JP4427875B2 - Metal continuous casting method - Google Patents

Metal continuous casting method Download PDF

Info

Publication number
JP4427875B2
JP4427875B2 JP2000207972A JP2000207972A JP4427875B2 JP 4427875 B2 JP4427875 B2 JP 4427875B2 JP 2000207972 A JP2000207972 A JP 2000207972A JP 2000207972 A JP2000207972 A JP 2000207972A JP 4427875 B2 JP4427875 B2 JP 4427875B2
Authority
JP
Japan
Prior art keywords
magnetic field
flux
molten metal
static magnetic
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000207972A
Other languages
Japanese (ja)
Other versions
JP2002028762A (en
Inventor
祐司 三木
秀次 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000207972A priority Critical patent/JP4427875B2/en
Priority to CA2325808A priority patent/CA2325808C/en
Priority to CA002646757A priority patent/CA2646757A1/en
Priority to TW089124284A priority patent/TW555604B/en
Priority to DE60017885T priority patent/DE60017885T2/en
Priority to KR1020000068490A priority patent/KR100740814B1/en
Priority to EP00125142A priority patent/EP1172158B1/en
Priority to EP04025797A priority patent/EP1508389A3/en
Priority to US09/714,161 priority patent/US6712124B1/en
Priority to CNB2005101250202A priority patent/CN100372634C/en
Priority to CNB001284843A priority patent/CN1258414C/en
Publication of JP2002028762A publication Critical patent/JP2002028762A/en
Priority to US10/766,910 priority patent/US7628196B2/en
Application granted granted Critical
Publication of JP4427875B2 publication Critical patent/JP4427875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面欠陥の少ない鋳片を得る金属の連続鋳造方法に関する。
【0002】
【従来の技術】
連続鋳造において、溶融金属(溶湯)を鋳型に注入する際には、浸漬ノズルを用いる場合が多い。この場合、溶湯表面の流速が大きすぎると溶湯上部のモールドフラックスを巻き込んだり、また、溶湯表面の流速が小さすぎると、その位置で溶湯が淀んで偏析し、最終的に表面偏析となることがあった。かかる表面欠陥を軽減する手段として、鋳型内溶湯に静磁界および/または移動磁界(交流移動磁界)を印加して溶湯の流速を制御する方法が知られている。
【0003】
しかし、静磁界で溶湯流を制動(電磁ブレーキ)しようとする際には、特に、溶湯の淀み位置での偏析が、また、移動磁界で溶湯を攪拌(電磁攪拌)しようとする際には、流速が大きい位置でのモールドフラックスの巻き込み(フラックス巻き込み)が、それぞれ発生し易いという問題があった。
この問題に対処すべく、磁場のかけ方を工夫した提案が幾つかなされている。例えば、特開平9−182941号公報には、移動磁界による溶湯の攪拌方向を周期的に反転させて、攪拌部より下方への介在物の拡散を防ぐ方法が開示され、また、特開平8−187563号公報には、鋳型振動に応じて高周波電磁力の大きさを変化させてブレークアウトを防止する方法が開示され、また、特開平8−267197号公報には、電磁制動力切り換え時の磁束密度変化率に傾斜をもたせて溶鋼流動の変化を小さくし介在物欠陥を防止する方法が開示され、また、特開平8−155605号公報には、鋳型厚み方向に連続する低電気伝導層を介して10〜1000Hzの水平方向移動磁界を印加して溶湯にピンチ力を加えて鋳型と溶湯間の接触圧を低減する方法が開示されている。
