JP4263396B2 - Steel continuous casting method and equipment - Google Patents

Steel continuous casting method and equipment Download PDF

Info

Publication number
JP4263396B2
JP4263396B2 JP2001366362A JP2001366362A JP4263396B2 JP 4263396 B2 JP4263396 B2 JP 4263396B2 JP 2001366362 A JP2001366362 A JP 2001366362A JP 2001366362 A JP2001366362 A JP 2001366362A JP 4263396 B2 JP4263396 B2 JP 4263396B2
Authority
JP
Japan
Prior art keywords
magnetic field
mold
steel
stage
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001366362A
Other languages
Japanese (ja)
Other versions
JP2003164948A (en
Inventor
陽一 伊藤
祐司 三木
秀次 竹内
健二 大島
博英 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001366362A priority Critical patent/JP4263396B2/en
Publication of JP2003164948A publication Critical patent/JP2003164948A/en
Application granted granted Critical
Publication of JP4263396B2 publication Critical patent/JP4263396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable the manufacture of a high-quality metal product by casting a piece of a cast having very few surface defects or inside inclusions caused by air bubbles caught, non-metal inclusions, surface segregation and mold flux. <P>SOLUTION: A vibration electromagnetic field whose phase is virtually inverted is made to act on a molten steel by placing electromagnets of not less than 3 pieces in the direction of the long side of a cast 10 and by virtually inverting a magnetic field which is generated by AC coils placed next to each other, and a local flow is excited by placing on the upper step an electromagnetic coil which piles up static magnetic fields in the direction of the thickness of the cast through DC coils and by placing DC coils on the lower step. <P>COPYRIGHT: (C)2003,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造方法及び設備に係り、特に、磁界印加による鋳型内溶鋼流動の改善に関する。
【0002】
【従来の技術】
近年、自動車用鋼板を中心として、鋼製品の品質向上要求が厳しくなり、スラブ段階から清浄度の優れた高品質のスラブの要求が高まっている。スラブの欠陥には、介在物や気泡に起因するものや、溶鋼中の成分の偏析に起因するものがあり、鋳型内の流動は、これらと深い関係があるため、多くの研究、発明がなされてきた。その一つとして、磁界を用いた鋳型内流動制御方法が考えられている。
【0003】
例えば、(A)移動磁界に直流磁界を重畳したものとして、特開平10−305353号公報には、鋳型長辺を挟み対向する上下2段の磁極を鋳型長辺背面に配置し、(1)下側に配置した磁極に直流静磁界と交流移動磁界とが重畳された磁界とする、あるいは、(2)上側に配置した磁極に直流静磁界と交流移動磁界とが重畳された磁界とし、下側に配置した磁極に直流静磁界を印加する鋳型内溶鋼流動の制御方法が開示されている。
【0004】
特許第3067916号公報には、複数個設置した電気コイルに適当なリニア駆動用交流電流と制動用直流電流を流すことにより、鋳型内溶鋼流動を制御する装置が開示されている。
【0005】
特開平5−154623号公報には、位相が120度ずつずれた交流移動磁界と直流静磁界とを重畳する鋳型内流動制御方法が開示されている。
【0006】
特開平6−190520号公報には、浸漬ノズル吐出孔の上方に置いた磁石により、幅方向全域に静磁界と高周波磁界を重畳して作用させると共に、吐出孔の下方に置いた磁石により、静磁界を作用させる鋼の鋳造方法が開示されている。
【0007】
又、(B)上部直流磁界と下部移動磁界を組合せたものとして、特開昭61−193755号公報には、浸漬ノズルから吐出された溶鋼流を包囲する位置に静磁場をかけ、流速を低下させると共に、静磁場よりも下流位置に電磁撹拌装置を設置して水平方向に撹拌する電磁撹拌方法が開示されている。
【0008】
又、(C)上部移動磁界と下部直流磁界を組合わせたものとして、特開平6−226409号公報には、湯面から吐出孔(下向き50度以上)の間に極芯中心を設置した磁石により移動磁界を作用させると共に、極芯中心を浸漬ノズルより下部に設置した磁石により静磁場を作用させる鋳造方法が開示されている。
【0009】
特開平9−262651号公報には、浸漬ノズル下端よりも上部に電磁撹拌用磁石を設置し、浸漬ノズル下端よりも下部に移動磁界と静磁界が印加できる磁石を設置し、鋼種や鋳造速度に応じて静磁場と移動磁場を使い分ける鋳造方法が開示されている。
【0010】
特開2000−271710号公報には、浸漬ノズル内にArガスを吹き込みながら鋼を鋳造する時に、浸漬ノズルから出た直後の溶鋼流に磁束密度が0.1テスラ以上の静磁場を作用させ、その上部で電磁撹拌装置により連続的に撹拌、あるいは、撹拌方向を周期的に変化させる方法が開示されている。
【0011】
特開昭61−140355号公報には、鋳型長辺側に鋳型内に供給される溶鋼電流を制御するように配された静磁場を有し、上方に移動磁界発生装置を配して、溶鋼上表面を水平断面中央から短辺側へ流動させる鋳型及び鋳型上方の構造が開示されている。
【0012】
特開昭63−119959号公報には、モールド上部に、溶鋼に水平流動を生じさせる電磁撹拌装置、モールド下部に、浸漬ノズルからの吐出流を減速するための電磁ブレーキを設置して、浸漬ノズルから出る吐出流を制御する技術が開示されている。
【0013】
特許第2856960号公報には、連続鋳型内の溶鋼湯面に静磁場を用い、連鋳用ノズルとしてストレートノズルを使用し、吐出口部に進行磁場を用い、その下部に静磁場を用いる鋳型内溶鋼流動制御技術が開示されている。
【0014】
又、(D)直磁磁界を単独で印加するものとして、特開平3−258442号公報には、鋳型長辺側に対向して設置した、長辺とほぼ同じ長さの電磁石により静磁場を作用させる電磁ブレーキが開示されている。
【0015】
特開平8−19841号公報には、鋳型幅中央ないし鋳型短辺より内側の所定位置から両端部近傍にかけて、鋳型上方側へ曲げるか傾斜させた磁極を、幅中央部で浸漬ノズル吐出孔より下部に設置し、直流磁場あるいは低周波交流磁場を作用させることによって鋳型内の溶鋼流動を制御する方法が開示されている。
【0016】
国際公開特許WO95/26243号公報には、鋳型全幅にわたって、ほぼ均一な磁束密度分布を有する直流磁場を、鋳型厚み方向に加えて、浸漬ノズルからの吐出流を制御することにより、メニスカス流速を0.20〜0.40m/sに制御する技術が開示されている。
【0017】
特開平2−284750号公報には、鋳片幅全体に鋳型厚み方向の均一な静磁界を、浸漬ノズル吐出孔の上部、下部に作用させ、溶鋼吐出流に効果的な制動力を与え、流れを均一化する技術が開示されている。
【0018】
又、(E)直流磁界又は移動磁界を印加するものとして、特開平9−262650号公報には、浸漬ノズル吐出孔の下部に設けた複数のコイルに直流電流を流すことにより静磁界を印加したり、交流電流を流すことにより移動磁界を印加したりすることにより溶鋼流動を制御する鋳造方法が開示されている。
【0019】
「材料とプロセス」vol3(1990)第256頁には、浸漬ノズルからの吐出流に交流移動磁場を作用させることにより、吐出溶鋼流を制動(EMLS)したり、加速(EMLA)したりする技術が開示されている。
【0020】
又、(F)移動磁界のみを印加するものとして、特開平8−19840号公報には、電磁誘導によって鋳型内の溶鋼流動を制御する際に、周波数1〜15Hzの静止交流磁場を溶鋼に印加する技術が開示されている。
【0021】
「鉄と鋼」66(1980)第797頁には、スラブ連鋳機において、電磁撹拌により鋳型壁に沿った水平方向の溶鋼旋回流を得る技術(M−EMS)が開示されている。
【0022】
しかしながら上記各公報に記載された技術では、モールドパウダーを巻込んだり、又、凝固界面への介在物、気泡の捕捉を防止できず、鋳片の表面品質が充分に向上しないという問題があった。
【0023】
又、(G)振動磁界のみを印加するものとして、特許第2917223号公報には、時間的に移動しない低周波交流静止磁界を付与し、凝固直前に低周波電磁振動を励起させることによって、凝固前面の柱状デンドライトを破断させ、溶融金属中に浮遊させて、凝固組織の微細化、中心偏析の低減を目指す方法が開示されているが、鋳片の表面欠陥を低減する効果は小さい。
【0024】
【発明が解決しようとする課題】
