JPH09262651A - Method for reducing non-metallic inclusion in continuous casting - Google Patents

Method for reducing non-metallic inclusion in continuous casting

Info

Publication number
JPH09262651A
JPH09262651A JP9733196A JP9733196A JPH09262651A JP H09262651 A JPH09262651 A JP H09262651A JP 9733196 A JP9733196 A JP 9733196A JP 9733196 A JP9733196 A JP 9733196A JP H09262651 A JPH09262651 A JP H09262651A
Authority
JP
Japan
Prior art keywords
mold
magnetic field
molten steel
slab
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9733196A
Other languages
Japanese (ja)
Inventor
Kenichi Miyazawa
憲一 宮沢
Hiroshi Harada
寛 原田
Takashi Morohoshi
隆 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9733196A priority Critical patent/JPH09262651A/en
Publication of JPH09262651A publication Critical patent/JPH09262651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the inclusion on the surface and in the inner part of a cast slab even in the case of being quick casting speed by casting plural kinds of steels having different harmfulness of the inclusion, in a continuous casting. SOLUTION: Electromagnets 7 for electromagnetic stirring are arranged on a mold part 1 at the upper part from the lower end part of an immersion nozzle 2, and electromagnetic devices 8 for impressing shifting magnetic field and static magnetic field to molten steel are arranged on the mold part at the lower part from the lower end of the immersion nozzle. The non-metallic inclusion in the cast slab is reduced by electromagnetic-stirring the molten steel at both of the upper part and the lower part in the mold or by electromagnetic-stirring to the upper part and impressing the static magnetic field to the lower part according to the kind of steel and the casting speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼の連続鋳造方
法に関する。
TECHNICAL FIELD The present invention relates to a continuous casting method for molten steel.

【0002】[0002]

【従来の技術】鋼の連続鋳造では、一つの連鋳機で種々
の鋼種を鋳造する。薄板用の鋼種の中には、薄板製品の
外観や品質を向上させる目的から、鋳片の表面近くに存
在する比較的大きな非金属介在物や気泡を極力低減させ
たい鋼種や、一方、薄板製品の加工性をあげるために鋳
片内部の介在物を極力低減したい鋼種があり、これらの
鋼種を一台の同じ連鋳機で鋳造しているのが現状であ
る。
2. Description of the Related Art In continuous casting of steel, various steel types are cast by one continuous casting machine. Among the steel types for thin plates, there are steel types for which it is desired to reduce relatively large non-metallic inclusions and bubbles existing near the surface of the slab as much as possible in order to improve the appearance and quality of the thin plate products. There are steel types that want to reduce inclusions inside the slab as much as possible in order to improve the workability, and the present situation is that these steel types are cast by one and the same continuous casting machine.

【0003】従来、鋳片表面近傍の介在物を鋳型内で低
減する方法として、鋳型内の凝固シェルの先端に溶鋼流
動を付与して、その洗浄効果により凝固シェルへの介在
物の捕捉を抑制するため、鋳型部の上部に設置した電磁
石によって溶鋼に移動磁界を印加し、凝固シェル先端に
沿った水平方向の撹拌流動を誘起させる方法が知られて
おり、特願平4ー134898公報や特願平4ー159
802公報では鋳型内の溶鋼に移動磁界を印加して撹拌
する方法を開示している。スリバー疵等の薄板製品の表
面疵を防止するためには、鋳片厚さや薄板製品の厚さに
よって異なるが、鋳片表面から約25mm程度までの厚
さ領域における比較的大きな介在物や気泡を低減しなけ
ればならない。このため、鋳造速度が遅い場合、鋳型上
部に設置した電磁石で鋳片表層の介在物を低減すること
が可能であるが、鋳造速度が早くなると、鋳型上部の電
磁石による撹拌効果が発揮できる鋳片表層厚さが薄くな
るため、完全に薄板表面疵を防止することができない。
[0003] Conventionally, as a method of reducing inclusions near the surface of a slab in the mold, molten steel flow is applied to the tip of the solidification shell in the mold, and the cleaning effect suppresses trapping of inclusions in the solidification shell. Therefore, a method is known in which a moving magnetic field is applied to molten steel by an electromagnet installed on the upper part of the casting mold to induce horizontal stirring and flow along the tip of the solidified shell. Wishhei 4-159
Japanese Patent No. 802 discloses a method of applying a moving magnetic field to molten steel in a mold and stirring the molten steel. In order to prevent surface flaws of thin plate products such as sliver flaws, it depends on the thickness of the slab and the thickness of the thin sheet product, but relatively large inclusions and bubbles in the thickness area up to about 25 mm from the surface of the slab should be used. Must be reduced. Therefore, when the casting speed is slow, it is possible to reduce the inclusions in the surface layer of the slab with the electromagnet installed on the upper part of the mold, but when the casting speed is high, the stirring effect by the electromagnet on the upper part of the mold can be exhibited. Since the surface layer becomes thin, it is not possible to completely prevent the flaws on the surface of the thin plate.