【0004】
しかしながら、何れの方法においても、移動磁界により大きなマクロ溶湯流動が誘起され、あるいは、静磁界の小さいところで溶湯流速が大きくなり、フラックス巻き込みや表面偏析を十分に防止できるまでに至っていない。
【0005】
【発明が解決しようとする課題】
本発明は、前記従来技術の限界を打破し、フラックス巻き込みや表面偏析のほとんどない鋳片が得られる金属の連続鋳造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、前記目的を達成すべく鋭意実験、調査、検討を重ねた結果、以下の知見を得た。
1)静磁界による溶湯流動制御は、フラックス巻き込み防止および介在物侵入防止に極めて有効であるが、磁場が強いときには、図1左半分に示すように、流速が小さくなり溶湯表面での凝固によって偏析を引き起こす。
【0007】
2)移動磁界による溶湯流動制御では、図1右半分に示すように、溶湯流速が大きくなるため、フラックス巻き込みが発生しやすい。
すなわち、溶湯表面で流速の小さな領域が発生し、そこで半凝固状態になると偏析が発生し、最終的に製品欠陥を引き起こすが、これを回避するために大きなマクロ流動を与えると、フラックス巻き込みが助長され、新たな欠陥が引き起こされる。
【0008】
3)フラックス巻き込みを抑制しつつ溶湯表面での半凝固を防止するためには、静磁界を間欠的に印加する方法が極めて効果的である。
本発明は、かかる知見を基になされたものである。
すなわち、本発明は、鋳造厚み方向に静磁界を印加しながら鋳造する金属の連続鋳造方法において、オン時間t1 =0.10〜30秒、オフ時間t0 =0.10〜30秒として前記静磁界を間欠印加することを特徴とする金属の連続鋳造方法である。ここに、間欠印加とは、印加(オン)と無印加(オフ)を交互に繰り返すことを意味する。
【0009】
記静磁界は溶湯表面に印加するのが好ましい。
【0010】
【発明の実施の形態】
本発明では、フラックス巻き込みを防止するために鋳型厚み方向に静磁界を作用させながら鋳造するが、従来のような定常的に一定磁場をかけ続ける(オン状態を保持する)ことは行わず、図2に示すように、磁場のオン/オフを交互に繰り返す間欠印加を行うものとする。ここに、オン時間をt1 、オフ時間をt0 と記す。
【0011】
かくすることにより、オン/オフ時に、磁場の作用領域で渦電流のベクトルが大きく変化し、当該領域で溶湯のミクロな流れが発生する。このミクロな流れによって、溶湯表面近くの半凝固を防止して表面偏析をほぼ完全になくすことができる。
このように、本発明によれば、フラックス巻き込みと表面偏析とを両方とも防止しうるのであるが、その効果の程は、オン時間t1 とオフ時間t0 のとり方によって変わる。すなわち、t1 およびt0 が短すぎると交流磁界を印加している状態に近づくため、溶湯表面流速を十分低減することができず、フラックス巻き込みが発生するようになり、また、t0 が長すぎると溶湯の流速が大きくなって、フラックス巻き込み防止効果が不十分となり、また、t1 が長すぎると溶鋼流速が小さくなりすぎて表面偏析が目立つようになる。
【0012】
そこで、フラックス巻き込みと表面偏析を両方とも十分に抑制できるt0 とt1 の範囲を実験により求めたところ、t0 =0.10〜30秒、t1 =0.10〜30秒という結果が得られた。すなわち、本発明では、t0 =0.10〜30秒、t1 =0.10〜30秒として間欠印加する。
また、本発明の効果は、静磁界を溶湯表面に印加した場合に最も顕著に現れるので、そのようにするのが好ましいが、溶湯内部に印加した場合でも、その影響力が内部溶湯流れを介して表面の溶湯流れに伝達される場合には、同様の効果が期待される。
【0013】
以上に述べたように、本発明によれば、表面偏析がなくフラックス巻き込みも少ない高品質の金属鋳片を鋳造することができるようになる。
【0014】
【実施例】
転炉−RH処理にて溶製した極低炭素Alキルド溶鋼(代表化学組成を表1に示す)約300tonを、連続鋳造機にて、図3に示すように、浸漬ノズル3を用いて鋳型1に鋳込み速度4〜5ton/min で鋳込み、幅1500〜1700mm、厚み220mm のスラブを鋳造するにあたり、鋳型1の溶湯表面2相当位置を含む部位に鋳型1を挟んで対設した電磁コイル4により鋳造厚み方向(紙面直交方向)に最大磁束密度0.3 Tの静磁界を種々の条件で印加しながら鋳造する実験を行った。
【0015】
【表1】

