the secondary cooling zone, one directly below the mold and one side thereof, are installed. A technique is disclosed that combines internal electromagnetic stirring (M stirring) and electromagnetic stirring in a secondary cooling zone (S stirring).

上記した米国特許のようにM撹拌とS撹拌とを
組み合わせ、鋳塊表面層で撹拌を行つて溶鋼流動
により柱状昌の先端を切断して等軸晶領域を鋳塊
中央部に生成させた場合、その第12図から第1
7図の鋳塊横断面の写真からみても明らかなよう
に、中心偏析は改善されるが、上記撹拌により、
鋳塊表面層に近い位置に溶鋼流動により生成する
鮮明なホワイトバンドと呼ばれる負偏析帯が生成
している。
As in the above-mentioned US patent, when M stirring and S stirring are combined, stirring is performed on the surface layer of the ingot, the tips of the columns are cut off by the flow of molten steel, and an equiaxed crystal region is generated in the center of the ingot. , from Figure 12 to the first
As is clear from the photograph of the cross section of the ingot in Figure 7, center segregation is improved, but due to the above stirring,
A clear negative segregation zone called a white band, which is generated by the flow of molten steel, is formed near the surface layer of the ingot.

このように、上記米国特許に示すように、M撹
拌とS撹拌とを組み合わせ、かつ、M撹拌をS撹
拌より強した場合には、より広い等軸晶帯が生成
して中心偏析は改善されるが、撹拌による負偏析
の問題が解消されない。
In this way, as shown in the above US patent, when M stirring and S stirring are combined and M stirring is made stronger than S stirring, wider equiaxed crystal bands are generated and center segregation is improved. However, the problem of negative segregation due to stirring cannot be resolved.

上記した問題に対して、本発明者等は種々の実
験と考察を行つた結果、連続鋳造法で中心偏析お
よび負偏析の少ない鋼材をえるためには、連続鋳
造法で製造した鋳片の凝固末期付近で電磁撹拌を
行うことにより、今一度溶鋼を流動させることが
好ましいことを見出した。
As a result of various experiments and considerations regarding the above-mentioned problems, the present inventors have found that in order to obtain steel materials with less center segregation and negative segregation by continuous casting, it is necessary to solidify the slab manufactured by continuous casting. It has been found that it is preferable to cause the molten steel to flow again by performing electromagnetic stirring near the end of the process.

即ち、凝固末期の等軸晶生成領域において、残
溶鋼の温度勾配がほとんどない所で撹拌すること
により、凝固末期での温度低下により粘性が高く
なつた未凝固溶鋼全体が流動する。この結果、凝
固界面で濃化しつつある溶鋼を等軸晶の結晶粒間
に分散させて、その前後の濃化溶鋼の移動を妨げ
ることにより、その後の凝固が溶鋼プール内でほ
ぼ同時に進行されると共に所謂濃化溶鋼を結晶粒
間に閉じ込める結果、中心偏析が出来難くなる。
また、凝固末期で未凝固溶鋼全体が流動する結
果、凝固界面での溶鋼流動により発生する鮮明な
ホワイトバントが生成せず、巾広く分散されたも
のとなり負偏析度も低くなる。
That is, by stirring the residual molten steel at a place where there is almost no temperature gradient in the equiaxed crystal formation region at the final stage of solidification, the entire unsolidified molten steel, which has become highly viscous due to the temperature drop at the final stage of solidification, flows. As a result, the molten steel that is concentrating at the solidification interface is dispersed between the equiaxed crystal grains, and by preventing the movement of the concentrated molten steel before and after that, subsequent solidification proceeds almost simultaneously within the molten steel pool. At the same time, as a result of confining so-called concentrated molten steel between crystal grains, center segregation becomes difficult to occur.
In addition, as a result of the entire unsolidified molten steel flowing at the final stage of solidification, the clear white band that occurs due to the molten steel flowing at the solidification interface is not generated, but is widely dispersed, and the degree of negative segregation is low.

上記した点より、凝固末期の撹拌は中心偏析が
生成し始める時期に行うのが効果的である。この
等軸晶域内で形成される中心偏析は第10図Bお
よび第11図Bに示すようにV字状をしており、
V字の上の部分が中心偏析の開始位置であるた
め、凝固末期撹拌は凝固シエル厚がこのV字の開
いた部分にほぼ達した時に行うのが好ましい。上
記溶鋼の凝固末期のV字状の中心偏析の開始位置
は、第10図A,Bに示す凝固する矩形状鋳片の
外面の短径が200mmにより大きい鋳片については、
該鋳片の中心部分に残る溶鋼の短径が100mm以下
の範囲の領域であり、また、第11図A,Bに示
す凝固する矩形状鋳片の外面の矩形が200mmより
小さい鋳片については、その中心部分に矩形状に
残る溶鋼の短径が上記外面の短径寸法の1/2以下
の範囲であり、よつて、該領域に達した鋳片の凝
固末期に撹拌を行うことが好ましい。
From the above points, it is effective to perform stirring at the final stage of solidification when center segregation begins to form. The central segregation formed within this equiaxed crystal region has a V-shape as shown in Figures 10B and 11B,
Since the upper part of the V-shape is the starting position of center segregation, it is preferable to carry out the stirring at the final stage of solidification when the thickness of the solidified shell almost reaches the open part of the V-shape. The starting position of the V-shaped center segregation at the final stage of solidification of the molten steel is as shown in Fig. 10A and B for solidified rectangular slabs whose outer surface has a minor axis larger than 200 mm.
For slabs where the minor axis of the molten steel remaining at the center of the slab is within a range of 100 mm or less, and where the outer surface of the solidified rectangular slab shown in Figures 11A and B is smaller than 200 mm, The short axis of the molten steel remaining in a rectangular shape at the center is within 1/2 of the short axis of the outer surface, and it is therefore preferable to stir at the final stage of solidification of the slab that has reached this area. .

上記したように、鋳片内の介在物浮上分離を促
進させるためにさらに高温で鋳造する必要がある
場合、高温で鋳型内で鋳造される溶湯より等軸晶
を多量に発生させるために鋳型内部で行う鋳型内
撹拌(M撹拌)と共に、鋳型下方大略10m付近で
行う凝固末期撹拌(F撹拌)を行うことにより、
鋳型内撹拌、二次冷却帯撹拌(S撹拌)をそれぞ
れの単独に行う場合、あるいはこれらM撹拌にF
撹拌を組み合わせて行う撹拌に比べ、より一層、
中心偏析及び負偏析を減少させることができるこ
とを見出した。
As mentioned above, when it is necessary to cast at a higher temperature to promote the flotation and separation of inclusions in the slab, the inside of the mold is By performing the stirring in the mold (M stirring) performed at , and the stirring at the end of solidification (F stirring) performed approximately 10 m below the mold,
When performing in-mold stirring and secondary cooling zone stirring (S stirring) individually, or when performing these M stirring
Compared to agitation that combines agitation,
It has been found that central segregation and negative segregation can be reduced.