【0004】一方、鋳片内部の非金属介在物の低減につ
いては、鋳型内の溶鋼に静磁場を印加し、浸漬ノズルの
吐出孔よりも下方へ流れる下向き流の浸透深さを低減す
ることにより、溶鋼内の介在物が鋳片内部へ捕捉される
ことを抑制することができ、溶鋼に静磁場を印加して溶
鋼流動を制動する方法は特願昭62−241439号公
報や特願平4ー127938号公報で開示されている。
On the other hand, in order to reduce the non-metallic inclusions in the slab, a static magnetic field is applied to the molten steel in the mold to reduce the penetration depth of the downward flow that flows downward from the discharge hole of the immersion nozzle. A method of suppressing inclusions in molten steel from being trapped inside the slab and applying a static magnetic field to the molten steel to brake the molten steel flow is disclosed in Japanese Patent Application No. 62-241439 and Japanese Patent Application No. 4241439. No. 127,938.

【0005】しかし、一台の同じ連鋳機で、鋼種や鋳造
速度に応じて、鋳片表層の介在物や気泡を問題ないレベ
ルまで低減したり、鋳片内部の介在物を問題ないレベル
まで低減できるような鋳造方法が無いのが実状である。
However, with the same single continuous casting machine, inclusions and bubbles in the surface layer of the slab can be reduced to a level without problems, and inclusions inside the slab to a level without problems, depending on the steel type and casting speed. The reality is that there is no casting method that can be reduced.

【0006】[0006]

【発明が解決しようとする課題】一台の連続鋳造機にお
いて、介在物の有害性が異なる複数の鋼種を鋳造し、鋳
造速度が速くても、鋳片表層の介在物の量を低減した
り、鋳片内部の介在物の量を低減する効率的な連続鋳造
を安定に行うことが課題である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In a single continuous casting machine, a plurality of steel types having different harmfulness of inclusions are cast to reduce the amount of inclusions on the surface layer of the slab even if the casting speed is high. The problem is to stably perform efficient continuous casting that reduces the amount of inclusions inside the slab.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために種々検討した結果、鋳型上部に移動磁
界を溶鋼に印加する電磁石装置を設置し、一方、鋳型の
下部には、一つの電磁石装置によって移動磁場を印加し
て溶鋼を撹拌させたり、静磁場を印加して溶鋼を制動で
きる電磁石装置を設置することにより、鋳片表層の介在
物を低減でき、かつ、鋳片内部の介在物も低減できるこ
とを見い出した。
As a result of various studies to solve the above-mentioned problems, the inventors of the present invention installed an electromagnet device for applying a moving magnetic field to molten steel on the upper part of the mold, while By installing an electromagnet device that can apply a moving magnetic field to stir molten steel by one electromagnet device or apply a static magnetic field to brake molten steel, inclusions on the surface layer of the slab can be reduced, and the slab can be reduced. It has been found that inclusions inside can also be reduced.

【0008】本発明の要旨は、鋼の連続鋳造において、
溶鋼を浸漬ノズルを経て鋳型内へ注湯して鋳片を製造す
る際、浸漬ノズルの下端よりも上部の鋳型部に電磁撹拌
用の電磁石を設置し、かつ該浸漬ノズルの下端より下方
の鋳型部に移動磁界および静磁場を溶鋼に印加する電磁
石装置を設置して、鋼種や鋳造速度に応じて、鋳型内の
上部と下部の両方の溶鋼を電磁撹拌したり、または、上
部を電磁撹拌し下部では静磁場を印加して鋳片の非金属
介在物を低減することを特徴とする連続鋳造方法であ
る。
The gist of the present invention is, in continuous casting of steel,
When producing molten slab by pouring molten steel into the mold through the immersion nozzle, an electromagnetic stirring electromagnet is installed in the mold part above the lower end of the immersion nozzle, and a mold below the lower end of the immersion nozzle. An electromagnetic device for applying a moving magnetic field and a static magnetic field to the molten steel is installed in the part to electromagnetically stir both the upper and lower molten steel in the mold or electromagnetically stir the upper part according to the steel type and casting speed. The lower part is a continuous casting method characterized by applying a static magnetic field to reduce non-metallic inclusions in the slab.