Figure 0004427875
【0016】
この実験では、静磁界印加条件毎に、表面偏析、フラックス性表面欠陥、介在物量の3項目を以下の要領で調査した。
〔表面偏析〕スラブ研削後、エッチングを行い目視観察によって1m2 当たりの偏析個数をカウント
〔フラックス性表面欠陥〕冷間圧延後のコイルの表面欠陥を目視検査し、欠陥サンプルを採取後、欠陥部を分析することによってモールドフラックスの巻き込みによる欠陥個数をカウント
〔介在物量〕鋳片の1/4 厚み部位からスライム抽出法によって介在物を抽出し、その重量を測定
結果を静磁場印加条件と併せて表2に示す。なお、上記3項目の評価値は何れも指数(全条件中のワーストデータに対する比を10倍した数値)で表示した。
【0017】
【表2】
Figure 0004427875
【0018】
表2より、静磁場を間欠印加した本発明の実施例では、表面偏析がなくなり、フラックス性表面欠陥と介在物量が低減した。なかでも、オフ時間t0 およびオン時間t1 を0.10〜30秒とした実施例1〜6では、フラックス性表面欠陥と介在物量がより一層低減した。また、静磁場を一定強さで印加する比較例では、静磁界の強さを増すとフラックス性表面欠陥および介在物量は減少するが表面偏析が増加するというジレンマに陥るのに対し、静磁場を間欠印加する本発明では、かかるジレンマはなく、表面偏析、フラックス性表面欠陥および介在物量を共に減少させうることがわかる。
【0019】
【発明の効果】
かくして本発明によれば、表面偏析がなく、モールドフラックス起因の表面欠陥および内部介在物の少ない金属鋳片を鋳造でき、高品質の金属製品の製造が可能になるという優れた効果を奏する。
【図面の簡単な説明】
【図1】フラックス巻き込みと表面偏析の発生機構を示す模式図である。
【図2】本発明の骨子を示す模式図である。
【図3】静磁界印加鋳造実験要領を示す模式図である。
【符号の説明】
1 鋳型
2 溶湯表面
3 浸漬ノズル
4 電磁コイル
5 凝固シェル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for continuously casting a metal to obtain a slab having few surface defects.
[0002]
[Prior art]
In continuous casting, an immersion nozzle is often used when pouring molten metal (molten metal) into a mold. In this case, if the flow rate on the surface of the melt is too large, the mold flux at the top of the melt may be involved, and if the flow rate on the surface of the melt is too small, the melt will stagnate and segregate at that position, eventually resulting in surface segregation. there were. As a means for reducing such surface defects, a method is known in which a static magnetic field and / or a moving magnetic field (alternating magnetic field) is applied to the molten metal in the mold to control the flow rate of the molten metal.
[0003]
However, when attempting to brake the molten metal flow (electromagnetic brake) with a static magnetic field, particularly when segregation occurs at the stagnation position of the molten metal, and when attempting to stir the molten metal (electromagnetic stirring) with a moving magnetic field, There is a problem that mold flux entrainment (flux entrainment) easily occurs at a position where the flow velocity is large.
In order to deal with this problem, there have been some proposals that devised how to apply a magnetic field. For example, Japanese Patent Laid-Open No. 9-182941 discloses a method of periodically inverting the stirring direction of a molten metal by a moving magnetic field to prevent the diffusion of inclusions below the stirring portion. Japanese Patent No. 187563 discloses a method for preventing breakout by changing the magnitude of the high-frequency electromagnetic force in accordance with mold vibration, and Japanese Patent Application Laid-Open No. 8-267197 discloses a magnetic flux when switching electromagnetic braking force. A method of preventing the inclusion defect by reducing the change in molten steel flow by inclining the density change rate is disclosed, and Japanese Patent Laid-Open No. 8-155605 discloses a method in which a low electrical conductive layer is continuous in the mold thickness direction. A method of reducing the contact pressure between the mold and the melt by applying a horizontal moving magnetic field of 10 to 1000 Hz and applying a pinch force to the melt is disclosed.
[0004]
However, in any of the methods, a large macro melt flow is induced by the moving magnetic field, or the melt flow velocity increases at a small static magnetic field, and the flux entrainment and surface segregation cannot be sufficiently prevented.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a continuous casting method of a metal that breaks the limitations of the prior art and obtains a slab having almost no flux entrainment or surface segregation.
[0006]
[Means for Solving the Problems]
As a result of intensive experiments, investigations, and examinations to achieve the above object, the present inventors have obtained the following knowledge.
1) Melt flow control using a static magnetic field is extremely effective in preventing flux entrainment and inclusion intrusion, but when the magnetic field is strong, as shown in the left half of FIG. cause.
[0007]
2) In molten metal flow control by a moving magnetic field, as shown in the right half of FIG.
In other words, a region with a small flow velocity occurs on the surface of the molten metal, where segregation occurs when it is in a semi-solid state, eventually causing product defects. However, if a large macro flow is applied to avoid this, flux entrainment is promoted. And a new defect is caused.
[0008]
3) In order to prevent semi-solidification on the surface of the molten metal while suppressing entrainment of flux, a method of applying a static magnetic field intermittently is extremely effective.
The present invention has been made based on such knowledge.
That is, according to the present invention, in the continuous casting method of a metal cast while applying a static magnetic field in the casting thickness direction, the static magnetic field is intermittently applied with an on time t1 = 0.10 to 30 seconds and an off time t0 = 0.10 to 30 seconds. This is a method for continuously casting a metal. Here, intermittent application means that application (on) and non-application (off) are repeated alternately.
[0009]
Before Kisei field is preferably applied to the surface of the molten metal.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, casting is performed while applying a static magnetic field in the mold thickness direction in order to prevent entrainment of the flux. However, the constant magnetic field is not constantly applied (maintaining the ON state) as in the prior art. As shown in FIG. 2, it is assumed that intermittent application is performed by alternately turning on / off the magnetic field. Here, the on time is denoted by t1, and the off time is denoted by t0.