本発明は、上記考察をもとにして連続鋳造法に
よる鋼材の製造方法を新規に提案せんとするもの
で、詳しくは、溶鋼を浸漬ノズルで鋳造用鋳型内
に供給し、湯面にフラツクスを投入しつつ連続的
に鋳造して鋼材を製造する方法において、 上記鋳造内で、周波数f=1.5〜10Hzで鋳型表
面の磁束密度(ガウス)Gの範囲を 268×e-018f≦G≦604×e-020f とした交流によつて誘起された回転磁界により、
溶鋼を鋳片軸芯の周りに電磁誘導撹拌させながら
鋳型下方で連続的に引き出し、かつ、 溶鋼が断面矩形状の鋳片として凝固していく末
期において、 凝固する矩形状鋳片の外面の短径が200mmより
大きい鋳片については、該鋳片の中心部分に矩形
状に残る溶鋼の矩形が100mm以下の範囲の領域で、
また、 凝固する矩形状鋳片の外面の短径が200mmより
小さい鋳片については、その中心部分に矩形状に
残る溶鋼の短径が上記外面の短径寸法の1/2以下
の範囲の領域で、 周波数f=1.5〜10Hzで、鋳片表面での磁束密
度(ガウス)Gの範囲を 895×e-020f≦G≦2137×e-020f とした交流によつて誘起された回転磁界により、
上記中心部分に残る溶鋼を鋳片軸芯の周りに電磁
誘導撹拌をさせて、鋼材の中心偏析と共に撹拌に
よる負偏析を防止したことを特徴とする連続鋳造
法による鋼材の製造方法を提供するものである。
The present invention aims to propose a new method for manufacturing steel materials by continuous casting based on the above considerations. Specifically, molten steel is supplied into a casting mold with an immersion nozzle, and flux is applied to the surface of the molten metal. In the method of manufacturing steel products by continuous casting while charging, in the above casting, the range of magnetic flux density (Gauss) G on the mold surface at frequency f = 1.5 to 10Hz is 268×e -018f ≦G≦ Due to the rotating magnetic field induced by the alternating current of 604×e -020f ,
The molten steel is continuously drawn below the mold while being stirred by electromagnetic induction around the axis of the slab, and at the final stage when the molten steel solidifies as a slab with a rectangular cross section, the short edge of the outer surface of the solidifying rectangular slab is drawn out. For slabs with a diameter larger than 200 mm, the rectangle of molten steel remaining in the center of the slab is 100 mm or less,
In addition, for rectangular slabs to be solidified whose minor axis on the outer surface is smaller than 200 mm, the area where the minor axis of the molten steel remaining in the rectangular shape in the center is 1/2 or less of the minor axis of the above-mentioned outer surface. The magnetic flux density (Gauss) at the slab surface was induced by alternating current at a frequency f = 1.5 to 10 Hz, with the range of magnetic flux density (Gauss) G at the slab surface being 895 × e -020f ≦G ≦2137×e -020f . Due to the rotating magnetic field,
To provide a method for producing steel products by a continuous casting method, characterized in that the molten steel remaining in the center part is stirred by electromagnetic induction around the axis of the slab to prevent center segregation of the steel material as well as negative segregation due to stirring. It is.

さらに本発明は、上記した連続鋳造法による鋼
材の製造方法において、さらに鋳型直下の鋳片の
引出下流において、上記鋳片の凝固末期と鋳造用
鋳型との間の鋳片の中間凝固期において、 周波数f=1.5〜10Hzで、鋳片表面での磁束
密度(ガウス)Gの範囲を 268×e-018f≦G≦604×e-020f とした交流、あるいは 上記中間凝固期の凝固シエルの厚みをDmmとし
て、周波数f=50〜60Hzで、鋳片表面での磁束密
度(ガウス)Gの範囲を 750000/(D−107)2≦G≦750000/(D−100
2 とした交流 のいずかによつて誘起された回転磁界または移動
磁界により、上記中間凝固期における上記凝固シ
エル層内に残る溶鋼を鋳片軸芯に沿つて電磁誘導
撹拌をさせるようにしたことを特徴とする製造方
法を提供するものである。
Furthermore, the present invention provides a method for manufacturing steel materials by the above-described continuous casting method, further comprising: downstream of the withdrawal of the slab immediately below the mold, and at an intermediate solidification stage of the slab between the final solidification stage of the slab and the casting mold; Alternating current with frequency f = 1.5 to 10Hz and magnetic flux density (Gauss) G on the slab surface in the range 268×e -018f ≦G≦604×e −020f , or solidification at the intermediate solidification stage mentioned above. When the thickness of the shell is Dmm, the range of magnetic flux density (Gauss) G on the slab surface at frequency f = 50 to 60Hz is 750000/(D-107) 2 ≦G≦750000/(D-100
) The molten steel remaining in the solidified shell layer during the intermediate solidification period is stirred by electromagnetic induction along the axis of the slab by a rotating magnetic field or a moving magnetic field induced by one of the alternating currents described in 2 . The present invention provides a manufacturing method characterized by the following.

次に、本発明の実施例を図面に示す特性線図と
ともに述べる。
Next, embodiments of the present invention will be described with reference to characteristic diagrams shown in the drawings.

まず、上吹酸素転炉を用いて、3チヤージ吹練
し、転炉出鋼時Al、F、eMn等で成分を調整し
た後、一定の成分たとえばC=0.61%、Mn=
0.90%、Si=1.65%、P=0.020%、S=0.015%、
Cu=0.13%、Ni=0.01%、Cr=0.02%、Mo=
0.01%、Al=0.030%、N=25ppmの化学成分の
組成となつた溶鋼を取鍋とタンデイシユ並びに鋳
型間を完全にArシールして溶鋼の大気酸化を防
止すると共に、かつ該溶鋼を浸漬ノズルで鋳型内
へ連続投入すると共に断熱形フラツクスとして例
えばSiO2=33.9%、CaO=34.0%、Al2O3=4.3
%、Fe2O3=2.0%、Na2O=8.4%、K2O=0.6%、
MgO=0.9%、F=5.1%、C=5.5%のパウダー
を投入し、さらに鋳型内から下方へ引き出した溶
鋼を、該溶鋼の凝固中期および末期で夫々その周
辺に設けた電磁コイルによつて、印加した交流で
誘起される磁界により鋳片軸芯の周りに電磁誘導
撹拌させながら、凝固して鋳片にする。
First, using a top-blown oxygen converter, 3-charge blowing is carried out, and after adjusting the components with Al, F, eMn, etc. during tapping from the converter, certain components such as C = 0.61%, Mn =
0.90%, Si=1.65%, P=0.020%, S=0.015%,
Cu=0.13%, Ni=0.01%, Cr=0.02%, Mo=
Molten steel with a chemical composition of 0.01%, Al = 0.030%, and N = 25ppm is completely sealed with Ar between the ladle, tundish, and mold to prevent atmospheric oxidation of the molten steel, and the molten steel is transferred to an immersion nozzle. For example, SiO 2 = 33.9%, CaO = 34.0%, Al 2 O 3 = 4.3 as an adiabatic flux.
%, Fe 2 O 3 = 2.0%, Na 2 O = 8.4%, K 2 O = 0.6%,
Powders of MgO = 0.9%, F = 5.1%, and C = 5.5% were introduced, and the molten steel was drawn downward from the mold by electromagnetic coils installed around the molten steel in the middle and final stages of solidification, respectively. The cast slab is solidified into a slab while being electromagnetically stirred around the shaft core by a magnetic field induced by applied alternating current.