【0009】[0009]

【発明の実施の形態】図1は、連続鋳造において、浸漬
ノズル2の吐出孔3を経て溶鋼4を鋳型1の中へ注湯す
る際、鋳型部の上部に移動磁界を溶鋼に印可するための
電磁石装置7を設置し、鋳型部の下部に移動磁界と静磁
場を溶鋼に印可するための電磁石装置8を設置した時の
縦断面図を示す。浸漬ノズルの吐出孔は、通常、水平方
向よりも下向きになっており、電磁石装置を作動させな
い場合、鋳型内へ注湯された溶鋼のノズル吐出流は、鋳
片の短片側の凝固シェル6に衝突して、ノズルの吐出孔
よりも下方へ流れる下向き流と、吐出孔よりも上へ流れ
る上向き流に分かれる。溶鋼は鋳型への抜熱により凝固
し、凝固シェルは連続的に下方へ引き抜かれる。下向き
流の速度が余りにも大きいと、吐出流の浸透深さが深く
なるため、非金属介在物の浮上除去にとって不利とな
り、鋳片の内部に介在物が多く残り、鋼製品の品質に悪
影響を及ぼす。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is for applying a moving magnetic field to the molten steel at the upper part of the casting mold when pouring the molten steel 4 into the mold 1 through the discharge hole 3 of the immersion nozzle 2 in continuous casting. 2 is a vertical cross-sectional view when the electromagnet device 7 is installed, and the electromagnet device 8 for applying a moving magnetic field and a static magnetic field to molten steel is installed below the mold part. The discharge hole of the immersion nozzle is usually downward from the horizontal direction, and when the electromagnet device is not operated, the nozzle discharge flow of the molten steel poured into the mold is directed to the solidified shell 6 on the short piece side of the slab. Upon collision, the flow is divided into a downward flow that flows downward from the discharge hole of the nozzle and an upward flow that flows upward from the discharge hole. The molten steel is solidified by heat removal to the mold, and the solidified shell is continuously drawn downward. If the velocity of the downward flow is too high, the depth of penetration of the discharge flow becomes deep, which is disadvantageous for the floating removal of non-metallic inclusions, and many inclusions remain inside the slab, adversely affecting the quality of steel products. Exert.

【0010】炭素濃度が約30−40ppm以下の極低
炭素鋼の場合、鋳片表層の比較的大きな介在物や気泡が
薄板製品の表面疵の起因となる場合があるため、鋳片表
層の介在物や気泡を極力低減しなければならない。その
ため、図1に示す鋳型上部の電磁石7を使って溶鋼に移
動磁場を印可すると、凝固シェルに沿った水平方向の溶
鋼の流動が誘起され、凝固シェル付近で介在物や気泡が
洗い流され、凝固シェルへの比較的大きな介在物や気泡
の捕捉が低減する。鋳型上部での電磁撹拌は、余りにも
強すぎると、溶鋼のメニスカス状の鋳造用フラックスが
溶鋼に巻き込まれることになり、鋳片内の非金属介在物
が増加する原因となるため、移動磁界印可の際の電磁撹
拌による溶鋼流速は、フラックス巻き込みの弊害が生じ
ない約0.4−0.6m/s以下の流速に抑える必要が
ある。鋳造速度が速くなると、鋳型部で形成される凝固
シェルの厚さは薄くなり、鋳型上部の電磁石装置7によ
る介在物や気泡の低減効果が享受できる鋳片表層厚さが
薄くなる。そのため、鋳片表層の介在物や気泡の除去が
重要な極低炭素鋼では、速い鋳造速度の場合、上部の電
磁石7に加え、下部の電磁石装置8も同時に使って溶鋼
に移動磁界を印可し、凝固シェルに沿って溶鋼流動を付
与すると、鋳片表層の約30mm厚さまでの介在物や気
泡が低減でき、薄板表面疵の防止が可能となる。なお、
鋳片内部の介在物が薄板製品に悪影響を及ぼすことは比
較的少ない。
In the case of ultra-low carbon steel having a carbon concentration of about 30-40 ppm or less, relatively large inclusions or bubbles in the surface layer of the slab may cause surface flaws in the thin plate product. It is necessary to reduce objects and bubbles as much as possible. Therefore, when a moving magnetic field is applied to the molten steel using the electromagnet 7 at the top of the mold shown in FIG. 1, horizontal flow of the molten steel along the solidification shell is induced, and inclusions and bubbles are washed away near the solidification shell and solidification occurs. The entrapment of relatively large inclusions and bubbles in the shell is reduced. If the electromagnetic stirring in the upper part of the mold is too strong, the meniscus-shaped casting flux of molten steel will be caught in the molten steel, causing non-metallic inclusions in the slab to increase. In this case, the molten steel flow velocity due to the electromagnetic stirring must be suppressed to a flow velocity of about 0.4-0.6 m / s or less, which does not cause the adverse effect of flux entrainment. As the casting speed increases, the thickness of the solidified shell formed in the casting mold becomes thinner, and the thickness of the surface layer of the cast slab that can enjoy the effect of reducing inclusions and bubbles by the electromagnet device 7 at the top of the casting mold becomes thinner. Therefore, for ultra-low carbon steel, in which inclusions and bubbles on the surface of the slab are important to remove, in the case of a high casting speed, in addition to the upper electromagnet 7, the lower electromagnet device 8 is also used to apply a moving magnetic field to the molten steel. When molten steel flow is applied along the solidified shell, inclusions and bubbles up to a thickness of about 30 mm on the surface of the slab can be reduced, and surface defects on the thin plate can be prevented. In addition,
Inclusions inside the slab are relatively unlikely to adversely affect sheet products.