[0011]
By doing so, at the on / off time, the vector of the eddy current greatly changes in the magnetic field action region, and a micro flow of the molten metal is generated in the region. By this micro flow, semi-solidification near the molten metal surface can be prevented and surface segregation can be almost completely eliminated.
Thus, according to the present invention, both the flux entrainment and the surface segregation can be prevented, but the degree of the effect varies depending on how the on-time t1 and the off-time t0 are taken. That is, if t1 and t0 are too short, it approaches the state in which an alternating magnetic field is applied, so that the melt surface flow velocity cannot be reduced sufficiently and flux entrainment occurs, and if t0 is too long, The flow rate of the steel increases and the effect of preventing the entrainment of the flux becomes insufficient. If t1 is too long, the molten steel flow rate becomes too small and surface segregation becomes conspicuous.
[0012]
Therefore, when the range of t0 and t1 that can sufficiently suppress both flux entrainment and surface segregation was experimentally obtained, the results were t0 = 0.10 to 30 seconds and t1 = 0.10 to 30 seconds. That is, in the present invention, t0 = 0.10 to 30 seconds, you intermittently applied as t1 = 0.10 to 30 seconds.
Further, since the effect of the present invention is most noticeable when a static magnetic field is applied to the surface of the molten metal, it is preferable to do so. However, even when it is applied to the inside of the molten metal, the influence thereof flows through the internal molten metal flow. The same effect is expected when it is transmitted to the molten metal flow on the surface.
[0013]
As described above, according to the present invention, it is possible to cast a high quality metal slab having no surface segregation and little flux entrainment.
[0014]
【Example】
About 300 tons of ultra-low carbon Al killed molten steel (typical chemical composition shown in Table 1) melted by converter-RH treatment is cast in a continuous casting machine using an immersion nozzle 3 as shown in FIG. 1 is cast at a casting speed of 4 to 5 ton / min, and when casting a slab having a width of 1500 to 1700 mm and a thickness of 220 mm, an electromagnetic coil 4 is provided with a mold 1 sandwiched between parts of the mold 1 including a position corresponding to the molten metal surface 2. An experiment was conducted in which casting was performed while applying a static magnetic field having a maximum magnetic flux density of 0.3 T under various conditions in the casting thickness direction (direction perpendicular to the paper surface).
[0015]
[Table 1]
Figure 0004427875
[0016]
In this experiment, for each static magnetic field application condition, three items of surface segregation, flux surface defects, and amount of inclusions were investigated as follows.
[Surface segregation] After slab grinding, etching is performed, and the number of segregations per 1 m 2 is counted by visual observation. [Flux surface defect] The surface defect of the coil after cold rolling is visually inspected, and a defect sample is collected. The number of defects due to entrainment of mold flux is counted. [Inclusion amount] Inclusions are extracted from the 1 / 4-thickness portion of the slab by the slime extraction method, and the measurement results are combined with the static magnetic field application conditions. Table 2 shows. In addition, all the evaluation values of the above three items are expressed as an index (a numerical value obtained by multiplying the ratio to the worst data in all conditions by 10).
[0017]
[Table 2]
Figure 0004427875
[0018]
From Table 2, in the embodiment of the present invention was intermittently applying a static magnetic field gets rid surface segregation was reduced interposed amount with the flux surface defects. In particular, in Examples 1 to 6 in which the off time t0 and the on time t1 were 0.10 to 30 seconds, the flux surface defects and the amount of inclusions were further reduced. Moreover, in the comparative example in which the static magnetic field is applied at a constant strength, increasing the strength of the static magnetic field causes a dilemma that the amount of surface defects and inclusions decreases but the surface segregation increases. In the present invention in which intermittent application is performed, it can be seen that there is no such dilemma and that both surface segregation, flux surface defects and the amount of inclusions can be reduced.
[0019]
【The invention's effect】
Thus, according to the present invention, there is no surface segregation, and it is possible to cast a metal slab having few surface defects and internal inclusions due to mold flux, and it is possible to produce a high-quality metal product.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the mechanism of flux entrainment and surface segregation.
FIG. 2 is a schematic view showing the gist of the present invention.
FIG. 3 is a schematic diagram showing a casting test procedure for applying a static magnetic field.
[Explanation of symbols]
1 Mold 2 Molten surface 3 Immersion nozzle 4 Electromagnetic coil 5 Solidified shell