このような鋳型内と溶鋼に対して電磁撹拌を行
う為には、透磁率の低い銅壁を通して磁力線を溶
鋼に到達させる必要があり、減衰の小さな低周波
数による撹拌(1.5〜10Hz)が適している。一方
凝固末期撹拌の効果は撹拌を行う所で等軸晶の凝
固が進行しつつあることが必要であるが、等軸晶
凝固を伴うには低温鋳造が効果あることが知られ
ており、鋳片内の介在物浮上分離を促進させる為
に高温で鋳造する必要がある場合、高温で鋳型内
に鋳造された溶湯より等軸晶を多量に発生させる
為に、さらに鋳型内の電磁撹拌もしくは二次冷却
帯での電磁撹拌を併用することにより、鋳造され
る鋳片の中心偏析を減少させることができる。
In order to electromagnetically stir the inside of the mold and the molten steel, it is necessary to allow the lines of magnetic force to reach the molten steel through the copper wall, which has low magnetic permeability, and low-frequency stirring (1.5 to 10Hz) with small attenuation is suitable. There is. On the other hand, for the effect of stirring at the final stage of solidification, it is necessary that solidification of equiaxed crystals is proceeding at the place where stirring is performed, but it is known that low temperature casting is effective for accompanied by solidification of equiaxed crystals. If it is necessary to cast at a high temperature to promote the flotation and separation of inclusions within the piece, electromagnetic stirring or double casting in the mold may be used to generate a larger amount of equiaxed crystals than the molten metal cast in the mold at a high temperature. By using electromagnetic stirring in the secondary cooling zone, center segregation of the cast slab can be reduced.

第1図は鋳型内面において、鋳片の溶鋼に与え
る電磁撹拌の強度として、印加する交流の各周期
数毎に磁束密度を種々に代えた場合について、
夫々得た鋳片の持つ中心偏析度と表層部負偏析度
を示すもので、この種鋳片として実用に供し得る
鋳片と中心偏析度と表層部負偏析度の許容範囲か
らみて、磁束密度は一定の範囲内に限定されるこ
とが分かる。すなわち、溶鋼に該溶鋼を撹拌する
べく一定の回転流動を与れえるためには磁束密度
は周波数によつて規定される一定の範囲にあるこ
とが必要であるが、第1図の線図において、許容
範囲内に入る値は、2極で周波数fが1.5〜10Hz
の間で鋳型表面での磁束密度(ガウス)Gが 268×e-018f≦G≦604×e-020f……(1) の範囲内にあることが必要である。いいかえる
と、この範囲を超えると、出来た鋳片の中心偏析
が多くなると冷間加工性が悪くなり、表層部負偏
析が多くなると焼入れ硬度が低下し、成品の不良
率が高く実用に供し得なくなることもある。
Figure 1 shows the intensity of electromagnetic stirring applied to the molten steel in the slab on the inner surface of the mold, when the magnetic flux density is varied for each number of cycles of applied alternating current.
This shows the center segregation degree and surface negative segregation degree of each obtained slab, and the magnetic flux density is determined from the viewpoint of the slab that can be used for practical use as this type of slab and the allowable range of center segregation degree and surface negative segregation degree. It can be seen that is limited within a certain range. In other words, in order to give molten steel a constant rotational flow to stir the molten steel, the magnetic flux density needs to be within a certain range defined by the frequency, but in the diagram of Figure 1, , the values within the allowable range are two poles and the frequency f is 1.5 to 10Hz.
The magnetic flux density (Gauss) G at the mold surface must be within the range of 268×e -018f ≦G≦604×e −020f (1). In other words, when this range is exceeded, cold workability deteriorates when the center segregation of the finished slab increases, and quenching hardness decreases when the surface negative segregation increases, resulting in a high defect rate of the finished product and making it unsuitable for practical use. Sometimes it disappears.

すなわち、第1図はブルームの鋳片で0.60%C
鋼のものを連続鋳造法で製造した場合に鋳型内の
低周波数電源(1.5〜10Hz)による撹拌が中心偏
析およびホワイトバンドの負偏析に与える効果を
示し、横軸の鋳型内面の磁束密度に対して、左の
縦軸の中心偏析度は磁束密度の増加と共に急激な
減少を示し、その後ほとんど低下しなくなる。一
方、右縦軸のホワイトバンド部の負偏析度は磁束
密度の増加と共に直線的に増加する。第1図にお
いて、Cの中心偏析度1.1以下、Cの負偏析度−
0.05以下のゾーンを適正な電磁撹拌の領域とした
斜線で示し、2Hzの場合には200〜400ガウス、4
Hzの場合には130〜270ガウスというように周波数
が上昇する程、適正な磁束密度域は狭まり、かつ
低い値へ移行してゆくことが分かる。この様子を
周波数と磁束密度の関係線図でその適正範囲を示
すと第2図の斜線の範囲の如くなり、この関係を
式で表わすと上記(1)式のようになる。
In other words, Figure 1 shows a bloom slab with 0.60%C.
This shows the effect of stirring using a low-frequency power source (1.5 to 10Hz) in the mold on center segregation and negative segregation of the white band when steel is manufactured using the continuous casting method. Therefore, the center segregation degree on the left vertical axis shows a rapid decrease as the magnetic flux density increases, and then hardly decreases. On the other hand, the degree of negative segregation in the white band portion on the right vertical axis increases linearly as the magnetic flux density increases. In Figure 1, the central segregation degree of C is 1.1 or less, and the negative segregation degree of C is -
The zone below 0.05 is indicated by diagonal lines as the area of proper electromagnetic stirring.
In the case of Hz, it can be seen that as the frequency increases, such as from 130 to 270 Gauss, the appropriate magnetic flux density range narrows and shifts to lower values. If this situation is shown in a diagram of the relationship between frequency and magnetic flux density, the appropriate range will be shown as the shaded range in FIG. 2, and if this relationship is expressed in an equation, it will be as shown in equation (1) above.