【0011】一方、ブリキ製品に使われる低炭アルミキ
ルド鋼などのように、鋳片表面の大型介在物のみなら
ず、鋳片内部の非金属介在物の低減を厳格に行わねばな
らない鋼種を鋳造する場合、鋳型上部の電磁石装置を使
って鋳片表層の介在物や気泡を低減し、同時に鋳型下部
の電磁石装置8を使って、溶鋼に静磁場を印加すると、
静磁場中を流動する溶鋼に、溶鋼の流動の方向と逆方向
へ電磁気力が作用し、溶鋼の流速が低下する。このた
め、吐出流の浸透深さが大幅に低減し、非金属介在物が
溶鋼プールの深い位置まで侵入せず、メニスカスへの浮
上除去が促進される。
On the other hand, such as low-carbon aluminum killed steel used in tin products, steel grades that must strictly reduce not only large inclusions on the surface of the slab but also non-metallic inclusions inside the slab are cast. In this case, when the inclusions and bubbles on the surface of the slab are reduced by using the electromagnet device above the mold, and at the same time, a static magnetic field is applied to the molten steel using the electromagnet device 8 below the mold,
Electromagnetic force acts on the molten steel flowing in the static magnetic field in the direction opposite to the flowing direction of the molten steel, and the flow velocity of the molten steel decreases. For this reason, the penetration depth of the discharge flow is significantly reduced, non-metallic inclusions do not penetrate deep into the molten steel pool, and floating removal to the meniscus is promoted.

【0012】図2は、図1のA−Aの位置の水平断面の
模式図であり、鋳型の下部において鋳型1を挟んで一定
の間隔を保って対向配置された一対の電磁石8および
8’を示す。電磁石8と8’の構成や機能は同じであ
る。電磁石8は、鉄芯9、鉄芯から枝別れした磁極1
1、鉄芯に巻かれた複数のコイル10、枝別れした磁極
の鉄部分に巻かれたコイル12から構成される。次に説
明するように、コイル10や12に流す電流を変えるこ
とにより、鋳型内の溶鋼に移動磁界や静磁場を印加する
ことができる。
FIG. 2 is a schematic diagram of a horizontal cross section taken along the line AA in FIG. 1, and a pair of electromagnets 8 and 8'arranged opposite to each other with a constant space sandwiching the mold 1 under the mold. Indicates. The configurations and functions of the electromagnets 8 and 8'are the same. The electromagnet 8 includes an iron core 9 and a magnetic pole 1 branched from the iron core.
1. A plurality of coils 10 wound around an iron core, and a coil 12 wound around an iron portion of a branched magnetic pole. As described below, a moving magnetic field or a static magnetic field can be applied to the molten steel in the mold by changing the current flowing through the coils 10 and 12.

