JP2001009559A - Method and device for continuously casting steel - Google Patents

Method and device for continuously casting steel

Info

Publication number
JP2001009559A
JP2001009559A JP11181137A JP18113799A JP2001009559A JP 2001009559 A JP2001009559 A JP 2001009559A JP 11181137 A JP11181137 A JP 11181137A JP 18113799 A JP18113799 A JP 18113799A JP 2001009559 A JP2001009559 A JP 2001009559A
Authority
JP
Japan
Prior art keywords
flow
magnetic field
molten steel
casting
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11181137A
Other languages
Japanese (ja)
Other versions
JP3965545B2 (en
Inventor
Hiroshi Yamane
浩志 山根
Nagayasu Bessho
永康 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18113799A priority Critical patent/JP3965545B2/en
Publication of JP2001009559A publication Critical patent/JP2001009559A/en
Application granted granted Critical
Publication of JP3965545B2 publication Critical patent/JP3965545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To attenuate upward/downward flow from a discharge opening, activate flow of molten steel at a solidification shell front face, and prevent occurrence of vortex or retention due to interference between an electromagnetic agitation swing flow and a discharge reverse rotation floating flow at a meniscus part by moving an alternating current magnetic field to be applied to upper/lower parts of an immersion nozzle discharge opening while it is overlaid with a direct current magnetic field from both ends of casting width towards a center symmetrically to right and left. SOLUTION: AC/DC electromagnets 7 are arranged at upper and lower portions of a discharge opening 14 of an immersion nozzle 2 in a mold 3, and the electromagnets 7 are constituted in a manner that an alternating magnetic filed moves towards an arrow 10, that is, it moves from both ends to the center of casting width symmetrically to right and left. Therefore, molten steel flow on the solidification shell front face can be significantly activated without distorting a molten steel flow pattern 9 due to the discharge flow. Thus, a wash-away effect of inclusions with the flow of molten steel is fully obtained, and defects are not caused by capturing non-metallic inclusions to a cast piece. Furthermore, it is preferable that frequency of the alternating field is 0.1-10 Hz.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造にお
いて磁場による溶鋼流動制御を行う連続鋳造方法および
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method and apparatus for controlling molten steel flow by a magnetic field in continuous casting of steel.

【0002】[0002]

【従来の技術】鋼の連続鋳造では、湯面におけるモール
ドパウダの巻き込み防止や、介在物、気泡の侵入による
製品欠陥防止、不均一凝固防止を目的とした、磁場によ
る溶鋼流動制御が行われている。過大な溶鋼流動を制動
するための電磁ブレーキ技術として、特開昭57−17356
号公報には、スラブ連鋳機の鋳型に電磁石を設置し、浸
漬ノズルからの吐出流に垂直な磁場を印加して吐出流を
制動する方法が提案されている。
2. Description of the Related Art In continuous casting of steel, flow control of molten steel by a magnetic field is performed for the purpose of preventing entrapment of mold powder on a molten metal surface, preventing product defects due to inclusions and bubbles, and preventing uneven solidification. I have. JP-A-57-17356 discloses an electromagnetic brake technique for braking excessive molten steel flow.
Japanese Patent Laid-Open Publication No. H11-15064 proposes a method in which an electromagnet is installed in a mold of a continuous slab caster, and a magnetic field perpendicular to a discharge flow from an immersion nozzle is applied to brake the discharge flow.

【0003】また、上記手法をさらに発展させたものと
して、特開平2−284750号公報では鋳型全幅にわたる静
磁場を浸漬ノズルの吐出口上部および下部に印加する方
法が提案されている。溶鋼の淀みを防止する目的の電磁
攪拌として特開平2−37946 号公報ではメニスカスに低
周波移動磁場を印加して溶鋼に流れを与えてパウダへの
熱供給確保と凝固シェルへの介在物捕捉防止を行うこと
が提案されている。
As a further development of the above method, Japanese Patent Application Laid-Open No. 2-284750 proposes a method in which a static magnetic field over the entire width of a mold is applied to the upper and lower discharge ports of an immersion nozzle. As electromagnetic stirring for preventing stagnation of molten steel, Japanese Patent Application Laid-Open No. 2-37946 discloses a method in which a low-frequency moving magnetic field is applied to a meniscus to give flow to molten steel, thereby ensuring heat supply to powder and preventing inclusions from solidifying shell. It has been proposed to do so.