近年の表面品質ニーズの高まり、コストダウンの要求から、更なる鋳片表面の品質改善技術並びに内部品質改善技術が望まれており、より効果的な鋳型内流動の制御が必要となっている。
【0025】
本発明は、前記従来の問題点を解決するべくなされたもので、モールドフラックスの巻き込みを抑制し、介在物、気泡の凝固核への捕捉を抑制して、鋳片の表面品質を向上できる共に、鋳片の内部品質をも向上できる、鋼の連続鋳造方法及び設備を提供することを目的とする。
【0026】
【発明を解決するための手段】
本発明は、鋼の連続鋳造方法において、連続鋳造用鋳型の鋳型長辺を挟み対向する上下に複数段の電磁石コイルを配置すると共に、少なくとも一段には、鋳型長辺方向に3個以上の電磁石を配置し、隣り同士のコイルで発生する磁場を互いに反転させることで、溶鋼に位相が反転する振動磁界を作用させ、且つ、鋳型の厚み方向に静磁界を重畳することで、局所的な流動を誘起させることにより、前記課題を解決したものである。
【0027】
又、前記連続鋳造方法において、前記隣り同士のコイルで発生する磁場を、隣り同士のコイルに位相が逆の交流電流を通電するか、あるいは、コイルの巻き線方向を逆にして同位相の交流電流を通電することで、反転させるようにしたものである。
【0028】
又、鋳型長辺を挟み対向する上下2段の電磁石コイルを配置し、上段に振動磁界に静磁界を重畳して印加し、下段に静磁界を印加するようにしたものである。
【0029】
又、鋳型長辺を挟み対向する上下2段の電磁石コイルを配置し、上段に静磁界を印加し、下段に振動磁界に静磁界を重畳して印加するようにしたものである。
【0030】
又、鋳型長辺を挟み対向する上下2段の電磁石コイルを配置し、上段に振動磁界に静磁界を重畳して印加し、下段に交流移動磁界を印加するようにしたものである。
【0031】
又、鋳型長辺を挟み対向する上下2段の電磁石コイルを配置し、上段に交流移動磁界を印加し、下段に振動磁界に静磁界を重畳して印加するようにしたものである。
【0032】
又、鋳型長辺を挟み対向する上下2段の電磁石コイルを配置し、上下段ともに振動磁界に静磁界を重畳して印加するようにしたものである。
【0033】
又、最大の交流磁界の磁束密度を1000ガウス以下、直流磁界を3000ガウス以下とするか、及び/又は、振動磁界の周波数を1Hzから8Hzとしたものである。
【0034】
本発明は、又、鋼の連続鋳造設備において、相対する長辺と短辺から構成され溶鋼を保持し凝固させる鋳型と、鋳型長辺を挟み対向して上下に配置された複数段の電磁石コイルと、少なくとも一段には、前記鋳型の長辺方向に3個以上の磁極を有し、隣接する磁極同士を互いに異なる極性で且つ該極性所定の周期で反転させ、前記鋳型内の溶鋼にマクロ的な溶鋼流動のない振動磁界を発生させる振動磁界発生装置と、前記鋳型の短辺幅方向に直流磁界を発生させる直流磁界発生装置と、を備えることにより、前記課題を解決したものである。
【0035】
又、前記連続鋳造設備において、振動磁界発生装置が、前記鋳型の長辺方向に沿って3個以上の櫛歯を有する櫛歯状鉄芯と該各櫛歯に配設されたコイルとからなる電磁石、該コイルに所定の周波数、所定の位相の交流電流を供給する交流電源とからなるようにしたものである。
【0036】
本発明では、製品品質の要求に応じた磁場技術を提案する。即ち、鋼材に対する要求は表面欠陥と内部欠陥に大きく分けられるが、本発明は、これら二つの欠陥の両方の発生を完全に抑制できるようにするものである。そのための技術として、本発明では鋳造方向(上下方向)に2段以上の磁場を利用する。
【0037】
ところで、従来より鋳造方向に複数の磁場を鋳型に与える方法は過去多数報告されている。例えば、特開平2−284750号公報や特開平3−142049号公報では、鋳込み方向に2段の静磁場を加えている。又、特開平5−177317号公報や特開平5−212511号公報では、上極に移動磁場、下極に静磁場と異なる種類の磁場を鋳造方向に与える方法が提案されている。
【0038】
本発明では、単に鋳造方向に複数の磁場を利用するのみでなく、複数段の電磁コイルの少なくとも一つに振動磁場と静磁場の両方を発生するコイルを有することに特徴がある。
【0039】
この振動磁場と静磁場の両方を発生するコイルを用いることの有効性について、以下に説明する。
【0040】
本発明では、鋳型の厚み方向の流速分布を規定する。即ち、厚み中央付近では流速を小さくしてモールドフラックスの巻き込みや介在物、気泡の下方への侵入を抑えつつ、鋳型壁面に近い凝固界面に局所的な流動を与えて、気泡、介在物の凝固シェルへの補足を防止して、鋳片の表面欠陥を低減する。
【0041】
このための方法として、交流磁場の印加方法を工夫する必要があり、モデル実験及びシミュレーション計算を実施した結果、以下の結論に至った。
【0042】
1.凝固界面にローレンツ力を集中させるためには、磁力線分布を制御する必要がある。
【0043】
2.このための方法として、幅方向に交互に位相が反転する電磁石を配置して、交番させることが効果的である。厚み方向に磁界を振動させる場合には、電磁力を鋳型壁面、即ち、凝固界面に集中することができなくなるため、幅方向に磁界を振動させる必要がある。ここで、交互の電磁石に通電する電流の位相は実質反転する必要があり、そのためには、位相は130°以上異なることが必要である。
【0044】
3.このためのコイル構造としては、図1に例示する如く、幅方向に3つ以上の磁極を有する櫛歯状鉄芯に交流コイル24を巻き、且つ、隣り同士の電流の位相を実質反転させることで、幅方向の磁界を振動させることができる。図において、10は鋳型、12は浸漬ノズル、14は溶鋼(斜線部は低速領域)である。
【0045】
4.更に、直流コイル34を設けて、静磁界を重畳させることにより、F=J×B(ここにF:ローレンツ力、J:誘導電流、B:磁場)の磁場B項が大きくなるために、ローレンツ力Fを増加させることができるが、更に、ローレンツ力の向きが、重畳しない場合と大きく異なり、流動も変化して、幅方向及び鋳造方向の流動が大きくなるので、凝固界面に捕捉される気泡、介在物の洗浄効果が期待できる。
【0046】
5.又、重畳することにより、厚み中央での流速を低減でき、モールドフラックスの巻き込みも防止できる。
【0047】
図2(正面図)、図3(図2のIII−III線に沿う水平断面図)、図4(図2のIV−IV線に沿う垂直断面図)に、磁極28の数が4個の場合について、本発明の振動磁界で誘起される、ある時点の溶湯流動を、電磁場解析と流動解析によって計算した例をもとにして、模式的に示す。又、図5(正面図)、図6(図5のVI−VI線に沿う水平断面図)、図7(図5のVII−VII線に沿う垂直断面図)に、次の時点の溶湯流動を模式的に示す。
【0048】
本発明では、図8に示す如く、次式に示すローレンツ力Fに応じて発生する流れの向きが、印加電流Iと同じ周期で反転する。
【0049】
F∝J×Bt …(1)
Bt=Bdc+Bac>0 …(2)
ここで、Jは誘導電流、Btは合計磁場、Bdcは直流磁場、Bacは交流磁場である。
【0050】
6.この際の交流電流の周波数は、低すぎると十分な流動が励起されず、高すぎると、溶鋼が電磁場に追随しなくなるので、1Hzから8Hzの範囲が適当である。
【0051】
7.コイルの巻き方向を逆にすれば、電流の位相が同じでも、磁場の位相を反転することができる。
【0052】
8.特許第2917223号には、時間的に移動しない低周波交流静止磁界を付与し、凝固前面に低周波電磁振動を励起させることによって、凝固前面の柱状デンドライトを破断させ、溶融金属中に浮遊させて、凝固組織の微細化、中心偏析の低減を目指す方法が開示されているが、デンドライトが破断するような大きな電磁力を付与すると、溶湯上面のモールドフラックスを巻き込んで、表面品質を劣化させてしまう。よって、交流振動磁界の磁束密度は1000ガウス以下が望ましい。なお、コイル配置によっては、1000ガウス以上でもデンドライトが破断しないようにできる場合がある。
【0053】
9.更に、特許第2917223号の方法では、デンドライトの破断が起こって、柱状晶組織から等軸晶組織に変化してしまう。極低炭素鋼などでは、柱状晶組織のみの方が、圧延時に、集合組織として制御し易くなるため、等軸晶化することで、結晶方位を揃え難くなるという問題がある。このため、電磁力によって、凝固前面のデンドライトが破断しないことが重要である。
【0054】
以上の知見から、鋳型長辺方向に磁界を振動させつつ、厚み方向に直流磁界を印加することにより、鋳型長辺方向及び鋳造方向に従来と大きく異なる流動を誘起させ、凝固界面のみを効率的に振動させて、気泡、介在物の捕捉を抑制し、鋳片の表面品質を大幅に向上させることができる。
【0055】
なお、電磁石コイルを上下2段に配置する場合には、上下段の対向する磁石の位置は、鋳造条件により、最適な位置が変化するため限定はしないが、上段コイルは湯面から浸漬ノズルの吐出孔までの範囲にコイル鉄芯が存在するのが望ましく、下段コイルについては浸漬ノズル吐出孔より下方にあることが望ましい。
【0056】
又、最大の交流磁界の磁束密度は1000Gauss以下、直流磁界は3000Gauss以下、振動磁界の周波数については1Hzから8Hzで実施するのが望ましい。
【0057】
本発明によって、凝固界面のみを効率的に振動させて、気泡、介在物の凝固シェルへの補足を抑制でき、更には鋳型厚み中央付近の溶鋼の下降あるいは上昇流の大幅な抑制により、介在物や気泡の鋳型下部への侵入を防止できるので、鋳片の表面品質を大幅に向上させることができる。
【0058】
【発明の実施の形態】
以下図面を参照して、本発明の実施形態を詳細に説明する。
【0059】
本発明の実施に好適な、鋼の連続鋳造設備の特徴をなす振動磁界を重畳して印加する電磁石コイルの一例を、該設備の水平断面の模式図で図9に示す。図において、10が鋳型、12が浸漬ノズル、20が振動磁界発生装置、22が櫛歯状鉄芯、24がコイル、26a、26bが交流電源、28が磁極、30が静磁界発生装置である。
【0060】
本発明では、相対する長辺と短辺からなる鋳型10内の溶鋼に、上下方向(鋳込方向)に複数段に配置された電磁石コイルにより磁界を印加しながら連続鋳造する。そして、少なくとも一段に印加する磁界は、鋳型の長辺方向に振動する磁界(以下、振動磁界ともいう)と厚み方向の静磁界とする。印加する振動磁界は、鋳型の長辺方向を印加方向とする交流磁界で、その向きを周期的に反転させ、溶鋼のマクロ的流動を誘起することのない磁界である。
【0061】