【0013】移動磁界の印加方法については、図2にお
いて、コイル10の隣接した3個のコイルu、v、w
に、交流電流の位相を120度づつずらした3相の交流
電流を流すと、コイルu、v、wに流す電流の経時変化
に応じて、各磁極11の先端から鋳型内の溶鋼に印加さ
れる磁界は時間的に変化し、磁極に近い溶鋼に移動磁界
が作用することになり、この移動磁界の作用により溶鋼
の流れ13が生じる。同様な方法で鋳型の対面側でも溶
鋼の流れ13’を生起させることができ、鋳型内の溶鋼
が撹拌されることになる。同様に、図2に示した構造の
電磁石を鋳型上部に設置し、鋳型上部の溶鋼に移動磁界
を印可して溶鋼撹拌を行うことができる。
Regarding the method of applying the moving magnetic field, in FIG. 2, three adjacent coils u, v, w of the coil 10 are used.
When a three-phase alternating current having a phase difference of 120 degrees is applied to the molten steel in the mold from the tips of the magnetic poles 11 according to the time-dependent change of the current flowing in the coils u, v, and w. The magnetic field that changes with time causes the moving magnetic field to act on the molten steel near the magnetic poles, and a flow 13 of the molten steel is generated by the action of this moving magnetic field. In the same manner, the molten steel flow 13 'can be generated on the opposite side of the mold, and the molten steel in the mold is agitated. Similarly, the electromagnet having the structure shown in FIG. 2 can be installed on the upper part of the mold, and a moving magnetic field can be applied to the molten steel on the upper part of the mold to stir the molten steel.

【0014】溶鋼に静磁場を印加する場合、2図に示し
た電磁石装置の場合には、コイル12へ直流電流を流す
方法があり、コイル12に流す直流電流の向きを任意に
変えることにより、図3に示すように、磁極の極性がN
極とS極の交互の配置にすることができる。磁界は、N
極からS極へ向かうため、鋳型の対面側の磁極の極性を
N極とS極の交互の配置とすると、鋳型内の溶鋼にN極
からS極へ向かう静磁場が印加でき、この静磁場の中を
溶鋼が流動すると、流動の方向と反対側に電磁気力が作
用し、溶鋼の流動が抑制される。
When applying a static magnetic field to the molten steel, in the case of the electromagnet device shown in FIG. 2, there is a method of supplying a direct current to the coil 12, and by changing the direction of the direct current to be supplied to the coil 12, As shown in FIG. 3, the polarity of the magnetic pole is N
Alternating arrangements of poles and south poles are possible. The magnetic field is N
Since the magnetic poles from the pole to the S pole are arranged so that the magnetic poles on the opposite side of the mold are alternately arranged with the N pole and the S pole, a static magnetic field from the N pole to the S pole can be applied to the molten steel in the mold. When the molten steel flows in, the electromagnetic force acts on the side opposite to the flowing direction, and the flow of the molten steel is suppressed.

【0015】[0015]

【実施例】スラブの連続鋳造において、図1に示すよう
に鋳型の上部と下部に電磁石を設置し、鋳片内の非金属
介在物に及ぼす鋳型上下部での移動磁界印加の場合の効
果、および鋳型上部は移動磁界印可で下部は静磁場印加
の場合の効果を調べる実験を行った。通常の銅鋳型を使
った連続鋳造機で、モールドフラックスを用いた鋳造実
験において、スラブ鋳片のサイズは厚さ170mm、幅
800mmで、鋳型の長さは800mm、ノズル吐出孔
の位置はメニスカスから250mm下である。鋳型上部
の電磁石に関し、鋳造方向における電磁石の中心位置は
メニスカスから100mmで、移動磁場印可のために電
磁石に約500Aの3相交流電流を流した。一方、鋳型
下部の電磁石については、磁石の中心位置がメニスカス
から400mm下になるように設置し、移動磁界を印可
する場合にはコイルに約500Aの電流を流し、静磁場
を印可する場合には、図2のコイル12に直流電流を流
すことにより、磁場強度が約0.3テスラの磁場を発生
させた。
EXAMPLES In continuous casting of slabs, electromagnets were installed on the upper and lower parts of the mold as shown in FIG. 1, and the effect of applying a moving magnetic field on the upper and lower parts of the mold on nonmetallic inclusions in the slab, An experiment was conducted to examine the effect when a moving magnetic field was applied to the upper part of the mold and a static magnetic field was applied to the lower part. In a continuous casting machine using an ordinary copper mold, in a casting experiment using mold flux, the size of the slab slab was 170 mm in thickness and 800 mm in width, the length of the mold was 800 mm, and the position of the nozzle discharge hole was from the meniscus. It is 250 mm below. Regarding the electromagnet on the upper part of the mold, the center position of the electromagnet in the casting direction was 100 mm from the meniscus, and a three-phase alternating current of about 500 A was applied to the electromagnet to apply a moving magnetic field. On the other hand, the electromagnet at the bottom of the mold is installed so that the center position of the magnet is 400 mm below the meniscus. When a moving magnetic field is applied, a current of about 500 A is applied to the coil, and when a static magnetic field is applied. A magnetic field having a magnetic field strength of about 0.3 tesla was generated by applying a direct current to the coil 12 shown in FIG.