【0004】特開平1−228645号公報では中炭素鋼の縦
割れ防止のため電磁攪拌によりメニスカス近傍で溶鋼流
速40〜120cm/s で流動させる方法が提案されている。電
磁ブレーキと電磁攪拌を組み合わせた方法も提案されて
いる。特開昭61−193755号公報では浸漬ノズルの吐出流
に静磁場を印加し大形介在物の浮上を促進しその下で電
磁攪拌による水平流により小型介在物が凝固シェルに捕
捉されるのを防止する方法が示されている。特開平5−
23803 号公報では鋳型内で0.1 〜0.4m/sの溶鋼流が得ら
れるように電磁攪拌し、メニスカス下1.5 mから連鋳機
の垂直部にかけて幅方向均一な静磁場を印加して介在物
の侵入を防止することが提案されている。特開平5−15
4620号公報ではメニスカスを電磁攪拌し、浸漬ノズル吐
出口の上下に幅方向均一な静磁場を印加する方法が提案
されている。
Japanese Patent Application Laid-Open No. 1-228645 proposes a method in which a medium carbon steel is caused to flow near the meniscus at a flow rate of molten steel of 40 to 120 cm / s by electromagnetic stirring in order to prevent longitudinal cracks. A method combining electromagnetic braking and electromagnetic stirring has also been proposed. In JP-A-61-193755, a static magnetic field is applied to the discharge flow of an immersion nozzle to promote the floating of large inclusions, and under that, small inclusions are trapped in the solidified shell by horizontal flow by electromagnetic stirring. A method to prevent this is shown. Japanese Patent Laid-Open No. 5-
In JP 23803, electromagnetic stirring is performed so that a molten steel flow of 0.1 to 0.4 m / s is obtained in the mold, and a uniform static magnetic field in the width direction is applied from 1.5 m below the meniscus to the vertical part of the continuous casting machine to remove the inclusions. It has been proposed to prevent intrusion. JP-A-5-15
Japanese Patent No. 4620 proposes a method of electromagnetically stirring a meniscus and applying a uniform static magnetic field in the width direction above and below a discharge port of an immersion nozzle.

【0005】また、特開平9−262650号公報、特開平9
−262651号公報に、同一鉄心に巻いた複数のコイルに直
流と三相交流を切り替えて流すことにより、鋳型内に移
動交流磁場や静磁場を印加する方法が提案されている。
特開平10−305353号公報では静磁場と移動磁場を重畳さ
せて浸漬ノズル吐出口上下に印加する方法が提案されて
いる。
Further, Japanese Patent Application Laid-Open No. 9-262650,
-262651 proposes a method of applying a moving AC magnetic field or a static magnetic field in a mold by switching between DC and three-phase AC to flow through a plurality of coils wound around the same iron core.
Japanese Patent Application Laid-Open No. Hei 10-305353 proposes a method in which a static magnetic field and a moving magnetic field are superimposed and applied to the upper and lower portions of an immersion nozzle discharge port.