振動磁界は、例えば、図9に示すような振動磁界発生装置20を使用して、発生させることができる。図9に示す振動磁界発生装置20では、鋳型の長辺方向に3個以上(図では12個)の櫛歯を有する櫛歯状鉄芯22を用いて、これら櫛歯にコイル24を配設して磁極28とする。磁極28は、隣接する磁極同士が互いに異なる極性(N、S極)を有するように、コイルの巻き方及びコイルに流す交流電流を調整する。隣接する磁極同士が互いに異なる極性(N、S極)とするためには、隣接する磁極同士のコイルの巻き方を反対方向としコイルに流す電流を同位相で所定の周波数を有する交流電流とするか、あるいは隣接する磁極同士のコイルの巻き方を同方向としコイルに流す電流を隣接する磁極同士で位相がずれた、所定の周波数を有する交流電流とするのが好ましい。隣接する磁極に流す交流の位相のずれは、実質的に位相が反転する、130°以上230°以下とするのが好ましい。
【0062】
なお、交流電流の所定の周波数としては、1〜8Hzとするのが好ましく、より好ましくは3〜6Hzである。図9に示す例は、隣接する磁極で、コイルの巻き方を同方向としてコイルに流す交流電流を位相が異なる(実質的に位相が反転する)ものとする場合であるが、本発明はこれに限定されるものではない。
【0063】
本発明では、隣接する磁極同士が互いに異なる極性を有するため、隣接する磁極間で溶鋼に作用する電磁力とその隣りの磁極間で溶鋼に作用する電磁力とは、その向きがほぼ反対となり、溶鋼のマクロな流動が誘起されることはない。又、本発明では、コイルに流す電流を交流電流とするため、各磁極の極性が所定の周期で反転し、鋳型の長辺幅方向で凝固界面近傍の溶鋼に振動を誘起させることができる。これにより、凝固界面への介在物、気泡の捕捉を抑制することができ、鋳片の表面品質を顕著に向上させることができる。
【0064】
コイルに流す交流電流の周波数が1Hz未満では、低すぎて十分な流動が誘起されない。一方、8Hzを超えると、溶鋼が振動磁界に追従しなくなり、磁界印加の効果が少なくなる。このため、コイルに流す交流電流の周波数を1〜8Hzとし、振動磁界の振動周期を1/8〜1sとするのが好ましい。
【0065】
なお、本発明では、印加する振動磁界の磁束密度は1000ガウス以下とするのが好ましい。磁束密度が1000ガウスを超えると、デンドライトを破断するだけでなく、湯面変動が大きくなり、モールドフラックスの巻き込みを助長するという問題がある。
【0066】
又、本発明では、上記した振動磁界の印加に加えて、静磁界を印加する。静磁界は、図9に示すように、鋳型10の長辺側に静磁界発生装置30を設置し、鋳型の短辺方向(鋳型の厚さ方向)の向きに印加する。
【0067】
鋳型の厚さ方向に静磁界を印加することにより、図9に破線領域で示す鋳型中央部付近の溶鋼流速を減少させることができ、モールドフラックスの巻き込みを防止できる。なお、振動磁界の印加に静磁界の印加を、重畳させることにより、F=J×BにおけるB項を大きくできるため、更にローレンツ力を増加させることができるという効果もある。
【0068】
又、本発明では、印加する静磁界の磁束密度は200ガウス以上3000ガウス以下とするのが好ましい。磁束密度が200ガウス未満では溶鋼流速の低減効果が少なく、また3000ガウスを超えると制動が大きすぎて不均一凝固を引き起こすという問題がある。
【0069】
図9は、鋳型10の長辺側に、振動磁界発生装置20と、静磁界発生装置30とを配設した例を示す。静磁界発生装置30は、鋳型の長辺側に鋳型を挟んで一対の磁極を配し、流す電流を直流電流として直流電源32からコイル34に流し、鋳型の厚さ方向に静磁界を印加する。静磁界発生装置30と振動磁界発生装置20の設置位置は、垂直(上下)方向で同じ位置にしても、若干ずらすようにしてもよい。
【0070】
【実施例】
次に、実施例に基づき、本発明について、更に詳細に説明する。
【0071】
約300トンの溶鋼を転炉で溶製し、RH処理によって極低炭素鋼のAlキルド鋼とし、連続鋳造機でスラブを鋳造した。代表的な溶鋼成分を表1に示す。
【0072】
【表1】

Figure 0004263396
【0073】
なお、スラブの幅は1500〜1700mm、厚みは220mm、溶鋼のスループット量は4〜5トン/分の範囲とした。
【0074】
又、コイル構造として、図1に示した如く、幅方向に12等分した櫛歯状の鉄芯を用い、幅方向に交互に位相が反転する磁場を発生するように配置した。交流磁界による磁束は最大1000ガウスとした。又、静磁界による磁束は最大3000ガウスとした。
【0075】
又、コイル設置位置は、上段コイルはメニスカスから浸漬ノズルの吐出孔の間に鉄芯が存在するよう、下段コイルは浸漬ノズル吐出孔より下方位置に鉄芯が存在するように配置した。
【0076】
鋳型長辺に対向する上下2段のコイルは、実施例1〜5について、図10〜図14にそれぞれ模式図を示したように、
実施例1;上段:交流振動磁界+直流磁界、下段:直流磁界
実施例2;上段:直流磁界、下段:交流振動磁界+直流磁界
実施例3;上段:交流振動磁界+直流磁界、下段:交流移動磁界
実施例4;上段:交流移動磁界、下段:交流振動磁界+直流磁界
実施例5;上段:交流振動磁界+直流磁界、下段:交流振動磁界+直流磁界
とした。なお、図10に示す12Aは浸漬ノズル12の吐出口である。
【0077】
又、比較例として、
比較例1;上下段とも電磁石コイル無し
比較例2;上段:コイル無し、下段:直流磁界
比較例3;上段:交流移動磁界、下段:コイル無し
の条件で鋳造を実施した。
【0078】
表2に、実験条件及び実験結果をまとめて示す。
【0079】
【表2】
Figure 0004263396
【0080】
鋳片の表面偏析は、スラブ研削後、エッチングを行い、目視観察によって1m2当たりの偏析個数を調査した。又、冷間圧延後のコイルの表面欠陥を目視検査し、欠陥サンプルを採取後、欠陥部を分析することによって、モールドフラックスによる欠陥個数を調査した。介在物量は、鋳片の1/4厚みの位置からスライム抽出法によって介在物を抽出後、重量を測定した。表面偏析、モールドフラックス欠陥及び介在物量とも、指数化に際しては、全条件のうち、もっとも悪かったものを10とし、それに対する線形な比で表示した。
【0081】
表2からわかるように、比較例に示した従来法の場合、表面品質あるいは内部品質のいずれかが非常に優れた結果となっている場合もあるが、表面品質と内部品質の両立については達成できていない。
【0082】
これに対して本発明の実施例によれば、表面欠陥並びに内部欠陥の両方が安定して優れた結果を達成できている。
【0083】
製品品質の要求や製造コストに応じて、上下段のコイルの組合せを本発明の実施例に示した組合せの中から選択することで、より厳格な仕様に対しても問題の無い製品を製造可能となる。
【0084】
なお、前記説明においては、極数が12極の櫛歯状の鉄芯が用いられていたが、磁極数や鉄芯の形状はこれに限定されず、例えば鉄芯が分割されていてもかまわない。
【0085】
又、具体例としては電磁石コイルが2段の設備を示したいが、3段以上であってもよい。
【0086】
【発明の効果】
本発明によれば、捕捉される気泡、非金属介在物及び鋳片表面偏析、モールドフラックス起因の表面欠陥や内部介在物の少ない鋳片を鋳造でき、高品質の金属製品の製造が可能になる。
【図面の簡単な説明】
【図1】本発明で用いられる電磁石と鋳型を模式的に示す水平断面図
【図2】本発明の原理を説明するための、磁場で誘起される、ある時点の溶湯流動の速度ベクトルの電磁場解析と流動解析による計算結果を模式的に示す正面図
【図3】図2のIII−III線に沿う水平断面図
【図4】図2のIV−IV線に沿う垂直断面図
【図5】本発明の原理を説明するための、磁場で誘起される、磁極が反転した次の時点の溶湯流動の速度ベクトルの電磁場解析と流動解析による計算結果を模式的に示す正面図
【図6】図5のVI−VI線に沿う水平断面図
【図7】図5のVII−VII線に沿う垂直断面図
【図8】本発明における印加電流と溶鋼流速の時間的な変化状態の例を示す線図
【図9】交流振動磁界に直流磁界を重畳して印加する連続鋳造設備の実施形態を模式的に示す水平断面図
【図10】上段が交流振動磁界+直流磁界、下段が直流磁界のコイル配置の模式図
【図11】上段が直流磁界、下段が交流振動磁界+直流磁界のコイル配置の模式図
【図12】上段が交流振動磁界+直流磁界、下段が交流移動磁界のコイル配置の模式図
【図13】上段が交流移動磁界、下段が交流振動磁界+直流磁界のコイル配置の模式図
【図14】上下段とも交流振動磁界+直流磁界のコイル配置の模式図
【符号の説明】
10…鋳型
12…浸漬ノズル
20…振動磁界発生装置
22…櫛歯状鉄芯
24…交流コイル
26a、26b…交流電源
28…磁極
30…静磁界発生装置
32…直流電流
34…直流コイル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel continuous casting method and equipment, and more particularly to improvement of molten steel flow in a mold by applying a magnetic field.
[0002]
[Prior art]
In recent years, mainly for steel sheets for automobiles, the demand for quality improvement of steel products has become strict, and the demand for high-quality slabs with excellent cleanliness has increased from the slab stage. Slab defects include those caused by inclusions and bubbles, and those caused by segregation of components in the molten steel, and the flow in the mold is closely related to these, so many studies and inventions have been made. I came. As one of them, a flow control method in a mold using a magnetic field is considered.
[0003]