また、上記の如き許容範囲の条件で鋳型内電磁
撹拌を行つて製造した0.6%C鋼の鋳片と、全く
電磁撹拌を行わないで製造した鋳片について、
夫々の鋳片内偏析の変化を、鋳片表面から鋳片中
心にわたつてC%の変化量でみると、第3図の如
くなつて、本発明に従つて鋳型内電磁撹拌で製造
した鋳片は中心偏析が小さくなると同時に、特に
表層部におけるCの負偏析が少ないことが分か
る。また、これら二つの鋳片の実際のマクロ組織
を観察すると、添付の参考写真に示す如く、本発
明に従つて鋳型内電磁撹拌で製造した鋳片は従来
の如く全く電磁撹拌を行わないて製造した鋳片に
比して、その鋳片中心部において細な等軸晶帯が
生成されていて、中心偏析が数段と改善されてい
ることが分かる。また、本発明に従つて鋳型内電
磁撹拌で製造した鋳片は、いわゆるホワイトバン
ドといわれる負偏析帯も生成し難いことを見出し
た。すなわち、通常、中心偏析度は溶鋼中と合金
元素濃度と鋳片中心可部の濃度の比で決まり、ま
た、負偏析度は溶鋼中の合金元素の濃度と負偏析
帯の濃度の差に対する溶鋼中の濃度の比で決まる
が、凝固初期の温度勾配の大きい所ではデントラ
イト間隔が小さいために電磁撹拌によつて溶鋼を
流動させても、溶鋼による樹間の濃化溶鋼の洗浄
がおこりにくく、したがつてホワイトバンドも生
成し難いものである。これらの鋳片におけるホワ
イトバンド部の負偏析および中心部の中心偏析を
さらに少なくするためには、上記の如き鋳型内電
磁撹拌に加えて、溶鋼の凝固の中間期において今
一度溶鋼に一定の電磁撹拌を与えることがより等
軸晶を多量に発生させて中心偏析を効果的に少な
くすることができる。すなわち、上記の連続鋳造
法による鋼材と製造方法において、さらに鋳片の
引出下流において、上記鋳片の凝固末期と鋳造用
鋳型との間で鋳片の中間凝固期における溶鋼をf
=1.5〜10Hzで鋳片表面での磁界密度Gの範囲 268×e-018f≦G≦604×e-020f、あるいはそ
の凝固シエルの厚さをDmmとして周波数f=50〜
60Hzで鋳片表面での磁束密度(ガウス)Gの範囲
を750000/(D−107)2≦G≦750000/(D−100)2
した交流によ つて誘起された回転磁界または移動磁界により鋳
片軸芯の周りに電磁誘導撹拌をさせると更に効果
が倍加するものである。
In addition, regarding the slabs of 0.6% C steel manufactured by electromagnetic stirring in the mold under the above-mentioned allowable conditions, and the slabs manufactured without electromagnetic stirring at all,
Looking at the change in segregation within each slab in terms of the amount of change in C% from the slab surface to the center of the slab, the results are as shown in Figure 3. It can be seen that the center segregation of the specimen is small, and at the same time, the negative segregation of C, especially in the surface layer, is small. Furthermore, when observing the actual macrostructures of these two slabs, as shown in the attached reference photo, the slabs produced by in-mold electromagnetic stirring according to the present invention were manufactured without any electromagnetic stirring as in the conventional method. It can be seen that a thin equiaxed crystal band was generated in the center of the slab, and the center segregation was improved by several orders of magnitude compared to the slab. Furthermore, it has been found that the slab produced by in-mold electromagnetic stirring according to the present invention is less likely to generate a negative segregation zone called a so-called white band. In other words, the degree of central segregation is usually determined by the ratio of the concentration of alloying elements in molten steel to the concentration in the central flexible part of the slab, and the degree of negative segregation is determined by the ratio of the concentration of alloying elements in molten steel to the concentration in the negative segregation zone. This is determined by the ratio of concentrations in the wood, but in places where there is a large temperature gradient in the early stages of solidification, the dentrite spacing is small, so even if the molten steel is made to flow by electromagnetic stirring, it is difficult for the molten steel to wash out the concentrated molten steel between the trees. , therefore, it is also difficult to generate a white band. In order to further reduce the negative segregation in the white band part and the center segregation in the center of these slabs, in addition to the electromagnetic stirring in the mold as described above, a certain electromagnetic stirring is applied to the molten steel once again during the intermediate stage of solidification of the molten steel. By providing stirring, a large amount of equiaxed crystals can be generated and center segregation can be effectively reduced. That is, in the steel material and manufacturing method by the continuous casting method described above, further downstream of the drawing of the slab, the molten steel in the intermediate solidification stage of the slab is transferred between the final solidification stage of the slab and the casting mold.
= range of magnetic field density G on the slab surface at 1.5 to 10Hz 268×e -018f ≦G≦604×e -020f , or frequency f=50 to 20f with the thickness of the solidified shell being Dmm
By rotating magnetic field or moving magnetic field induced by alternating current with the range of magnetic flux density (Gauss) G on the slab surface at 60Hz as 750000/(D-107) 2 ≦G≦750000/(D-100) 2 The effect is further doubled when electromagnetic induction stirring is applied around the shaft of the slab.

なお、溶鋼の凝固中間期に与える電磁撹拌の磁
束密度とその時の凝固シエルの厚さ20mmおよび60
mmについて、出来た鋳片の中心偏析度と表層部
(ホワイトバンド部)の負偏析度の関係を第1図
と同様に第4図に示し、またこの時における鋳片
表面での磁束密度(ガウス)と凝固シエルの厚さ
Dmmの関係でみた適正撹拌領域を第2図と同様に
第5図に示す。
In addition, the magnetic flux density of electromagnetic stirring applied during the intermediate stage of solidification of molten steel and the thickness of the solidified shell at that time are 20 mm and 60 mm.
Similarly to Figure 1, Figure 4 shows the relationship between the center segregation degree of the finished slab and the negative segregation degree of the surface layer (white band part) for mm, and the magnetic flux density on the slab surface at this time ( Similar to FIG. 2, FIG. 5 shows the appropriate stirring range in terms of the relationship between the solidified shell thickness (Dmm) and the solidified shell thickness (Dmm).

上記鋳型内電磁撹拌(M撹拌)と二次冷却帯の
中間凝固期における電磁撹拌(S撹拌)を行つた
後に、凝固末期に電磁撹拌(F撹拌)を行う。
After performing the electromagnetic stirring in the mold (M stirring) and the electromagnetic stirring (S stirring) during the intermediate solidification period of the secondary cooling zone, electromagnetic stirring (F stirring) is performed at the final stage of solidification.

上記溶鋼の凝固末期における電磁撹拌(F撹
拌)では、鋳片内部において等軸晶凝固が進行し
つつある残溶鋼が一定の範囲内にある時に電磁撹
拌がなされるように限定される。即ち、前記した
ように、第10図に示す凝固する矩形状鋳片の外
面の短径が200mmより大きい鋳片では、該鋳片の
中心部分に矩形状に残る溶鋼の短径が100mm以下
の範囲の領域で電磁撹拌を行う。また、第11図
に示す凝固する矩形状鋳片の外面の短径が200mm
より小さい鋳片では、その中心部分に矩形状にの
こる溶鋼の短径が上記外面の短径寸法の1/2以下
の領域に限定される。かつ、このF撹拌は、等軸
晶域内で中心偏析が生成し始める時期に開始する
のが効果的であり、中心偏析は第10図および第
11図においてV字状をしており、このV字の上
の部分が中心偏析の開始位置であるため、凝固末
期撹拌は凝固シエル厚がこのVの開いた部分に達
した時に行うのが好ましい。
The electromagnetic stirring (F stirring) at the final stage of solidification of the molten steel is limited to performing electromagnetic stirring when the residual molten steel in which equiaxed crystal solidification is proceeding inside the slab is within a certain range. That is, as mentioned above, in the solidified rectangular slab shown in Fig. 10, in which the minor axis of the outer surface is larger than 200 mm, the minor axis of the molten steel remaining in the rectangular shape at the center of the slab is 100 mm or less. Perform electromagnetic stirring in a range of areas. In addition, the short diameter of the outer surface of the rectangular slab to be solidified as shown in Fig. 11 is 200 mm.
In the case of smaller slabs, the short axis of the rectangular molten steel remaining in the central portion is limited to an area that is 1/2 or less of the short axis of the outer surface. Moreover, it is effective to start this F stirring at the time when central segregation begins to form within the equiaxed crystal region, and the central segregation is V-shaped in FIGS. Since the upper part of the V is the starting position of center segregation, it is preferable to perform the stirring at the final stage of solidification when the thickness of the solidified shell reaches the open part of this V.