【0006】[0006]

【発明が解決しようとする課題】浸漬ノズルからの溶鋼
の吐出速度が突発的あるいは定常的に大きい操業を行う
場合、湯面近傍の溶鋼流れは大きくなりパウダ巻き込み
を引き起し、鋳型短辺壁近傍の下降流も大きくなって介
在物が鋳片内未凝固溶鋼浴深部まで侵入してしまう。ま
た、凝固シェル前面の溶鋼流動が緩慢になると、溶鋼の
流れによる介在物の洗い流し(以下、Washing 効果と記
す)が弱くなり、介在物の凝固シェルへの捕捉が容易と
なったり、初期凝固部では熱供給低下で爪状の凝固組織
が大きく成長してパウダの捕捉や浮上してくる気泡、介
在物の捕捉を引き起こす。
When the discharge speed of molten steel from the immersion nozzle is suddenly or steadily increased, the flow of molten steel in the vicinity of the molten metal surface increases, causing powder entrainment, and the short side wall of the mold. The descending flow in the vicinity also becomes large, and inclusions penetrate into the unsolidified molten steel bath deep inside the slab. Also, if the molten steel flow in front of the solidified shell is slow, the washing out of inclusions (hereinafter referred to as the Washing effect) due to the flow of molten steel is weakened, making it easier for the inclusions to be trapped in the solidified shell, and the initial solidification part In such a case, the claw-like solidified structure grows greatly due to a decrease in heat supply, causing the capture of powder and the capture of air bubbles and inclusions.

【0007】したがって、吐出流からの上向き流および
下向き流はこれを減衰させ、同時に強固シェル前面の溶
鋼流動はこれを活発化させることが重要である。特開平
2−37946 、特開平1−228645、特開平5−23803 の各
号公報の、電磁攪拌によるメニスカス部の流動付与で
は、吐出流からの上向き流および下向き流を減衰させる
機能はないため、パウダ巻き込みや介在物の鋳片内未凝
固溶鋼浴深部侵入を防止することは困難である。
Therefore, it is important that the upward flow and the downward flow from the discharge flow attenuate them, and at the same time, the molten steel flow in front of the strong shell activates them. JP-A-2-37946, JP-A-1-228645 and JP-A-5-23803 each disclose the application of flow to the meniscus portion by electromagnetic stirring because there is no function to attenuate the upward flow and the downward flow from the discharge flow. It is difficult to prevent powder entrainment and inclusions from penetrating deep into the unsolidified molten steel bath in the slab.

【0008】また、特開平2−37946 、特開平1−2286
45、特開平5−23803 、特開平5−154620、特開平10−
305353の各号公報の、電磁攪拌でメニスカス部に溶鋼の
鋳型周方向への旋回流を作るという手段では、図4に示
すように浸漬ノズル2の吐出口から出た溶鋼流れが一部
反転してメニスカスへ浮上してくる流れ(吐出反転浮上
流5)と電磁攪拌による旋回流4とが衝突し、メニスカ
ス部でのパウダ巻き込みを引き起こす渦6Aや、介在物
の凝固シェルへの捕捉を助長する淀み6Bが形成され
る。なお、特開平10−305353公報技術のように移動磁場
に静磁場を重畳しても吐出反転浮上流5と旋回流4との
衝突を防ぐことは困難である。
Further, Japanese Patent Application Laid-Open Nos. Hei 2-37946 and 1-2286
45, JP-A-5-23803, JP-A-5-154620, JP-A-10-
In the means disclosed in Japanese Patent Publication No. 305353, in which the molten steel is swirled in the circumferential direction of the mold at the meniscus portion by electromagnetic stirring, the molten steel flow coming out of the discharge port of the immersion nozzle 2 is partially reversed as shown in FIG. The flow rising to the meniscus (discharge reversal floating upstream 5) collides with the swirling flow 4 due to electromagnetic stirring, which promotes the vortex 6A causing powder entrainment in the meniscus portion and the inclusion of inclusions in the solidified shell. Stagnation 6B is formed. Even if a static magnetic field is superimposed on the moving magnetic field as in the technique disclosed in Japanese Patent Application Laid-Open No. H10-305353, it is difficult to prevent the collision between the discharge reversal float 5 and the swirl flow 4.