【0016】炭素濃度が約30ppmの極低炭素鋼を使
い、異なった鋳造速度において鋳片表層の非金属介在物
の量に及ぼす鋳型の上部と下部における移動磁界印可に
よる溶鋼撹拌の効果を調べる鋳造実験を行った。鋳造実
験後、鋳片長辺側の表面から5mm間隔で鋳片表面に平
行な面を顕微鏡観察し、鋳片表層における10μm以上
の介在物の個数(個/cm2)を調査した。その結果、
鋳造速度が1m/minの場合には、介在物個数が約
1.0個/cm2以下と少なくなる鋳片表層の厚さは、
上部の電磁石のみを作動させた場合には約25mm厚さ
であり、上部と下部の電磁石を作動させた場合には、約
30mm厚さとなり、上下両方の電磁石を使った方が、
介在物の量を少なくしなければならない鋳片表層領域が
厚くなることが分かった。なお、電磁石の効果が及ばな
い鋳片内部での介在物量は、約1.5から2.0個/c
2程度であった。また、鋳造速度が1.6m/min
と速い場合、介在物個数が約1.0個/cm2以下と少
なくなる鋳片表層の厚さは、上部の電磁石のみを作動さ
せた場合には約15mm厚さであり、上部と下部の電磁
石を作動させた場合には、約25mm厚さとなり、鋳造
速度が速くなっても上下両方の電磁石を使うことによ
り、介在物の量を少なくしなければならない鋳片表層領
域の厚くを確保できることが分かった。
Casting using ultra-low carbon steel having a carbon concentration of about 30 ppm and investigating the effect of stirring molten steel by applying a moving magnetic field at the top and bottom of the mold on the amount of non-metallic inclusions on the surface of the slab at different casting speeds. An experiment was conducted. After the casting experiment, a plane parallel to the surface of the slab was observed with a microscope at intervals of 5 mm from the surface of the long side of the slab, and the number (inclusions / cm 2 ) of inclusions of 10 μm or more in the surface layer of the slab was examined. as a result,
When the casting speed is 1 m / min, the thickness of the surface layer of the cast slab, which reduces the number of inclusions to about 1.0 pieces / cm 2 or less,
When only the upper electromagnet is operated, it is about 25 mm thick, and when the upper and lower electromagnets are operated, it is about 30 mm thick. It is better to use both upper and lower electromagnets.
It was found that the surface area of the slab where the amount of inclusions must be reduced becomes thicker. It should be noted that the amount of inclusions inside the cast, which is not affected by the electromagnet, is about 1.5 to 2.0 pieces / c.
It was about m 2 . Moreover, the casting speed is 1.6 m / min.
In the case of high speed, the number of inclusions is reduced to about 1.0 pieces / cm 2 or less, and the thickness of the surface layer of the cast slab is about 15 mm when only the upper electromagnet is operated. When the electromagnet is operated, the thickness will be about 25 mm, and even if the casting speed increases, both the upper and lower electromagnets can be used to reduce the amount of inclusions and secure a thick slab surface area. I understood.

【0017】次に、炭素濃度が0.01%のアルミキル
ド鋼を使って、鋳型の上部で移動磁界印可による溶鋼撹
拌を実施し、一方、鋳型の下部では静磁場を印加して鋳
造実験を行い、鋳片内の介在物の量を調査した。鋳造速
度は1.6m/minとし、電磁石の使用の有無による
介在物量の違いを検討した。その結果、鋳片表面から2
0mmまでの鋳片表層の介在物量は、上下部の電磁石を
作動させない場合には約1.5個/cm2と多いの比較
し、電磁石を作動させると0.85個/cm2と少なく
なり、特に上部の電磁撹拌の効果によると思われる鋳片
表層の介在物の量の低減が確認できた。鋳片内部の介在
物量については、鋳片の上面側の1/4厚さの位置にお
ける介在物量が、上下部の電磁石の作動がない場合には
2.1個/cm2であるのに対し、上下部の電磁石を作
動させると1.3個/cm2にまで低減し、下部の電磁
石による静磁場の印可により、溶鋼の吐出流が静磁場の
印可により深くまで侵入せず、鋳片内部への介在物の捕
捉が少なくなり、鋳型内における介在物の浮上除去が促
進されたことが判明した。
Next, using aluminum-killed steel with a carbon concentration of 0.01%, molten steel stirring was performed by applying a moving magnetic field at the upper part of the mold, while a static magnetic field was applied at the lower part of the mold to perform a casting experiment. The amount of inclusions in the slab was investigated. The casting speed was set to 1.6 m / min, and the difference in the amount of inclusions depending on whether or not the electromagnet was used was examined. As a result, 2 from the surface of the slab
The amount of inclusions on the surface of the cast slab up to 0 mm is large at about 1.5 pieces / cm 2 when the electromagnets at the upper and lower parts are not operated, compared with 0.85 pieces / cm 2 when the electromagnet is operated. It was confirmed that the amount of inclusions on the surface of the cast slab, which is considered to be due to the effect of electromagnetic stirring on the upper part, was reduced. Regarding the amount of inclusions inside the slab, the amount of inclusions at the position of ¼ thickness on the upper surface side of the slab is 2.1 pieces / cm 2 when the upper and lower electromagnets do not operate. When the upper and lower electromagnets are activated, the number is reduced to 1.3 / cm 2 , and the static magnetic field applied by the lower electromagnet prevents the molten steel discharge flow from penetrating deeply due to the static magnetic field applied. It was found that the inclusions were less trapped in the mold and the floating removal of the inclusions in the mold was promoted.