For example, assuming that a direct current magnetic field is superimposed on a moving magnetic field (A), Japanese Patent Laid-Open No. 10-305353 discloses two upper and lower magnetic poles facing each other with the long side of the mold interposed therebetween, and (1) A magnetic field in which a DC static magnetic field and an AC moving magnetic field are superimposed on the magnetic pole arranged on the lower side, or (2) a magnetic field in which a DC static magnetic field and an AC moving magnetic field are superimposed on the magnetic pole arranged on the upper side, A method of controlling molten steel flow in a mold by applying a DC static magnetic field to a magnetic pole arranged on the side is disclosed.
[0004]
Japanese Patent No. 3067916 discloses an apparatus for controlling the flow of molten steel in a mold by flowing appropriate linear driving AC current and braking DC current through a plurality of installed electric coils.
[0005]
Japanese Patent Application Laid-Open No. 5-154623 discloses a flow control method in a mold in which an AC moving magnetic field whose phase is shifted by 120 degrees and a DC static magnetic field are superimposed.
[0006]
Japanese Patent Laid-Open No. 6-190520 discloses that a magnet placed above the submerged nozzle discharge hole causes a static magnetic field and a high-frequency magnetic field to overlap each other in the entire width direction, and a magnet placed below the discharge hole A method for casting steel in which a magnetic field is applied is disclosed.
[0007]
In addition, as a combination of (B) the upper DC magnetic field and the lower moving magnetic field, Japanese Patent Application Laid-Open No. 61-193755 discloses that a static magnetic field is applied to a position surrounding the molten steel flow discharged from the immersion nozzle to reduce the flow velocity. In addition, an electromagnetic stirring method is disclosed in which an electromagnetic stirring device is installed at a position downstream of the static magnetic field and stirring is performed in the horizontal direction.
[0008]
In addition, as a combination of (C) an upper moving magnetic field and a lower DC magnetic field, Japanese Patent Application Laid-Open No. 6-226409 discloses a magnet in which a center of a pole is installed between a molten metal surface and a discharge hole (downward 50 degrees or more). A casting method is disclosed in which a moving magnetic field is applied and a static magnetic field is applied by a magnet having the center of the core located below the immersion nozzle.
[0009]
In JP-A-9-262651, an electromagnetic stirring magnet is installed above the lower end of the immersion nozzle, and a magnet that can apply a moving magnetic field and a static magnetic field is installed below the lower end of the immersion nozzle. Accordingly, a casting method for selectively using a static magnetic field and a moving magnetic field is disclosed.
[0010]
In JP 2000-271710 A, when casting steel while blowing Ar gas into an immersion nozzle, a magnetic field with a magnetic flux density of 0.1 Tesla or more is applied to the molten steel flow immediately after coming out of the immersion nozzle, A method of continuously stirring by an electromagnetic stirrer in the upper part or a method of periodically changing the stirring direction is disclosed.
[0011]
Japanese Patent Application Laid-Open No. 61-140355 has a static magnetic field arranged to control the molten steel current supplied into the mold on the long side of the mold, and a moving magnetic field generator is arranged on the upper side. A mold that causes the upper surface to flow from the center of the horizontal section to the short side and a structure above the mold are disclosed.
[0012]
In Japanese Patent Laid-Open No. 63-119959, an electromagnetic stirring device for causing horizontal flow in molten steel is provided at the upper part of the mold, and an electromagnetic brake for reducing the discharge flow from the immersion nozzle is provided at the lower part of the mold. A technique for controlling the discharge flow exiting from the vehicle is disclosed.
[0013]
In Japanese Patent No. 2856960, a static magnetic field is used for the molten steel surface in a continuous mold, a straight nozzle is used as a continuous casting nozzle, a traveling magnetic field is used for the discharge port, and a static magnetic field is used for the lower part. Molten steel flow control technology is disclosed.
[0014]
Further, (D) as a method of applying a direct magnetic field alone, Japanese Patent Laid-Open No. 3-258442 discloses that a static magnetic field is generated by an electromagnet having a length substantially the same as the long side, which is disposed opposite to the long side of the mold. An electromagnetic brake is disclosed.