【0009】特開平2−284750号公報の、鋳型全幅にわ
たる静磁場を浸漬ノズルの吐出口上部および下部に印加
する方法では、凝固シェル前面の溶鋼流動を活発化させ
る機能がなくWashing 効果に乏しい。本発明の目的は、
上記従来技術の問題点を解決し、吐出流からの上向き
流、下向き流を減衰させ、同時に凝固シェル前面の溶鋼
流動を活発化し、しかもメニスカス部での電磁攪拌旋回
流と吐出反転浮上流との干渉による渦や淀みの形成を防
止可能な鋼の連続鋳造方法および装置を提供することに
ある。
The method of applying a static magnetic field over the entire width of the mold to the upper and lower portions of the discharge port of the immersion nozzle disclosed in Japanese Patent Application Laid-Open No. 2-284750 has no function of activating the flow of molten steel on the front surface of the solidified shell, resulting in poor Washing effect. The object of the present invention is
In order to solve the problems of the prior art, the upward flow and the downward flow from the discharge flow are attenuated, and at the same time, the molten steel flow on the front of the solidified shell is activated, and the electromagnetic stirring swirl flow at the meniscus portion and the discharge reversal floating upstream. An object of the present invention is to provide a method and an apparatus for continuously casting steel capable of preventing formation of vortices and stagnation due to interference.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために、まず、図2に示すように、鋳型3
の、浸漬ノズル2吐出口14より上方および下方の部位
に、直流電磁石8を配置して鋳造厚み方向(紙面直角方
向)に直流磁場のみを二段に印加する実験を多数行い、
数値計算および鋳片凝固組織調査から、同図に示すよう
な吐出流起因溶鋼流動パターン9が発生することを究明
した。この方法によれば、湯面流速の乱れが減少するた
め、パウダ巻き込みが著しく減少し、また、鋳型内の深
い位置への大型介在物の侵入も著しく減少することが判
明した。しかし、直流磁場による流れの層流化のため、
凝固シェル前面の溶鋼流動が緩慢となり、凝固シェル前
面でのWashing 効果を十分得られず、鋳片に非金属介在
物が捕捉され欠陥となる場合があることが確認された。
Means for Solving the Problems In order to achieve the above object, the present inventors first set a mold 3 as shown in FIG.
A number of experiments were conducted in which a DC electromagnet 8 was disposed at a position above and below the discharge port 14 of the immersion nozzle 2 and a DC magnetic field alone was applied in two stages in the casting thickness direction (perpendicular to the paper surface).
From the numerical calculation and the examination of the solidification structure of the slab, it was found that the molten steel flow pattern 9 caused by the discharge flow as shown in the figure was generated. According to this method, it has been found that the disturbance of the flow rate of the molten metal surface is reduced, so that the powder entrainment is significantly reduced, and the penetration of large inclusions into a deep position in the mold is also significantly reduced. However, due to laminar flow of the DC magnetic field,
It was confirmed that the molten steel flow on the front surface of the solidified shell became slow, the washing effect on the front surface of the solidified shell was not sufficiently obtained, and nonmetallic inclusions were trapped in the slab to cause defects.

【0011】そこで、次に、前記吐出流起因溶鋼流動パ
ターン9を大きく歪ませることなく、凝固シェル前面で
の溶鋼流動を活性化させる手段を鋭意探究し、その結
果、図1に示すように、図2の直流電磁石8に代えて、
交流直流両用電磁石7とし、かつ、この交流直流両用電
磁石7を、交流磁場が矢印10の方向に移動する、すなわ
ち鋳造幅の両端から中心に向かって左右対称に移動する
ように構成することにより、凝固シェル前面での溶鋼流
動が顕著に活性化するという知見を得た。
Then, next, a means for activating the molten steel flow in front of the solidified shell without greatly distorting the discharge flow-induced molten steel flow pattern 9 was intensively investigated. As a result, as shown in FIG. Instead of the DC electromagnet 8 of FIG.
By using the AC / DC dual-purpose electromagnet 7 and configuring the AC / DC dual-purpose electromagnet 7 so that the AC magnetic field moves in the direction of arrow 10, that is, moves symmetrically from both ends of the casting width toward the center. It was found that the flow of molten steel in front of the solidified shell was significantly activated.