上記した範囲の残溶鋼のプールに対して電磁撹
拌を行うことにより溶鋼を流動させると、該溶鋼
の等軸晶帯内で残溶鋼を撹拌して、例えばそれ以
前の凝固状態にあける柱状晶帯での撹拌に比較
し、凝固末期の等軸晶生成領域において残溶鋼の
温度勾配がほとんど無い所で撹拌することによ
り、温度勾配が大きくなるために凝固界面付近の
溶鋼流動が特に強くなる柱状晶生成領域での撹拌
と異なり、凝固末期での温度低下により粘性が高
くなつた未凝固溶鋼全体が流動する。この結果、
凝固界面で濃化しつつある溶鋼が等軸晶の結晶粒
間に分散され、その前後の濃化溶鋼の移動を妨げ
られ、その後の凝固が溶鋼プール内でほぼ同時に
進行されると共に、いわゆる濃化溶鋼を結晶粒間
にとじ込める結果、中心偏析が出来難くなる。ま
た、凝固末期で未凝固溶鋼全体が流動する結果、
凝固界面での溶鋼流動により発生する鮮明なホワ
イトバンドの生成の防止でき、幅広く分散された
ものとなり、負偏析度も低くなる。
When the molten steel is made to flow by performing electromagnetic stirring on the pool of residual molten steel in the above range, the residual molten steel is stirred within the equiaxed crystal zone of the molten steel, and for example, a columnar crystal zone is created in the previously solidified state. Compared to stirring at the solidification interface, stirring at a place where there is almost no temperature gradient of the residual molten steel in the equiaxed crystal formation region at the final stage of solidification increases the temperature gradient, resulting in columnar crystals where the flow of molten steel near the solidification interface becomes particularly strong. Unlike stirring in the generation region, the entire unsolidified molten steel, which has become highly viscous due to the temperature drop at the final stage of solidification, flows. As a result,
The molten steel that is becoming concentrated at the solidification interface is dispersed between equiaxed crystal grains, preventing the movement of the concentrated molten steel back and forth, and the subsequent solidification proceeds almost simultaneously within the molten steel pool, and the so-called concentration As a result of trapping molten steel between crystal grains, center segregation becomes difficult to occur. In addition, as a result of the entire unsolidified molten steel flowing at the final stage of solidification,
It is possible to prevent the formation of a sharp white band that occurs due to the flow of molten steel at the solidification interface, resulting in a widely dispersed band and a low degree of negative segregation.

この種鋳片として実用に供し得る鋳片の中心偏
析度と表層部負偏析度の許容範囲からみて、上記
F撹拌時の磁束密度は一定の範囲内に限定される
ことが分かる。すなわち、溶鋼に該溶鋼を撹拌す
るべく一定の回転流動を与えるためには電磁誘導
撹拌の磁束密度が周波数との関連において一定の
範囲にあることが必要であるが、第1図の線図に
おいて、許容範囲内に入る値は、2極で周波数f
が1.5〜10Hzの間で、鋳片表面での磁束密度(ガ
ウス)Gが 895×e-020f≦G≦2137×e-020f……(2) であることが必要である。いいかえると、この範
囲を越えると、出来た鋳片の中心偏析が多いと冷
間加工制が悪く表層部の負偏析が多くなると焼入
れ硬度が低下し成品の不良率が高く実用に供し得
なくなることもある。
In view of the allowable ranges of center segregation degree and surface layer negative segregation degree of a slab that can be put to practical use as this kind of slab, it is understood that the magnetic flux density during F stirring is limited within a certain range. In other words, in order to give a constant rotational flow to the molten steel in order to stir the molten steel, it is necessary that the magnetic flux density of electromagnetic induction stirring is within a certain range in relation to the frequency. , the value that falls within the tolerance range is two poles and the frequency f
is between 1.5 and 10 Hz, and the magnetic flux density (Gauss) G on the surface of the slab is 895×e -020f ≦G≦2137×e −020f (2). In other words, if this range is exceeded, if there is a lot of segregation at the center of the finished slab, cold working will be poor and if there is a lot of negative segregation at the surface layer, the quenching hardness will decrease and the product will have a high defective rate, making it impossible to put it into practical use. There is also.

すなわち、第6図はブルームの鋳片で0.60%C
鋼のものを連続鋳造法で製造した場合に鋳片周辺
からの低周波数電源(1.5〜10Hz)による撹拌が
中心偏析およびホワイトバンドの負偏析に与える
効果を示し、横軸の鋳型内面の磁束密度に対し
て、左の縦軸の中心偏析は磁束密度の増加と共に
急激た減少を示し、その後ほとんど低下しなくな
る。一方、右縦軸のホワイトバンド部の負偏析は
磁束密度の増加と共に直線的に増加する。第6図
において、Cと中心偏析度1.1以下、Cの負偏析
度−0.05以下のゾーンを適正な電磁撹拌の領域と
して斜線で示し、2Hzの倍には700〜1600ガウス、
4Hzの場合には400〜950ガウス、6Hzの場合には
300〜650ガウスというように周波数が上昇する
程、適正な磁束密度域は狭まり、かつ低い値へ移
行してゆくことが分かる。この様子を周波数と磁
束密度の関係線図でその適正範囲を示すと第7の
斜線の如くなり、この関係を式で表わすと上記(2)
式のようになる。
In other words, Figure 6 shows bloom slab with 0.60%C.
The graph shows the effect of stirring using a low-frequency power source (1.5 to 10 Hz) from around the slab on center segregation and negative white band segregation when steel is manufactured using the continuous casting method, and the horizontal axis shows the magnetic flux density on the inner surface of the mold. On the other hand, the center segregation on the left vertical axis shows a rapid decrease as the magnetic flux density increases, and then hardly decreases. On the other hand, the negative segregation in the white band portion on the right vertical axis increases linearly as the magnetic flux density increases. In Figure 6, the zone where C and center segregation degree is 1.1 or less, and the negative segregation degree of C -0.05 or less is indicated by diagonal lines as the area of proper electromagnetic stirring,
400 to 950 Gauss for 4Hz, and 400 to 950 Gauss for 6Hz
It can be seen that as the frequency increases, such as from 300 to 650 Gauss, the appropriate magnetic flux density range narrows and shifts to lower values. If this situation is shown in the relationship diagram between frequency and magnetic flux density, the appropriate range is shown as the seventh diagonal line, and this relationship can be expressed by the formula (2) above.
It becomes like the formula.