Claims (2)

鋳造厚み方向に静磁界を印加しながら鋳造する金属の連続鋳造方法において、オン時間t1 =0.10〜30秒、オフ時間t0 =0.10〜30秒として前記静磁界を間欠印加することを特徴とする金属の連続鋳造方法。In a continuous casting method of a metal cast while applying a static magnetic field in the casting thickness direction, the static magnetic field is intermittently applied with an on time t1 = 0.10 to 30 seconds and an off time t0 = 0.10 to 30 seconds. Continuous casting method. 前記静磁界は溶湯表面に印加されることを特徴とする請求項1に記載の方法。The method of claim 1, wherein the static magnetic field is applied to a molten metal surface.
JP2000207972A 2000-07-10 2000-07-10 Metal continuous casting method Expired - Fee Related JP4427875B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2000207972A JP4427875B2 (en) 2000-07-10 2000-07-10 Metal continuous casting method
CA2325808A CA2325808C (en) 2000-07-10 2000-11-14 Method and apparatus for continuous casting of metals
CA002646757A CA2646757A1 (en) 2000-07-10 2000-11-14 Method and apparatus for continuous casting of metals
TW089124284A TW555604B (en) 2000-07-10 2000-11-16 Method and apparatus for continuous casting of metals
KR1020000068490A KR100740814B1 (en) 2000-07-10 2000-11-17 Method and apparatus for continuous casting of metals
EP00125142A EP1172158B1 (en) 2000-07-10 2000-11-17 Method and apparatus for continuous casting of metals
DE60017885T DE60017885T2 (en) 2000-07-10 2000-11-17 Method and device for continuous casting of metals
EP04025797A EP1508389A3 (en) 2000-07-10 2000-11-17 Method and apparatus for continuous casting of metals
US09/714,161 US6712124B1 (en) 2000-07-10 2000-11-17 Method and apparatus for continuous casting of metals
CNB2005101250202A CN100372634C (en) 2000-07-10 2000-11-17 Method and apparatus for continuous casting of metals
CNB001284843A CN1258414C (en) 2000-07-10 2000-11-17 Method and device for continuous casting of metal
US10/766,910 US7628196B2 (en) 2000-07-10 2004-01-30 Method and apparatus for continuous casting of metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000207972A JP4427875B2 (en) 2000-07-10 2000-07-10 Metal continuous casting method