【0012】本発明は、この知見に基づいて成されたも
のであり、その要旨とするところは、以下に記載の鋼の
連続鋳造方法および装置にある。 (1)鋳型内溶鋼の、浸漬ノズル吐出口より上方および
下方の部位に交流磁場と直流磁場とを重畳して鋳造厚み
方向に印加しながら連続鋳造する方法において、前記交
流磁場を鋳造幅の両端から中心に向かって左右対称に移
動させることを特徴とする鋼の連続鋳造方法。
The present invention has been made based on this finding, and its gist lies in the following continuous casting method and apparatus for steel. (1) In a method for continuous casting while superimposing an AC magnetic field and a DC magnetic field on portions above and below an immersion nozzle discharge port of molten steel in a mold and applying the AC magnetic field and the DC magnetic field in a casting thickness direction, the AC magnetic field is applied to both ends of a casting width. A continuous casting method of steel, characterized in that the steel is moved symmetrically from the center toward the center.

【0013】(2)前記交流磁場の周波数は0.1 〜10Hz
である(1)記載の鋼の連続鋳造方法。 (3)鋳型内溶鋼の、浸漬ノズル吐出口より上方および
下方の部位に磁場を印加しながら連続鋳造する装置にお
いて、鋳造幅の両端から中心に向かって左右対称に移動
する交流磁場を発生させるコイルと直流磁場を発生させ
るコイルとを共通の鉄心に巻き、磁場の方向と鋳造厚み
方向が一致するように鋳型の鋳造厚み方向両側に配設し
てなることを特徴とする鋼の連続鋳造装置。
(2) The frequency of the alternating magnetic field is 0.1 to 10 Hz.
(1) The continuous casting method for steel according to (1). (3) A coil that generates an alternating magnetic field that moves symmetrically from both ends of the casting width toward the center while applying a magnetic field to portions above and below the discharge port of the immersion nozzle in the molten steel in the mold. And a coil for generating a DC magnetic field are wound around a common iron core, and are disposed on both sides in the casting thickness direction of the mold so that the direction of the magnetic field matches the casting thickness direction.

【0014】[0014]

【発明の実施の形態】本発明において、鋳造方向(鋳型
高さ方向)の二位置(二段)に交流直流重畳磁場を、そ
の印加方向を鋳造厚み方向(鋳型短辺方向)にとって、
印加する点は、従来と同様であるが、本発明では交流磁
場の移動方向が従来と異なる。すなわち、従来では、交
流磁場が鋳造幅(鋳型長辺壁幅)の一端から他端に向か
って移動するのに対し、本発明では、交流磁場が鋳造幅
の両端から中心に向かって左右対称に移動する。従来の
ような交流磁場の移動のさせ方では、これに直流磁場
(静磁場と同義)を重畳印加しても、図4に示したよう
に、鋳型周方向に沿った水平な旋回流が生じ、この旋回
流と吐出反転浮上流との衝突による渦や淀みの発生を防
ぎ得ず、湯面でのパウダ巻き込みや、凝固シェル前面で
の気泡、介在物の捕捉を回避することは困難である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an AC / DC superimposed magnetic field is applied at two positions (two stages) in the casting direction (mold height direction), and the application direction is taken in the casting thickness direction (mold short side direction).
The point of application is the same as the conventional one, but in the present invention, the moving direction of the AC magnetic field is different from the conventional one. That is, in the related art, the AC magnetic field moves from one end of the casting width (the width of the long side wall of the mold) to the other end, whereas in the present invention, the AC magnetic field is symmetrical from both ends of the casting width to the center. Moving. In the conventional method of moving an AC magnetic field, even when a DC magnetic field (synonymous with a static magnetic field) is superimposed on the AC magnetic field, a horizontal swirling flow is generated along the circumferential direction of the mold as shown in FIG. However, it is difficult to prevent vortices and stagnation due to collision between the swirling flow and the upstream of the discharge reversal, and it is difficult to avoid entrapment of powder on the molten metal surface and trapping of bubbles and inclusions on the front surface of the solidified shell. .