また、上記の如き許容範囲の条件で鋳片の凝固
末期における電磁撹拌を行つて製造した0.6%C
鋼の鋳片と、全く電磁撹拌を行わないで製造した
鋳片について、夫々の鋳片内偏析の変化を、鋳片
表面から鋳片中心にわたつてC(%)の変化量で
みると、第8図の如くなつて、本発明に従つて電
磁撹拌で製造した鋳片は中心偏析が小さくなると
同時に、ホワイトバンドと呼ばれる負偏析帯の生
成が少ないことが分かる。また、これら二つの鋳
片の実際マクロ組織を観察すると、添付の参考写
真に示す如く、本発明に従つて電磁撹拌で製造し
た鋳片は従来の如く全く電磁攪拌を行わないで製
造した鋳片に比して、その鋳片中心部において細
な等軸晶帯が生成されていて中心偏析が数段と改
善されていることが分かる。通常、中心偏析度は
溶鋼中合金元素の濃度と鋳片中心部の濃度の比で
決まり、また負偏析度は溶鋼中の合金元素の濃度
と負偏析帯の濃度の差に対する溶鋼中の濃度の比
で決まる。第9図はブルームの鋳片として200□
〜300×400での0.6%C鋼のものを連続鋳造法で
製造する場合に、電磁撹拌をしない場合と、鋳型
内部で電磁撹拌した場合(M撹拌)と、この鋳型
内電磁撹拌(M撹拌)に鋳型直下より下方5m以
内で行う溶鋼の凝固中間期の電磁撹拌(S撹拌)
を併用した場合と、鋳型下方大略10m付近で行う
鋳片の凝固末期に電磁撹拌した場合(F撹拌)
と、この鋳片の凝固末期の電磁撹拌(F撹拌)に
溶鋼の凝固中間期の電磁撹拌(S撹拌)を併用し
た場合と、鋳型内電磁撹拌(M撹拌)に溶鋼の凝
固末期の電磁撹拌(F撹拌)を併用した場合と、
さらに鋳型内電磁撹拌(M撹拌)に溶鋼の凝固中
間期(S撹拌)と凝固末期において電磁撹拌(F
撹拌)を併用した場合の夫々について、ホワイト
バンド部の負偏析度が0.05の場合における中心偏
析度を示したものであるが、鋳型内および溶鋼の
凝固中間期の電磁撹拌に、凝固末期の電磁撹拌を
併用すると、より中心偏析度が小さくなることが
分かる。更に詳述すると、M撹拌、S撹拌はとも
に微細な等軸晶を電磁撹拌により生成させて柱状
晶凝固時のブリツシングを防止し、鋳片中心部の
充填度を上げることにより中心部欠陥(中心偏
析)を改善せんとするもので、通常、等軸晶帯の
巾が広い程、生成する中心部の等軸晶はより微細
となり、中心部の充填度は上がることになるか
ら、M撹拌と同様にS撹拌もできるだけ等軸晶の
巾を広くする必要があり、したがつてS撹拌は鋳
型に近い鋳型直下より下方5m以内の部分で撹拌
することが好ましいとされていた。一方、鋳型下
方大略10m付近で行うF撹拌は、対象とする鋳片
の凝固末期で等軸晶帯の巾が狭くなるために、従
来のS撹拌の考え方からすると逆行することにな
り、むしろ中心部欠陥改善の効果がないとされて
いた。このためにM+F撹拌より前記従来例の米
国特許に開示されていたようにM+S撹拌の方が
良いとみられていたが、既にM撹拌により鋳片に
多量の等軸晶が生成している場合にはM+S撹拌
の効果はないと言える。しかしながら、M+F撹
拌は、実際には、従来の電磁撹拌の効果とは異な
るもので凝固末期部に沈積した等軸晶を、F撹拌
により、中心部に集めて、凝固末期の溶鋼プール
形状を、よりフラツトにし、等軸晶粒の鋳片中心
部への移動を防ぐと同時に濃化溶鋼と中心部への
集中を妨げて、中心偏析を改善する作用を持つて
いる。すなわち、M+F撹拌ではF撹拌を行う溶
鋼プール巾程度の等軸晶帯が生成しておれば中心
偏析を改善できる特長があり、このため、弱いM
撹拌で負偏析を制御して大きな中心偏析の改善効
果が得られる。したがつて、M+F撹拌により、
特に中心偏析、負偏析の制限の厳しい用途の鋼
材、たとえば線材(バネ鋼、スチールコード用
鋼、ピアノ線等の硬鋼線材)や棒材(自動車用の
低合金鋼=SCR、SCM、SC鋼など)等に好適な
キルド鋼の連鋳化が可能となつた。
In addition, 0.6% C produced by electromagnetic stirring at the final stage of solidification of the slab under the above-mentioned allowable conditions.
For steel slabs and slabs produced without any electromagnetic stirring, the change in segregation within each slab is looked at as the amount of change in C (%) from the slab surface to the center of the slab. As shown in FIG. 8, it can be seen that the slab produced by electromagnetic stirring according to the present invention has less center segregation and at the same time less generation of negative segregation bands called white bands. Furthermore, when observing the actual macrostructures of these two slabs, as shown in the attached reference photo, the slabs produced by electromagnetic stirring according to the present invention are different from the slabs produced without any electromagnetic stirring as in the past. It can be seen that a thin equiaxed crystal band is generated in the center of the slab, and the center segregation is improved by several orders of magnitude. Normally, the central segregation degree is determined by the ratio of the concentration of alloying elements in molten steel to the concentration at the center of the slab, and the negative segregation degree is determined by the ratio of the concentration of alloying elements in molten steel to the concentration in the negative segregation zone. It is determined by the ratio. Figure 9 shows 200□ as a bloom slab.
When manufacturing 0.6% C steel of ~300 x 400 by continuous casting method, there are two cases: no electromagnetic stirring, electromagnetic stirring inside the mold (M stirring), and electromagnetic stirring inside the mold (M stirring). ), electromagnetic stirring (S stirring) is carried out during the intermediate stage of solidification of molten steel within 5 m below directly below the mold.
and when electromagnetic stirring is performed at the final stage of solidification of the slab approximately 10m below the mold (F stirring).
, when electromagnetic stirring (F stirring) at the final stage of solidification of the slab is combined with electromagnetic stirring (S stirring) at the intermediate stage of solidification of molten steel, and when electromagnetic stirring at the final stage of solidification of molten steel is used in combination with in-mold electromagnetic stirring (M stirring) When (F stirring) is used in combination,
In addition, electromagnetic stirring (F stirring) is performed in the middle stage of solidification of molten steel (S stirring) and at the final stage of solidification of the molten steel.
The graph shows the center segregation degree when the negative segregation degree of the white band part is 0.05 for each case where the electromagnetic stirring in the mold and in the intermediate stage of solidification of molten steel is combined with the electromagnetic stirring at the final stage of solidification. It can be seen that when stirring is used in combination, the center segregation degree becomes smaller. More specifically, in both M stirring and S stirring, fine equiaxed crystals are generated by electromagnetic stirring to prevent blitzing during solidification of columnar crystals, and by increasing the degree of filling in the center of the slab, center defects (center Normally, the wider the equiaxed crystal zone, the finer the equiaxed crystals in the center will be, and the higher the degree of filling in the center will be. Similarly, for S stirring, it is necessary to widen the width of the equiaxed crystals as much as possible, and therefore, it was considered preferable to perform S stirring at a portion within 5 m below the mold, which is close to the mold. On the other hand, when F stirring is performed approximately 10 m below the mold, the width of the equiaxed crystal zone narrows at the final stage of solidification of the target slab, which is contrary to the conventional concept of S stirring, and is rather centered. It was believed that this method had no effect on improving defects in parts. For this reason, M+S stirring as disclosed in the conventional US patent was considered to be better than M+F stirring, but when a large amount of equiaxed crystals have already been generated in the slab due to M stirring, It can be said that there is no effect of M+S stirring. However, M+F stirring is actually different from the effect of conventional electromagnetic stirring, and the equiaxed crystals deposited at the final stage of solidification are collected in the center by F stirring, and the shape of the molten steel pool at the final stage of solidification is changed. It has the effect of making the slab flatter and preventing equiaxed crystal grains from moving to the center of the slab, and at the same time preventing concentrated molten steel from concentrating in the center, improving center segregation. In other words, M+F stirring has the advantage that center segregation can be improved if an equiaxed crystal band about the width of the molten steel pool subjected to F stirring is generated;
By controlling negative segregation by stirring, a large improvement effect on center segregation can be obtained. Therefore, by M+F stirring,
Especially steel materials for applications with severe center segregation and negative segregation restrictions, such as wire rods (spring steel, steel cord steel, hard steel wire rods such as piano wire) and bars (low alloy steel for automobiles = SCR, SCM, SC steel) It has become possible to continuously cast killed steel, which is suitable for