Publications (2)

Publication Number Publication Date
JP2002028762A JP2002028762A (en) 2002-01-29
JP4427875B2 true JP4427875B2 (en) 2010-03-10

Family

ID=18704639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000207972A Expired - Fee Related JP4427875B2 (en) 2000-07-10 2000-07-10 Metal continuous casting method

Country Status (2)

Country Link
JP (1) JP4427875B2 (en)
CN (1) CN100372634C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8596334B2 (en) * 2010-03-10 2013-12-03 Jfe Steel Corporation Continuous casting method for steel and method for manufacturing steel sheet
CN107000049A (en) * 2014-11-20 2017-08-01 Abb瑞士股份有限公司 The method of electormagnetic braking sytem and control molten metal flowing in metal manufacturing process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154623A (en) * 1991-12-04 1993-06-22 Nippon Steel Corp Method for controlling fluidity of molten steel in mold
JPH08267197A (en) * 1995-03-31 1996-10-15 Nisshin Steel Co Ltd Method for controlling fluidity of molten steel in mold
AUPN426095A0 (en) * 1995-07-19 1995-08-10 Bhp Steel (Jla) Pty Limited Method and apparatus for giving vibration to molten metal in twin roll continuous casting machine
JPH09182941A (en) * 1995-12-28 1997-07-15 Nippon Steel Corp Electromagnetic-stirring method for molten steel in continuous casting mold
JPH10305353A (en) * 1997-05-08 1998-11-17 Nkk Corp Continuous molding of steel
EP2295169B1 (en) * 1997-12-08 2014-04-23 Nippon Steel & Sumitomo Metal Corporation Apparatus for casting molten metal

Also Published As

Publication number Publication date
CN1768983A (en) 2006-05-10
CN100372634C (en) 2008-03-05
JP2002028762A (en) 2002-01-29

Similar Documents

Publication Publication Date Title
EP1508389A2 (en) Method and apparatus for continuous casting of metals
KR100654738B1 (en) Method for producing ultra low carbon steel slab
WO2018173888A1 (en) Method for producing austenite stainless steel slab
JP4427875B2 (en) Metal continuous casting method
Cibulka et al. Impact of oscillation parameters on surface quality of cast billets
JP4591156B2 (en) Steel continuous casting method
JP3520841B2 (en) Metal continuous casting method
JP3697585B2 (en) Steel continuous casting method and equipment
JP5354179B2 (en) Continuous casting method for steel slabs
JP3491120B2 (en) Method and apparatus for removing nonmetallic inclusions in slab in continuous casting
JP4263396B2 (en) Steel continuous casting method and equipment
JPH09262651A (en) Method for reducing non-metallic inclusion in continuous casting
Nakada et al. Reduction of macrosegregation by applying a DC magnetic field at the final stage of solidification
JP2671336B2 (en) Continuous casting of steel
JP2990555B2 (en) Continuous casting method
JP3300619B2 (en) Continuous casting method of slab with few inclusions
JP2010099704A (en) Continuous casting method for steel cast slab
JP2000351048A (en) Method and apparatus for continuously casting metal
JP3937961B2 (en) Continuous casting method of steel
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JP3505077B2 (en) Continuous casting method of slab with few inclusions
JP3127736B2 (en) Inclusion removal method of steel using high frequency magnetic field
JP2004042068A (en) Continuous casting method of molten metal and continuous casting apparatus
JP2001138018A (en) Method for continuously casting steel
JP5458779B2 (en) Continuous casting method for steel slabs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

LAPS Cancellation because of no payment of annual fees