【0015】本発明では、交流磁場を鋳造幅中心に関し
て幅方向で左右対称に移動させるようにしたから、上記
のような旋回流を生じることがなく、したがって、吐出
反転浮上流は衝突の相手を失い、渦、淀みの発生もな
い。この交流磁場(左右対称移動交流磁場)により付勢
された左右からの流れは鋳造幅中央で合体するが、この
合体流は乱れのない層流状態を維持しながら、湯面(メ
ニスカス)付近の流れは下降し、吐出口より下方の流れ
は上昇することが実験および計算により確かめられた。
In the present invention, the alternating magnetic field is moved symmetrically in the width direction with respect to the center of the casting width, so that the above-mentioned swirling flow does not occur. No loss, no eddies, no stagnation. The flows from the left and right energized by the alternating magnetic field (symmetrical moving alternating magnetic field) merge at the center of the casting width, while maintaining the undisturbed laminar flow state while maintaining the laminar flow state near the molten metal surface (meniscus). Experiments and calculations have confirmed that the flow decreases and the flow below the discharge port increases.

【0016】また、交流磁場は、表皮効果により鋳造厚
み表面側(凝固シェル前面付近)では直流磁場による制
動力に勝る攪拌力を発揮してこの部位での流れを活性化
し、気泡、介在物の鋳片への捕捉を防止する。一方、鋳
造厚み中心側では交流磁場による攪拌力は減衰し、直流
磁場の制動力が主体的に作用する結果、この部位での流
れ(吐出流からの上向き流および下向き流)が減衰し、
湯面流速の乱れが抑えられてパウダ巻き込みが防止さ
れ、同時に下降流速が低減されて大型介在物の深部侵入
も防止される。
The AC magnetic field exerts a stirring force exceeding the braking force by the DC magnetic field on the casting thickness surface side (near the front surface of the solidified shell) due to the skin effect, and activates the flow in this portion, thereby causing bubbles and inclusions. Prevents capture in slabs. On the other hand, on the casting thickness center side, the stirring force due to the AC magnetic field is attenuated, and the braking force of the DC magnetic field mainly acts, so that the flow (upward and downward flows from the discharge flow) at this portion is attenuated,
Disturbance in the flow rate of the molten metal is suppressed, so that powder entrainment is prevented, and at the same time, the descending flow rate is reduced, so that deep penetration of large inclusions is also prevented.

【0017】本発明では、交流磁場の周波数を0.1 〜10
Hzとするのが好ましい。この周波数が0.1 Hz未満では凝
固シェル前面にWashing 効果を奏し得るに十分な溶鋼流
動を付与することが困難であり、一方、10Hz超では鋳型
の銅板で交流磁場が減衰し、やはり凝固シェル前面にWa
shing 効果を奏し得るに十分な溶鋼流動を付与すること
が困難であるからである。
In the present invention, the frequency of the AC magnetic field is set to 0.1 to 10
Hz is preferred. If this frequency is less than 0.1 Hz, it is difficult to provide a molten steel flow sufficient for the Washing effect to be exerted on the front surface of the solidified shell. Wa
This is because it is difficult to provide a flow of molten steel sufficient to exert the shing effect.