[0015]
Japanese Patent Laid-Open No. 8-19841 discloses that a magnetic pole bent or inclined toward the upper side of the mold from the predetermined position inside the mold width center or the short side of the mold to the vicinity of both ends is below the submerged nozzle discharge hole at the center of the width. And a method of controlling the flow of molten steel in a mold by applying a DC magnetic field or a low-frequency AC magnetic field.
[0016]
In International Publication No. WO95 / 26243, a meniscus flow velocity is set to 0 by controlling a discharge flow from an immersion nozzle by applying a DC magnetic field having a substantially uniform magnetic flux density distribution in the mold thickness direction over the entire width of the mold. A technique for controlling to 20 to 0.40 m / s is disclosed.
[0017]
In Japanese Patent Laid-Open No. 2-284750, a uniform static magnetic field in the mold thickness direction is applied to the entire slab width on the upper and lower portions of the submerged nozzle discharge hole to give an effective braking force to the molten steel discharge flow. A technique for making the above uniform is disclosed.
[0018]
In addition, (E) as a method for applying a DC magnetic field or a moving magnetic field, Japanese Patent Application Laid-Open No. 9-262650 applies a static magnetic field by applying a direct current to a plurality of coils provided below the immersion nozzle discharge hole. A casting method is disclosed in which the flow of molten steel is controlled by applying a moving magnetic field by passing an alternating current.
[0019]
“Materials and Processes” vol3 (1990), page 256, includes techniques for braking (EMLS) or accelerating (EMLA) the discharge molten steel flow by applying an AC moving magnetic field to the discharge flow from the immersion nozzle. Is disclosed.
[0020]
Further, (F) As a method for applying only a moving magnetic field, Japanese Patent Application Laid-Open No. Hei 8-19840 applies a static AC magnetic field having a frequency of 1 to 15 Hz to molten steel when controlling the flow of molten steel in a mold by electromagnetic induction. Techniques to do this are disclosed.
[0021]
“Iron and Steel” 66 (1980), page 797 discloses a technique (M-EMS) for obtaining a horizontal molten steel swirl flow along a mold wall by electromagnetic stirring in a slab continuous casting machine.
[0022]
However, the techniques described in each of the above publications have a problem in that mold powder cannot be wound, inclusions in the solidification interface and trapping of bubbles cannot be prevented, and the surface quality of the slab is not sufficiently improved. .
[0023]
In addition, (G) Japanese Patent No. 2917223, which applies only an oscillating magnetic field, is applied with a low-frequency AC static magnetic field that does not move with time, and the low-frequency electromagnetic vibration is excited immediately before solidification, thereby solidifying the coagulation. Although a method has been disclosed in which the columnar dendrite on the front surface is broken and suspended in the molten metal in order to refine the solidified structure and reduce center segregation, the effect of reducing the surface defects of the slab is small.
[0024]
[Problems to be solved by the invention]
Due to increasing surface quality needs in recent years and demands for cost reduction, further slab surface quality improvement technology and internal quality improvement technology are desired, and more effective control of mold flow is required.
[0025]
The present invention has been made to solve the above-mentioned conventional problems, and can suppress the entrainment of mold flux and suppress the inclusion and inclusion trapped in the solidification nucleus, thereby improving the surface quality of the slab. When Both aims to provide a continuous casting method and equipment for steel that can improve the internal quality of the slab.
[0026]
[Means for Solving the Invention]
The present invention relates to a continuous casting method of steel, in which a plurality of electromagnet coils are arranged on the upper and lower sides facing and sandwiching the long mold side of a continuous casting mold, and at least one stage includes three or more electromagnets in the mold long side direction. The magnetic field generated by the adjacent coils To each other By reversing the phase in the molten steel Is against Roll Dynamic magnetism The problem is solved by inducing local flow by applying a field and superimposing a static magnetic field in the thickness direction of the mold.
[0027]
Further, in the continuous casting method, the magnetic field generated in the adjacent coils is phase-shifted to the adjacent coils. Is the opposite Or by applying the same phase AC current with the coil winding direction reversed. , Anti It is intended to be turned.
[0028]
In addition, two upper and lower electromagnet coils facing each other with the long side of the mold interposed therebetween are arranged, the static magnetic field is superimposed on the oscillating magnetic field on the upper stage, and the static magnetic field is applied on the lower stage.
[0029]
Further, two upper and lower electromagnet coils facing each other with the long side of the mold interposed therebetween are arranged, a static magnetic field is applied to the upper stage, and a static magnetic field is superimposed and applied to the oscillating magnetic field in the lower stage.
[0030]
In addition, two upper and lower electromagnet coils facing each other with the long side of the mold interposed therebetween are arranged, a static magnetic field is superimposed on the oscillating magnetic field on the upper stage, and an AC moving magnetic field is applied on the lower stage.
[0031]
In addition, two upper and lower electromagnet coils facing each other with the long side of the mold interposed therebetween are arranged, an AC moving magnetic field is applied to the upper stage, and a static magnetic field is superimposed on the oscillating magnetic field and applied to the lower stage.
[0032]
In addition, two upper and lower electromagnet coils facing each other across the long side of the mold are disposed, and a static magnetic field is superimposed and applied to the oscillating magnetic field in both the upper and lower stages.
[0033]
Further, the magnetic flux density of the maximum AC magnetic field is 1000 gauss or less, the DC magnetic field is 3000 gauss or less, and / or the frequency of the oscillating magnetic field is 1 Hz to 8 Hz.
[0034]
The present invention also provides a continuous casting equipment for steel, a mold composed of opposed long sides and short sides for holding and solidifying molten steel, and a plurality of electromagnet coils arranged vertically on opposite sides of the mold long side. And at least one stage has three or more magnetic poles in the long side direction of the mold, and adjacent magnetic poles To each other Different polarity and the polarity The Invert at a predetermined cycle Let An oscillating magnetic field generator for generating an oscillating magnetic field without macroscopic molten steel flow in the molten steel in the mold, and a DC magnetic field generator for generating a DC magnetic field in the short side width direction of the mold, It solves the problem.
[0035]
In the continuous casting facility, the oscillating magnetic field generator includes a comb-like iron core having three or more comb teeth along the long side direction of the mold and a coil disposed on each comb tooth. It comprises an electromagnet and an AC power supply for supplying an AC current having a predetermined frequency and a predetermined phase to the coil.
[0036]
The present invention proposes a magnetic field technology that meets the requirements of product quality. That is, the requirements for steel materials can be broadly divided into surface defects and internal defects, but the present invention makes it possible to completely suppress the occurrence of both of these two defects. As a technique for this, in the present invention, two or more magnetic fields are used in the casting direction (vertical direction).
[0037]
By the way, many methods for applying a plurality of magnetic fields to the mold in the casting direction have been reported in the past. For example, in Japanese Patent Application Laid-Open Nos. 2-284750 and 3-142049, a two-stage static magnetic field is applied in the casting direction. Japanese Patent Application Laid-Open Nos. 5-177317 and 5-212511 propose a method in which a moving magnetic field is applied to the upper pole and a magnetic field different from the static magnetic field is applied to the lower pole in the casting direction.
[0038]
The present invention is characterized by not only using a plurality of magnetic fields in the casting direction but also having a coil that generates both an oscillating magnetic field and a static magnetic field in at least one of a plurality of stages of electromagnetic coils.
[0039]
The effectiveness of using a coil that generates both an oscillating magnetic field and a static magnetic field will be described below.
[0040]
In the present invention, the flow velocity distribution in the thickness direction of the mold is defined. That is, the flow rate is reduced near the center of the thickness to suppress the entrainment of mold flux and inclusions and bubbles to the lower side, while giving a local flow to the solidification interface near the mold wall surface to solidify the bubbles and inclusions. Prevents the shell from being captured and reduces the surface defects of the slab.
[0041]
As a method for this purpose, it is necessary to devise an AC magnetic field application method, and as a result of conducting model experiments and simulation calculations, the following conclusions have been reached.
[0042]
1. In order to concentrate the Lorentz force on the solidification interface, it is necessary to control the distribution of magnetic lines of force.
[0043]
2. As a method for this, it is effective to arrange and alternate electromagnets whose phases are alternately reversed in the width direction. When the magnetic field is vibrated in the thickness direction, the electromagnetic force cannot be concentrated on the mold wall surface, that is, the solidification interface, and thus the magnetic field needs to be vibrated in the width direction. Here, the phase of the current applied to the alternating electromagnets needs to be substantially reversed, and for this purpose, the phase needs to be different by 130 ° or more.