上記実施例に詳述した如く、本発明の連続鋳造
法による鋼材の製造方法は、溶鋼を浸漬ノズルで
断熱形フラツクスと共に鋳造用鋳型内に投入し、
該鋳型内で上記溶鋼を、周波数f=1.5〜10Hzで
鋳片表面での磁束密度(ガウス)Gを268×e-0
18f≦G≦604×e-020fの範囲とした交流によつて
誘起された回転磁界により鋳型軸芯の周りに電磁
誘導撹拌させながら、鋳型下方へ連続的に引き出
し、かつ該溶鋼が凝固する中間期において、今一
度溶鋼にf=1.5〜10Hzで、鋳片表面での磁束密
度Gの範囲268×e-018f≦G≦604×e-020f、あ
るいは凝固シエル層の厚さDmmとして周波数f=
50〜60Hzとして磁束密度(ガウス)Gの範囲を
750000/(D−107)2≦G≦750000/(D−100)2とし
た交流によつ て誘起された回転磁界または移動磁界により二次
的に電磁誘導撹拌をさせるようにし、さらに溶鋼
が鋳片として凝固する末期において、 凝固する矩形状鋳片の外面の短径が200mmより
大きい鋳片については、該鋳片の中心部分に矩形
状に残る溶鋼の短径が100mm以下の範囲の領域で、
また、 凝固する矩形状鋳片の外面の短径が200mmより
小さい鋳片については、その中心部分に矩形状に
残る溶鋼の短径が上記外面の短径寸法の1/2以下
の範囲の領域で、上記残溶鋼を、周波数f=1.5
〜10Hzで、鋳片表面での磁束密度(ガウス)Gを 895×e-020f≦G≦2137×e-020f にした交流によつて誘起された回転磁界により鋳
片軸芯の周りに電磁誘導撹拌をさせるようにした
ことを特徴とするものであり、鋳片内の負偏析お
よび中心部の偏析が少なくて鋼質が軟質であり、
かつ加工時の歪時効脆化が軽減できる条件を満足
したものを連続鋳造法において比較的低コストで
製造できるものである。
As described in detail in the above embodiments, the method for manufacturing steel products by the continuous casting method of the present invention includes injecting molten steel into a casting mold together with adiabatic flux through a submerged nozzle,
The above molten steel is heated in the mold at a frequency f = 1.5 to 10 Hz, and the magnetic flux density (Gauss) G on the slab surface is 268×e -0
18f ≦G≦604×e The rotating magnetic field induced by alternating current in the range of 18f≦G≦604×e -020f causes electromagnetic induction stirring around the mold axis, and the molten steel is continuously drawn downward from the mold, and the molten steel solidifies. At the intermediate stage, the molten steel is applied again at f = 1.5 to 10 Hz, and the range of magnetic flux density G at the slab surface is 268 × e -018f ≦G≦604×e -020f , or the thickness of the solidified shell layer. Frequency f= as Dmm
The range of magnetic flux density (Gauss) G is 50~60Hz.
750000/(D-107) 2 ≦G≦750000/(D-100) 2 Secondary electromagnetic induction stirring is caused by the rotating or moving magnetic field induced by the alternating current, and the molten steel is further In the final stage of solidification as a slab, for slabs whose outer surface minor axis is larger than 200 mm, molten steel remaining in a rectangular shape at the center of the slab is removed in an area where the minor axis is 100 mm or less. ,
In addition, for rectangular slabs to be solidified whose minor axis on the outer surface is smaller than 200 mm, the area where the minor axis of the molten steel remaining in the rectangular shape in the center is 1/2 or less of the minor axis of the above-mentioned outer surface. Then, the above residual molten steel is heated to a frequency of f=1.5.
At ~10Hz, the axis of the slab is rotated by a rotating magnetic field induced by an alternating current with a magnetic flux density (Gauss) G on the slab surface of 895×e -020f ≦G≦2137×e -020f . It is characterized by electromagnetic induction stirring in the surrounding area, and the steel is soft with less negative segregation in the slab and less segregation in the center.
Moreover, it can be manufactured at a relatively low cost using a continuous casting method, and satisfies the conditions for reducing strain aging embrittlement during processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第9図は夫々本発明で製造した鋳片
の特性図、第10図Aは大きい鋳片の凝固末期の
横断面図、第10図Bは上記大きい鋳片の凝固末
期の縦第断面図、第11図Aおよび第11図Bは
小さい鋳片の凝固末期の横断面図および縦断面図
である。
Figures 1 to 9 are characteristic diagrams of slabs manufactured according to the present invention, Figure 10A is a cross-sectional view of the large slab at the final stage of solidification, and Figure 10B is a vertical cross-sectional view of the large slab at the final stage of solidification. 11A and 11B are a cross-sectional view and a longitudinal cross-sectional view of a small slab at the final stage of solidification.

Claims (1)