【0018】以上のように、鋼種や鋳造速度に応じて、
鋳型上部の電磁石により溶鋼を撹拌し、かつ鋳型下部の
電磁石を使って溶鋼に移動磁界や静磁場を印加すること
により、鋳片表層の介在物や鋳片内部の介在物を低減す
ることが可能であることが分かった。
As described above, depending on the steel type and casting speed,
It is possible to reduce inclusions on the surface of the slab and inclusions inside the slab by stirring the molten steel with the electromagnet above the mold and applying a moving magnetic field or static magnetic field to the molten steel using the electromagnet below the mold. It turned out that

【0019】[0019]

【発明の効果】本発明を実施すれば、一台の連続鋳造機
において、鋳造速度が速くても、鋳片表層の介在物を低
減したり、また鋳片内部の介在物を低減して、効率的な
連続鋳造を安定に行うことができる。
According to the present invention, in one continuous casting machine, even if the casting speed is high, inclusions on the surface layer of the slab are reduced, and inclusions inside the slab are reduced, Efficient continuous casting can be stably performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】浸漬ノズル、鋳型、電磁石装置の関係を示す縦
断面図である。
FIG. 1 is a vertical cross-sectional view showing a relationship among an immersion nozzle, a mold, and an electromagnet device.

【図2】図1のA−Aの位置の平面図であり、鋳型を挟
んで設置した電磁石装置の模式図である。
FIG. 2 is a plan view of a position AA in FIG. 1, and is a schematic view of an electromagnet device installed with a mold sandwiched therebetween.

【図3】電磁石の磁極の極性が鋳型の両側で交互に対称
な場合の模式図である。
FIG. 3 is a schematic diagram in which the polarities of the magnetic poles of the electromagnet are alternately symmetrical on both sides of the mold.

【符号の説明】[Explanation of symbols]

1 鋳型 2 浸漬ノズル 3 吐出孔 4 溶鋼 5 溶鋼の流れる方向 6 凝固シェル 7 電磁撹拌用電磁石 8、8’ 移動磁界印可および静磁場印可の兼用電磁石 9 鉄芯 10 コイル 11 磁極 12 コイル 13、13’ 溶鋼の撹拌方向 DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3 Discharge hole 4 Molten steel 5 Direction of molten steel flow 6 Solidification shell 7 Electromagnet for electromagnetic stirring 8, 8'Combined electromagnet for applying moving magnetic field and static magnetic field 9 Iron core 10 Coil 11 Magnetic pole 12 Coil 13, 13 ' Molten steel stirring direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼の連続鋳造において、溶鋼を浸漬ノズ
ルを経て鋳型内へ注湯して鋳片を製造する際、浸漬ノズ
ルの下端よりも上部の鋳型部に電磁撹拌用の電磁石を設
置し、かつ該浸漬ノズルの下端より下方の鋳型部に移動
磁界および静磁場を溶鋼に印加する電磁石装置を設置し
て、鋼種や鋳造速度に応じて、鋳型内の上部と下部の両
方の溶鋼を電磁撹拌したり、または、上部を電磁撹拌し
下部では静磁場を印加して鋳片の非金属介在物を低減す
ることを特徴とする連続鋳造方法。
1. In continuous casting of steel, when molten steel is poured into a mold through an immersion nozzle to produce a slab, an electromagnet for electromagnetic stirring is installed in a mold part above a lower end of the immersion nozzle. In addition, an electromagnet device for applying a moving magnetic field and a static magnetic field to the molten steel is installed in the mold portion below the lower end of the immersion nozzle, and the molten steel at both the upper and lower portions in the mold is electromagnetically affected according to the steel type and casting speed. A continuous casting method characterized by stirring or by electromagnetically stirring the upper part and applying a static magnetic field to the lower part to reduce non-metallic inclusions in the cast slab.
JP9733196A 1996-03-28 1996-03-28 Method for reducing non-metallic inclusion in continuous casting Pending JPH09262651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9733196A JPH09262651A (en) 1996-03-28 1996-03-28 Method for reducing non-metallic inclusion in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9733196A JPH09262651A (en) 1996-03-28 1996-03-28 Method for reducing non-metallic inclusion in continuous casting