[0044]
3. As a coil structure for this purpose, as illustrated in FIG. 1, an AC coil 24 is wound around a comb-shaped iron core having three or more magnetic poles in the width direction, and the phases of adjacent currents are substantially reversed. Thus, the magnetic field in the width direction can be vibrated. In the figure, 10 is a mold, 12 is an immersion nozzle, and 14 is molten steel (the shaded area is a low speed region).
[0045]
4). Further, by providing a direct current coil 34 and superposing a static magnetic field, the magnetic field B term of F = J × B (where F: Lorentz force, J: induced current, B: magnetic field) becomes large, so Lorentz Although the force F can be increased, the direction of the Lorentz force is greatly different from that in the case where the Lorentz force is not superimposed, and the flow is also changed, so that the flow in the width direction and the casting direction is increased. The cleaning effect of inclusions can be expected.
[0046]
5. Moreover, by superimposing, the flow velocity in the thickness center can be reduced, and the entrainment of mold flux can also be prevented.
[0047]
2 (front view), FIG. 3 (horizontal sectional view taken along line III-III in FIG. 2), and FIG. 4 (vertical sectional view taken along line IV-IV in FIG. 2), the number of magnetic poles 28 is four. The case is schematically shown based on an example in which the melt flow at a certain point induced by the oscillating magnetic field of the present invention is calculated by electromagnetic field analysis and flow analysis. In addition, FIG. 5 (front view), FIG. 6 (horizontal sectional view taken along line VI-VI in FIG. 5), and FIG. 7 (vertical sectional view taken along line VII-VII in FIG. 5) Is shown schematically.
[0048]
In the present invention, as shown in FIG. 8, the direction of the flow generated according to the Lorentz force F shown in the following equation is reversed at the same cycle as the applied current I.
[0049]
F∝J × Bt (1)
Bt = Bdc + Bac> 0 (2)
Here, J is an induced current, Bt is a total magnetic field, Bdc is a DC magnetic field, and Bac is an AC magnetic field.
[0050]
6). If the frequency of the alternating current at this time is too low, sufficient flow is not excited, and if it is too high, the molten steel does not follow the electromagnetic field, so a range of 1 Hz to 8 Hz is appropriate.
[0051]
7). If the winding direction of the coil is reversed, the phase of the magnetic field can be reversed even if the phase of the current is the same.
[0052]
8). In Japanese Patent No. 2917223, a low-frequency AC static magnetic field that does not move with time is applied, and low-frequency electromagnetic vibration is excited on the solidification front surface, thereby breaking the columnar dendrite on the solidification front surface and floating it in the molten metal. Although a method aiming to refine the solidification structure and reduce the center segregation is disclosed, if a large electromagnetic force is applied that causes the dendrite to break, the mold flux on the upper surface of the molten metal is involved and the surface quality is deteriorated. . Therefore, the magnetic flux density of the alternating oscillating magnetic field is desirably 1000 gauss or less. Depending on the coil arrangement, the dendrite may be prevented from breaking even at 1000 gauss or more.
[0053]
9. Furthermore, in the method of Japanese Patent No. 2917223, the dendrite breaks and changes from a columnar crystal structure to an equiaxed crystal structure. In ultra-low carbon steel and the like, the columnar crystal structure alone is easier to control as a texture during rolling, so that there is a problem that it is difficult to align the crystal orientation by equiaxed crystallization. For this reason, it is important that the dendrite on the solidified front surface is not broken by electromagnetic force.
[0054]
From the above knowledge, by applying a DC magnetic field in the thickness direction while oscillating the magnetic field in the mold long side direction, a flow greatly different from the conventional one is induced in the mold long side direction and casting direction, and only the solidification interface is efficiently It is possible to suppress the trapping of bubbles and inclusions and greatly improve the surface quality of the slab.
[0055]
In addition, when the electromagnet coils are arranged in two upper and lower stages, the position of the magnets facing the upper and lower stages is not limited because the optimum position changes depending on the casting conditions. The coil core is preferably present in the range up to the discharge hole, and the lower coil is preferably located below the immersion nozzle discharge hole.
[0056]
Further, it is desirable that the maximum AC magnetic flux density is 1000 Gauss or less, the DC magnetic field is 3000 Gauss or less, and the frequency of the oscillating magnetic field is 1 Hz to 8 Hz.
[0057]
By virtue of the present invention, it is possible to efficiently vibrate only the solidification interface and suppress the trapping of bubbles and inclusions into the solidification shell. In addition, the surface quality of the slab can be greatly improved since the intrusion of bubbles and bubbles into the lower part of the mold can be prevented.
[0058]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0059]
FIG. 9 is a schematic diagram of a horizontal cross section of the facility, showing an example of an electromagnetic coil that is applied to the oscillating magnetic field, which is a feature of the continuous casting facility of steel, suitable for implementing the present invention. In the figure, 10 is a mold, 12 is an immersion nozzle, 20 is an oscillating magnetic field generator, 22 is a comb-like iron core, 24 is a coil, 26a and 26b are AC power supplies, 28 is a magnetic pole, and 30 is a static magnetic field generator. .
[0060]
In the present invention, continuous casting is performed while applying a magnetic field to the molten steel in the mold 10 having long sides and short sides facing each other by electromagnetic coils arranged in a plurality of stages in the vertical direction (casting direction). The magnetic field applied at least in one stage is a magnetic field that vibrates in the long side direction of the mold (hereinafter also referred to as an oscillating magnetic field) and a static magnetic field in the thickness direction. The applied oscillating magnetic field is an alternating magnetic field whose application direction is the long side direction of the mold, and is a magnetic field that does not induce macroscopic flow of molten steel by periodically reversing its direction.
[0061]
The oscillating magnetic field can be generated using, for example, an oscillating magnetic field generator 20 as shown in FIG. In the oscillating magnetic field generator 20 shown in FIG. 9, a comb-like iron core 22 having three or more (12 in the figure) comb teeth in the long side direction of the mold is used, and a coil 24 is arranged on these comb teeth. Thus, the magnetic pole 28 is obtained. The magnetic pole 28 adjusts the winding method of the coil and the alternating current flowing through the coil so that adjacent magnetic poles have different polarities (N and S poles). In order to make the adjacent magnetic poles have different polarities (N and S poles), the winding direction of the coils of the adjacent magnetic poles is set in the opposite direction, and the current flowing through the coil is changed to an alternating current having the same phase and a predetermined frequency. Alternatively, it is preferable that the winding direction of the coils of the adjacent magnetic poles is the same direction, and the current flowing through the coil is an alternating current having a predetermined frequency with a phase shift between the adjacent magnetic poles. The phase shift of the alternating current flowing in the adjacent magnetic pole is preferably 130 ° or more and 230 ° or less so that the phase is substantially reversed.
[0062]
The predetermined frequency of the alternating current is preferably 1 to 8 Hz, and more preferably 3 to 6 Hz. The example shown in FIG. 9 is a case where adjacent magnetic poles have different directions (substantially inversion of the phase) of alternating currents flowing through the coil with the coil winding direction being the same direction. It is not limited to.
[0063]
In the present invention, since the adjacent magnetic poles have different polarities, the electromagnetic force acting on the molten steel between the adjacent magnetic poles and the electromagnetic force acting on the molten steel between the adjacent magnetic poles are almost opposite in direction, Macro flow of molten steel is not induced. In the present invention, since the current flowing through the coil is an alternating current, the polarity of each magnetic pole is reversed at a predetermined period, and vibration can be induced in the molten steel near the solidification interface in the long side width direction of the mold. Thereby, inclusions and bubbles in the solidification interface can be suppressed, and the surface quality of the slab can be remarkably improved.
[0064]
If the frequency of the alternating current flowing through the coil is less than 1 Hz, it is too low to induce sufficient flow. On the other hand, if it exceeds 8 Hz, the molten steel will not follow the oscillating magnetic field, and the effect of applying the magnetic field will be reduced. For this reason, it is preferable that the frequency of the alternating current flowing through the coil is 1 to 8 Hz and the vibration period of the oscillating magnetic field is 1/8 to 1 s.
[0065]
In the present invention, the magnetic flux density of the oscillating magnetic field to be applied is preferably 1000 gauss or less. When the magnetic flux density exceeds 1000 gauss, there is a problem that not only the dendrite is broken, but also the molten metal surface fluctuation becomes large and the entrainment of mold flux is promoted.