【特許請求の範囲】 1 溶綱を浸漬ノズルで鋳造用鋳型内に供給し、
湯面にフラツクスを投入しつつ連続的に鋳造して
鋼材を製造する方法において、 上記鋳型内で、周波数f=1.5〜10Hzで鋳型表
面の磁束密度(ガウス)Gの範囲を 268×e-018f≦G≦604×e-020f とした交流によつて誘起された回転磁界により、
溶鋼を鋳片軸芯の周りに電磁誘導撹拌させながら
鋳型下方で連続的に引き出し、かつ、 溶鋼が断面矩形状の鋳片として凝固していく末
期において、 凝固する矩形状鋳片の外面の短径が200mmより
大きい鋳片については、該鋳片の中心部分に矩形
状に残る溶鋼の矩形が100mm以下の範囲の領域で、
また、 凝固する矩形状鋳片の外面の短径が200mmより
小さい鋳片については、その中心部分に矩形状に
残る溶鋼の短径が上記外面の短径寸法の1/2以下
の範囲の領域で、 周波数f=1.5〜10Hzで、鋳片表面での磁束密
度(ガウス)Gの範囲を 895×e-020f≦G≦2137×e-020f とした交流によつて誘起された回転磁界により、
上記中心部分に残る溶鋼を鋳片軸芯と周りに電磁
誘導撹拌をさせて、鋼材の中心偏析と共に撹拌に
よる負偏析を防止したことを特徴とする連続鋳造
法による鋼材の製造方法。 2 上記特許請求の範囲第1項に記載した連続鋳
造法による鋼材の製造方法において、さらに鋳型
直下の鋳片の引出下流において、上記鋳片の凝固
末期と鋳造用鋳型との間の鋳片の中間凝固期にお
いて、 周波数f=1.5〜10Hzで、鋳片表面での磁束密
度(ガウス)Gの範囲を 268×e-018f≦G≦604×e-020f とした交流、あるいは 上記中間凝固期の凝固シエルの厚みをDmmとし
て、周波数f=50〜60Hzで、鋳片表面での磁束密
度(ガウス)Gの範囲を 750000/(D−107)2≦G≦750000/(D−100
2 とした交流 のいずかによつて誘起された回転磁界または移動
磁界により、上記中間凝固期における上記凝固シ
エル層内に残る溶鋼を鋳片軸芯に沿つて電磁誘導
撹拌をさせるようにしたことを特徴とするもの。
[Claims] 1. Supplying molten steel into a casting mold with an immersion nozzle,
In a method of manufacturing steel by continuously casting flux while pouring flux onto the surface of the molten metal, in the above mold, the range of magnetic flux density (Gauss) G on the mold surface at a frequency f = 1.5 to 10 Hz is 268 × e -018f ≦G≦604×e -020f Due to the rotating magnetic field induced by the alternating current,
The molten steel is continuously drawn below the mold while being stirred by electromagnetic induction around the axis of the slab, and at the final stage when the molten steel solidifies as a slab with a rectangular cross section, the short edge of the outer surface of the solidifying rectangular slab is drawn out. For slabs with a diameter larger than 200 mm, the rectangle of molten steel remaining in the center of the slab is 100 mm or less,
In addition, for rectangular slabs to be solidified whose minor axis on the outer surface is smaller than 200 mm, the area where the minor axis of the molten steel remaining in the rectangular shape in the center is 1/2 or less of the minor axis of the above-mentioned outer surface. The magnetic flux density (Gauss) at the slab surface was induced by alternating current at a frequency f = 1.5 to 10 Hz, with the range of magnetic flux density (Gauss) G at the slab surface being 895 × e -020f ≦G ≦2137×e -020f . Due to the rotating magnetic field,
A method for manufacturing steel products using a continuous casting method, characterized in that the molten steel remaining in the center portion is stirred by electromagnetic induction around the slab axis to prevent central segregation of the steel material as well as negative segregation due to stirring. 2. In the method for producing steel materials by the continuous casting method as set forth in claim 1 above, further downstream of the withdrawal of the slab immediately below the mold, the casting process is performed between the final stage of solidification of the slab and the casting mold. In the intermediate solidification stage, the frequency f = 1.5 to 10 Hz and the range of magnetic flux density (Gauss) G on the slab surface is 268×e -018f ≦G≦604×e -020f , or the above Assuming that the thickness of the solidified shell in the intermediate solidification stage is Dmm, the range of magnetic flux density (Gauss) G on the slab surface at frequency f = 50 to 60Hz is 750000/(D-107) 2 ≦G≦750000/(D- 100
) The molten steel remaining in the solidified shell layer during the intermediate solidification period is stirred by electromagnetic induction along the axis of the slab by a rotating magnetic field or a moving magnetic field induced by one of the alternating currents described in 2 . Something that is characterized by something that has happened.
JP4334180A 1980-04-02 1980-04-02 Production of steel material by continuous casting method Granted JPS56148460A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP4334180A JPS56148460A (en) 1980-04-02 1980-04-02 Production of steel material by continuous casting method
IT20816/81A IT1168118B (en) 1980-04-02 1981-03-30 CONTINUOUS STEEL CASTING PROCESS
CA000374379A CA1182619A (en) 1980-04-02 1981-04-01 Continuous steel casting process
SE8102097A SE447070B (en) 1980-04-02 1981-04-01 SET FOR ELECTROMAGNETIC MIXING OF MOLD STEEL IN A STRENGTHING PLANT
DE3113192A DE3113192C2 (en) 1980-04-02 1981-04-01 Method for electromagnetic stirring of molten steel in several areas of a continuous caster
SU813279152A SU1156587A3 (en) 1980-04-02 1981-04-01 Method of producing steel casts by continuous casting method
AU69023/81A AU541510B2 (en) 1980-04-02 1981-04-02 Stirring molten metal
FR8106677A FR2481968A1 (en) 1980-04-02 1981-04-02 PROCESS FOR CONTINUOUS STEEL CASTING
GB8110433A GB2073075B (en) 1980-04-02 1981-04-02 Continuous steel casting process employing electromagnetic stirring
BR8102004A BR8102004A (en) 1980-04-02 1981-04-02 PROCESS TO PRODUCE STEEL CAST PIECES BY CONTINUOUS CASTING
ES501019A ES501019A0 (en) 1980-04-02 1981-04-02 A METHOD FOR PRODUCING CAST STEEL PARTS
US06/561,149 US4515203A (en) 1980-04-02 1983-12-14 Continuous steel casting process
US06/642,659 US4637453A (en) 1980-04-02 1984-08-21 Method for the continuous production of cast steel strands
FR8413263A FR2569358B2 (en) 1980-04-02 1984-08-27 PROCESS FOR THE CONTINUOUS PRODUCTION OF CAST STEEL INGOTS
FR8413264A FR2569359B2 (en) 1980-04-02 1984-08-27 PROCESS FOR THE CONTINUOUS PRODUCTION OF CAST STEEL INGOTS
US06/899,793 US4671335A (en) 1980-04-02 1986-08-25 Method for the continuous production of cast steel strands

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4334180A JPS56148460A (en) 1980-04-02 1980-04-02 Production of steel material by continuous casting method

Publications (2)

Publication Number Publication Date
JPS56148460A JPS56148460A (en) 1981-11-17
JPH0314541B2 true JPH0314541B2 (en) 1991-02-27

Family

ID=12661133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4334180A Granted JPS56148460A (en) 1980-04-02 1980-04-02 Production of steel material by continuous casting method

Country Status (1)

Country Link
JP (1) JPS56148460A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159257A (en) * 1983-02-28 1984-09-08 Kobe Steel Ltd Production of middle and high carbon killed steel by continuous casting method
JPS5916660A (en) * 1982-07-17 1984-01-27 Sumitomo Metal Ind Ltd Production of continuous casting billet
JPS59159256A (en) * 1983-02-28 1984-09-08 Kobe Steel Ltd Production of low carbon killed steel by continuous casting method
JPS59193743A (en) * 1983-04-20 1984-11-02 Kobe Steel Ltd Electromagnetic stirring method of continuous casting billet of different steels

Also Published As

Publication number Publication date
JPS56148460A (en) 1981-11-17

Similar Documents

Publication Publication Date Title
EP0972591B1 (en) Method and apparatus for casting molten metal, and cast piece
US4637453A (en) Method for the continuous production of cast steel strands
US4927467A (en) Method for producing thin plate of phosphor bronze
JPH0314541B2 (en)
US4671335A (en) Method for the continuous production of cast steel strands
Kunstreich Electromagnetic stirring for continuous casting-Part 2
JP2572807B2 (en) Manufacturing method of lead free-cutting steel by continuous casting method
JP2937707B2 (en) Steel continuous casting method
JP2004216411A (en) Continuous casting method for special molten steel
JP2004074233A (en) Method for reducing center segregation in continuously cast slab
JPS6342539B2 (en)
US3727669A (en) Process for continuous casting of steel for making grain-oriented electrical sheet in strip or sheets
JPS59159257A (en) Production of middle and high carbon killed steel by continuous casting method
JP7360033B2 (en) Thin steel slab and method for producing thin steel slab
JP4250008B2 (en) Manufacturing method of steel for strip steel
KR850001268B1 (en) Continuous steel casting process
JPH06234050A (en) Method for continuously casting half-solidified metal and apparatus therefor
JPH0745094B2 (en) Manufacturing method of free-cutting steel by continuous casting
JP2898199B2 (en) Manufacturing method of continuous cast slab
JPS6120649A (en) Continuous casting method
JP2001240934A (en) Method for producing spheroidal graphite cast iron
JPS59159256A (en) Production of low carbon killed steel by continuous casting method
JPS60118359A (en) Production of weakly deoxidized steel in continuous casting
JPS59141355A (en) Production of weakly deoxidized steel by continuous casting method
JP4501223B2 (en) Continuous casting method