Publications (1)

Publication Number Publication Date
JPH09262651A true JPH09262651A (en) 1997-10-07

Family

ID=14189513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9733196A Pending JPH09262651A (en) 1996-03-28 1996-03-28 Method for reducing non-metallic inclusion in continuous casting

Country Status (1)

Country Link
JP (1) JPH09262651A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712124B1 (en) 2000-07-10 2004-03-30 Jfe Steel Corporation Method and apparatus for continuous casting of metals
WO2008004969A1 (en) * 2006-07-06 2008-01-10 Abb Ab Method and apparatus for controlling the flow of molten steel in a mould
US7448431B2 (en) 2003-04-11 2008-11-11 Jfe Steel Corporation Method of continuous steel casting
JP2009195951A (en) * 2008-02-21 2009-09-03 Sumitomo Metal Ind Ltd Continuous casting method for steel
EP2295169A1 (en) * 1997-12-08 2011-03-16 Nippon Steel Corporation Cast slab and method for casting molten metal, apparatus for the same
CN111842821A (en) * 2020-07-30 2020-10-30 鼎镁(昆山)新材料科技有限公司 Electromagnetic treatment method for melt cast by aluminum alloy flow table

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295169A1 (en) * 1997-12-08 2011-03-16 Nippon Steel Corporation Cast slab and method for casting molten metal, apparatus for the same
US6712124B1 (en) 2000-07-10 2004-03-30 Jfe Steel Corporation Method and apparatus for continuous casting of metals
US7628196B2 (en) 2000-07-10 2009-12-08 Jfe Steel Corporation Method and apparatus for continuous casting of metals
US7448431B2 (en) 2003-04-11 2008-11-11 Jfe Steel Corporation Method of continuous steel casting
WO2008004969A1 (en) * 2006-07-06 2008-01-10 Abb Ab Method and apparatus for controlling the flow of molten steel in a mould
US7975753B2 (en) 2006-07-06 2011-07-12 Abb Ab Method and apparatus for controlling the flow of molten steel in a mould
JP2009195951A (en) * 2008-02-21 2009-09-03 Sumitomo Metal Ind Ltd Continuous casting method for steel
CN111842821A (en) * 2020-07-30 2020-10-30 鼎镁(昆山)新材料科技有限公司 Electromagnetic treatment method for melt cast by aluminum alloy flow table
CN111842821B (en) * 2020-07-30 2021-11-23 鼎镁新材料科技股份有限公司 Electromagnetic treatment method for melt cast by aluminum alloy flow table

Similar Documents

Publication Publication Date Title
WO2010052906A1 (en) Device for continuously casting steel
US7628196B2 (en) Method and apparatus for continuous casting of metals
JP3692253B2 (en) Continuous casting method of steel
JPH10305353A (en) Continuous molding of steel
JPH09262651A (en) Method for reducing non-metallic inclusion in continuous casting
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JPH09262650A (en) Method for controlling fluidity in mold in continuous casting and device therefor
JPS5976647A (en) Method and device for stirring molten metal for casting in continuous casting
JP3253012B2 (en) Electromagnetic brake device for continuous casting mold and continuous casting method using the same
JP4591456B2 (en) Steel continuous casting method
JP4263396B2 (en) Steel continuous casting method and equipment
JP3520841B2 (en) Metal continuous casting method
JP2001009559A (en) Method and device for continuously casting steel
JP3937961B2 (en) Continuous casting method of steel
JP2000351048A (en) Method and apparatus for continuously casting metal
JPH11285789A (en) Device for controlling molten steel flow
JPH05177317A (en) Continuous casting method and device therefor
JP2010110766A (en) Continuous casting apparatus for steel and continuous casting method for steel
JP3697584B2 (en) Steel continuous casting method and equipment
JP2990555B2 (en) Continuous casting method
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JP4910357B2 (en) Steel continuous casting method
JP4427875B2 (en) Metal continuous casting method
JP2000197952A (en) Method for controlling molten steel flow in mold in continuous casting
JPH10305358A (en) Continuous molding of steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031125