[0066]
In the present invention, a static magnetic field is applied in addition to the application of the oscillating magnetic field. As shown in FIG. 9, the static magnetic field is applied in the direction of the short side of the mold (the thickness direction of the mold) by installing a static magnetic field generator 30 on the long side of the mold 10.
[0067]
By applying a static magnetic field in the thickness direction of the mold, it is possible to reduce the molten steel flow velocity in the vicinity of the center of the mold indicated by the broken line area in FIG. 9, and to prevent entrainment of mold flux. By superimposing the application of the static magnetic field on the application of the oscillating magnetic field, the B term at F = J × B can be increased, and the Lorentz force can be further increased.
[0068]
In the present invention, the magnetic flux density of the applied static magnetic field is preferably 200 gauss or more and 3000 gauss or less. When the magnetic flux density is less than 200 gauss, the effect of reducing the molten steel flow rate is small, and when it exceeds 3000 gauss, there is a problem that braking is too large and non-uniform solidification occurs.
[0069]
FIG. 9 shows an example in which an oscillating magnetic field generator 20 and a static magnetic field generator 30 are arranged on the long side of the mold 10. The static magnetic field generator 30 has a pair of magnetic poles arranged on the long side of the mold with the mold sandwiched between them. . The installation positions of the static magnetic field generator 30 and the oscillating magnetic field generator 20 may be the same position in the vertical (up and down) direction, or may be slightly shifted.
[0070]
【Example】
Next, based on an Example, this invention is demonstrated still in detail.
[0071]
About 300 tons of molten steel was melted in a converter and made into ultra-low carbon steel Al killed steel by RH treatment, and a slab was cast by a continuous casting machine. Table 1 shows typical molten steel components.
[0072]
[Table 1]
Figure 0004263396
[0073]
The width of the slab was 1500-1700 mm, the thickness was 220 mm, and the throughput of the molten steel was in the range of 4-5 tons / min.
[0074]
Further, as shown in FIG. 1, a comb-shaped iron core divided into 12 parts in the width direction is used as the coil structure, and the coil structure is arranged so as to generate a magnetic field whose phase is alternately reversed in the width direction. The maximum magnetic flux by the AC magnetic field was 1000 gauss. The maximum magnetic flux by the static magnetic field was 3000 gauss.
[0075]
In addition, the coil installation positions were such that the upper coil had an iron core between the meniscus and the discharge hole of the immersion nozzle, and the lower coil had the iron core at a position below the immersion nozzle discharge hole.
[0076]
The upper and lower two-stage coils facing the long side of the mold, for Examples 1 to 5, as schematically shown in FIGS.
Example 1; upper stage: AC oscillating magnetic field + DC magnetic field, lower stage: DC magnetic field
Example 2: Upper: DC magnetic field, Lower: AC oscillating magnetic field + DC magnetic field
Example 3; upper stage: AC oscillating magnetic field + DC magnetic field, lower stage: AC moving magnetic field
Example 4; upper stage: AC moving magnetic field, lower stage: AC oscillating magnetic field + DC magnetic field
Example 5: Upper part: AC oscillating magnetic field + DC magnetic field, lower part: AC oscillating magnetic field + DC magnetic field
It was. In addition, 12A shown in FIG. 10 is a discharge port of the immersion nozzle 12.
[0077]
As a comparative example,
Comparative Example 1: No electromagnetic coil on the upper and lower stages
Comparative example 2; upper stage: no coil, lower stage: DC magnetic field
Comparative example 3; upper row: AC moving magnetic field, lower row: no coil
Casting was carried out under the following conditions.
[0078]
Table 2 summarizes the experimental conditions and the experimental results.
[0079]
[Table 2]
Figure 0004263396
[0080]
The surface segregation of the slab is 1 m by visual observation after etching after slab grinding. 2 The number of segregation per hit was investigated. Moreover, the surface defect of the coil after cold rolling was visually inspected, and after collecting a defect sample, the number of defects due to mold flux was investigated by analyzing the defect portion. The amount of inclusions was measured by extracting the inclusions by a slime extraction method from a 1/4 thickness position of the slab. The surface segregation, mold flux defects, and amount of inclusions were indexed with 10 being the worst of all conditions, and displayed as a linear ratio.
[0081]
As can be seen from Table 2, in the case of the conventional method shown in the comparative example, either the surface quality or the internal quality may be very excellent, but both the surface quality and the internal quality are achieved. Not done.
[0082]
On the other hand, according to the embodiment of the present invention, both surface defects and internal defects can be stably achieved with excellent results.
[0083]
By selecting the upper and lower coil combinations from the combinations shown in the embodiments of the present invention according to product quality requirements and manufacturing costs, it is possible to manufacture products with no problems even for stricter specifications. It becomes.
[0084]
In the above description, a comb-like iron core having 12 poles is used. However, the number of magnetic poles and the shape of the iron core are not limited to this, and the iron core may be divided, for example. Absent.
[0085]
In addition, as a specific example, an electromagnetic coil is desired to be installed in two stages, but may be three or more stages.
[0086]
【The invention's effect】
According to the present invention, it is possible to cast a slab having less trapped bubbles, non-metallic inclusions and slab surface segregation, surface defects caused by mold flux and internal inclusions, and high-quality metal products can be manufactured. .
[Brief description of the drawings]
FIG. 1 is a horizontal sectional view schematically showing an electromagnet and a mold used in the present invention.
FIG. 2 is a front view schematically showing a calculation result by electromagnetic field analysis and flow analysis of a velocity vector of a molten metal flow induced at a certain time point induced by a magnetic field, for explaining the principle of the present invention.
3 is a horizontal sectional view taken along line III-III in FIG.
4 is a vertical sectional view taken along line IV-IV in FIG.
FIG. 5 is a front view schematically showing the calculation result by the electromagnetic field analysis and flow analysis of the velocity vector of the molten metal flow at the next time point when the magnetic pole is reversed, induced by the magnetic field, for explaining the principle of the present invention.
6 is a horizontal sectional view taken along line VI-VI in FIG.
7 is a vertical sectional view taken along line VII-VII in FIG.
FIG. 8 is a diagram showing an example of a temporal change state of applied current and molten steel flow velocity in the present invention.
FIG. 9 is a horizontal sectional view schematically showing an embodiment of a continuous casting facility that applies a DC magnetic field superimposed on an AC oscillating magnetic field.
FIG. 10 is a schematic diagram of a coil arrangement in which the upper stage is an AC oscillating magnetic field + DC magnetic field, and the lower stage is a DC magnetic field.
FIG. 11 is a schematic diagram of a coil arrangement in which the upper stage is a DC magnetic field and the lower stage is an AC oscillating magnetic field + DC magnetic field.
FIG. 12 is a schematic diagram of a coil arrangement in which the upper row is an AC oscillating magnetic field + DC magnetic field and the lower row is an AC moving magnetic field.
FIG. 13 is a schematic diagram of a coil arrangement in which the upper stage is an AC moving magnetic field and the lower stage is an AC oscillating magnetic field + DC magnetic field.
FIG. 14 is a schematic diagram of a coil arrangement of AC oscillating magnetic field + DC magnetic field in both upper and lower stages.
[Explanation of symbols]
10 ... mold
12 ... Immersion nozzle
20 ... Oscillating magnetic field generator
22 ... Comb-shaped iron core
24 ... AC coil
26a, 26b ... AC power supply
28 ... Magnetic pole
30 ... Static magnetic field generator
32 ... DC current
34 ... DC coil

Claims (11)

連続鋳造用鋳型の鋳型長辺を挟み対向する上下に複数段の電磁石コイルを配置すると共に、
少なくとも一段には、鋳型長辺方向に3個以上の電磁石を配置し、隣り同士のコイルで発生する磁場を互いに反転させることで、溶鋼に位相が反転する振動磁界を作用させ、且つ、鋳型の厚み方向に静磁界を重畳することで、局所的な流動を誘起させることを特徴とする鋼の連続鋳造方法。
While arranging a plurality of electromagnet coils on the upper and lower sides across the mold long side of the continuous casting mold,
At least one stage, to place three or more electromagnets to mold long side direction, next by reversing the magnetic field generated by the coil between each other, by the action of Do磁 field oscillation phase is inverted to the molten steel, and A continuous casting method for steel, wherein a local flow is induced by superimposing a static magnetic field in the thickness direction of the mold.
前記隣り同士のコイルで発生する磁場を、隣り同士のコイルに位相が逆の交流電流を通電するか、あるいは、コイルの巻き線方向を逆にして同位相の交流電流を通電することで、反転させることを特徴とする請求項1に記載の鋼の連続鋳造方法。The magnetic field generated by the coil between the adjacent or phase coils between neighboring passing a reverse alternating current, or by by the winding direction of the coil in the opposite energizing the alternating current of the same phase, anti The steel continuous casting method according to claim 1, wherein the steel is cast. 鋳型長辺を挟み対向する上下2段の電磁石コイルを配置し、上段に振動磁界に静磁界を重畳して印加し、下段に静磁界を印加することを特徴とする請求項1又は2に記載の鋼の連続鋳造方法。The upper and lower two-stage electromagnet coils facing each other with the long side of the mold interposed therebetween are arranged, a static magnetic field is superimposed on an oscillating magnetic field on the upper stage, and a static magnetic field is applied on the lower stage. Steel continuous casting method. 鋳型長辺を挟み対向する上下2段の電磁石コイルを配置し、上段に静磁界を印加し、下段に振動磁界に静磁界を重畳して印加することを特徴とする請求項1又は2に記載の鋼の連続鋳造方法。The upper and lower two-stage electromagnet coils facing each other with the long side of the mold interposed therebetween are disposed, a static magnetic field is applied to the upper stage, and a static magnetic field is superimposed on the oscillating magnetic field and applied to the lower stage. Steel continuous casting method. 鋳型長辺を挟み対向する上下2段の電磁石コイルを配置し、上段に振動磁界に静磁界を重畳して印加し、下段に交流移動磁界を印加することを特徴とする請求項1又は2に記載の鋼の連続鋳造方法。3. The upper and lower two-stage electromagnet coils facing each other with the mold long side interposed therebetween are arranged, a static magnetic field is superimposed on an oscillating magnetic field in the upper stage, and an AC moving magnetic field is applied in the lower stage. The continuous casting method of the described steel. 鋳型長辺を挟み対向する上下2段の電磁石コイルを配置し、上段に交流移動磁界を印加し、下段に振動磁界に静磁界を重畳して印加することを特徴とする請求項1又は2に記載の鋼の連続鋳造方法。3. The upper and lower two-stage electromagnet coils facing each other with the long side of the mold interposed therebetween are arranged, an AC moving magnetic field is applied to the upper stage, and a static magnetic field is superimposed on the oscillating magnetic field and applied to the lower stage. The continuous casting method of the described steel. 鋳型長辺を挟み対向する上下2段の電磁石コイルを配置し、上下段ともに振動磁界に静磁界を重畳して印加することを特徴とする請求項1又は2に記載の鋼の連続鋳造方法。3. The steel continuous casting method according to claim 1, wherein two upper and lower electromagnet coils facing each other with the long side of the mold interposed therebetween are arranged, and a static magnetic field is superimposed and applied to the oscillating magnetic field in both the upper and lower stages. 最大の交流磁界の磁束密度が1000ガウス以下、直流磁界が3000ガウス以下であることを特徴とする請求項1又は2に記載の鋼の連続鋳造方法。The continuous casting method for steel according to claim 1 or 2, wherein the magnetic flux density of the maximum AC magnetic field is 1000 gauss or less and the DC magnetic field is 3000 gauss or less. 振動磁界の周波数が1Hzから8Hzであることを特徴とする、請求項1又は2に記載の鋼の連続鋳造方法。The continuous casting method for steel according to claim 1 or 2, wherein the frequency of the oscillating magnetic field is 1 Hz to 8 Hz. 相対する長辺と短辺から構成され溶鋼を保持し凝固させる鋳型と、
鋳型長辺を挟み対向して上下に配置された複数段の電磁石コイルと、
少なくとも一段には、前記鋳型の長辺方向に3個以上の磁極を有し、隣接する磁極同士を互いに異なる極性で且つ該極性所定の周期で反転させ、前記鋳型内の溶鋼にマクロ的な溶鋼流動のない振動磁界を発生させる振動磁界発生装置と、
前記鋳型の短辺幅方向に直流磁界を発生させる直流磁界発生装置と、
を備えることを特徴とする鋼の連続鋳造設備。
A mold composed of opposed long sides and short sides to hold and solidify molten steel;
A plurality of electromagnet coils arranged vertically on opposite sides of the mold long side;
At least one stage has three or more magnetic poles in the longitudinal direction of the mold, to reverse the and polar in different polarities adjacent magnetic poles to each other at a predetermined period, macroscopic molten steel in said mold An oscillating magnetic field generator for generating an oscillating magnetic field free from molten steel flow;
A DC magnetic field generator for generating a DC magnetic field in the short side width direction of the mold;
A continuous casting facility for steel, comprising:
前記振動磁界発生装置が、前記鋳型の長辺方向に沿って3個以上の櫛歯を有する櫛歯状鉄芯と該各櫛歯に配設されたコイルとからなる電磁石、該コイルに所定の周波数、所定の位相の交流電流を供給する交流電源とからなることを特徴とする請求項10に記載の鋼の連続鋳造設備。The oscillating magnetic field generator includes an electromagnet including a comb-like iron core having three or more comb teeth along a long side direction of the mold and a coil disposed on each comb tooth, The continuous casting equipment for steel according to claim 10, comprising an alternating current power source for supplying alternating current having a frequency and a predetermined phase.
JP2001366362A 2001-11-30 2001-11-30 Steel continuous casting method and equipment Expired - Lifetime JP4263396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366362A JP4263396B2 (en) 2001-11-30 2001-11-30 Steel continuous casting method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366362A JP4263396B2 (en) 2001-11-30 2001-11-30 Steel continuous casting method and equipment

Publications (2)

Publication Number Publication Date
JP2003164948A JP2003164948A (en) 2003-06-10
JP4263396B2 true JP4263396B2 (en) 2009-05-13

Family

ID=19176272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366362A Expired - Lifetime JP4263396B2 (en) 2001-11-30 2001-11-30 Steel continuous casting method and equipment

Country Status (1)

Country Link
JP (1) JP4263396B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848656B2 (en) * 2005-03-28 2011-12-28 Jfeスチール株式会社 Method and apparatus for continuous casting of steel
JP5076465B2 (en) * 2006-11-30 2012-11-21 Jfeスチール株式会社 Steel continuous casting method and equipment
JP4505530B2 (en) 2008-11-04 2010-07-21 新日本製鐵株式会社 Equipment for continuous casting of steel
JP5745192B2 (en) * 2011-12-22 2015-07-08 エービービー エービー Equipment and method for flow control of molten metal in continuous casting process
JP7143731B2 (en) * 2018-11-13 2022-09-29 日本製鉄株式会社 Continuous casting method

Also Published As

Publication number Publication date
JP2003164948A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
EP2295169B1 (en) Apparatus for casting molten metal
US4030534A (en) Apparatus for continuous casting using linear magnetic field for core agitation
KR20020005949A (en) Method and apparatus for continuous casting of metals
JP4348988B2 (en) Steel continuous casting method
US3952791A (en) Method of continuous casting using linear magnetic field for core agitation
JPH0929396A (en) Method and device for molten metal excitation for biroll type continuous casting machine
JP3697585B2 (en) Steel continuous casting method and equipment
JP4263396B2 (en) Steel continuous casting method and equipment
KR20020063897A (en) Method for the vertical continuous casting of metals using electromagnetic fields and casting installation therefor
JP4539024B2 (en) Steel continuous casting method
JPH10305353A (en) Continuous molding of steel
JP3697584B2 (en) Steel continuous casting method and equipment
KR100764945B1 (en) Method of continuous steel casting
JP4591456B2 (en) Steel continuous casting method
JP3937961B2 (en) Continuous casting method of steel
JP2020015083A (en) Flow control apparatus for thin slab continuous casting and continuous casting method for thin slab
JP5076465B2 (en) Steel continuous casting method and equipment
JPH09262650A (en) Method for controlling fluidity in mold in continuous casting and device therefor
JPH09262651A (en) Method for reducing non-metallic inclusion in continuous casting
JP2007118089A (en) Method for continuously casting steel
JP2002028763A (en) Method for continuously casting metal
JP2004322179A (en) Electromagnetic force control device in mold and continuous casting method
JP4848656B2 (en) Method and apparatus for continuous casting of steel
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JP4192651B2 (en) Mold for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4263396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term