【0018】図3は、本発明に係る上記方法の実施に適
した装置の一例を示す平断面模式図(a)および(b)
側断面模式図である。一対の交流直流両用電磁石7が、
浸漬ノズル2を浸漬した鋳型3の鋳造厚み方向両側で対
向する形で配設されている。交流直流両用電磁石7の鉄
心部(ヨーク)12は上下に磁極を有し、上下の磁極(上
極、下極)はそれぞれ浸漬ノズル2吐出口14の上方、下
方にあり、その延長方向は鋳造幅方向に一致させてあ
る。なお、直流コイル8Aの巻き方は、鋳型3の両側で
対向する磁極の極性が相補的(一方がNなら他方はS)
となるような巻き方とする。
FIGS. 3A and 3B are schematic cross-sectional views showing an example of an apparatus suitable for carrying out the above method according to the present invention.
FIG. 3 is a schematic side sectional view. A pair of alternating current and direct current electromagnets 7
The mold 3 in which the immersion nozzle 2 is immersed is disposed so as to face each other on both sides in the casting thickness direction. The iron core (yoke) 12 of the AC / DC dual-purpose electromagnet 7 has upper and lower magnetic poles, and the upper and lower magnetic poles (upper and lower poles) are above and below the discharge port 14 of the immersion nozzle 2, respectively. Matched in the width direction. Note that the direction of winding of the DC coil 8A is such that the polarities of the magnetic poles facing each other on both sides of the mold 3 are complementary (one is N and the other is S).
Winding method.

【0019】各磁極の先端部は複数対(この例では3
対)に枝分かれし、各枝には交流用コイル11を巻き、各
枝に共通の根元には直流コイル8Aを巻いてある。この
例では交流コイル11に三相交流を流すが、三相交流の互
いに異なる各相をU相、V相、W相とすると、鋳造幅中
心から左右に数えて1番目の交流コイル11にはW相、2
番目にはV相、3番目にはU相を流す。このように、多
相交流電流の互いに異なる各相を鋳造幅中心に関して幅
方向に左右対称に配列することにより、その多相交流電
流により発生する交流磁場を、矢印10で示す方向、すな
わち鋳造幅の両端から左右対称に中心に向かう方向に移
動させることができる。
The tip of each magnetic pole has a plurality of pairs (3 in this example).
The branch is divided into pairs, and an AC coil 11 is wound around each branch, and a DC coil 8A is wound around a common root of each branch. In this example, a three-phase alternating current flows through the AC coil 11. If the different phases of the three-phase alternating current are U-phase, V-phase, and W-phase, respectively, W phase, 2
The V-phase flows third, and the U-phase flows third. Thus, by arranging the different phases of the polyphase AC current symmetrically in the width direction with respect to the center of the casting width, the AC magnetic field generated by the polyphase AC current is directed in the direction indicated by arrow 10, namely, the casting width. Can be moved symmetrically in the direction toward the center from both ends.

【0020】また、交流コイルと直流コイルを同じ磁極
の枝分かれ部と根元部に巻くことで、交流直流重畳磁場
の印加箇所を精度よく設定できるとともに、交流磁場、
直流磁場の強さや周波数を独立に調整することも容易で
ある。なお、凝固シェル13前面の溶鋼流動を鋳造幅方向
で均一化する観点から、磁極先端部の枝分かれの個数
は、これを鋳造幅に応じて設定することが好ましい。
Further, by winding the AC coil and the DC coil around the branch portion and the root portion of the same magnetic pole, it is possible to accurately set the application location of the AC / DC superimposed magnetic field,
It is also easy to adjust the strength and frequency of the DC magnetic field independently. In addition, from the viewpoint of making the molten steel flow on the front surface of the solidified shell 13 uniform in the casting width direction, it is preferable to set the number of branches at the tip of the magnetic pole in accordance with the casting width.

【0021】また、凝固シェル前面の溶鋼流動を鋳造幅
全体にわたり一様に活性化する観点から、交流直流両用
電磁石はこの例のように鋳造幅全体を覆う恰好に設置す
ることが好ましい。
Further, from the viewpoint of uniformly activating the flow of molten steel in front of the solidified shell over the entire casting width, it is preferable that the AC / DC dual-purpose electromagnet be installed so as to cover the entire casting width as in this example.

【0022】[0022]

【実施例】垂直曲げ型の連続鋳造機により、幅1500mm厚
み220mm の低炭素アルミキルド鋼を、浸漬ノズル吐出角
度:水平から下向きに15°、鋳造速度:1.2m/minおよび
2.5m/minで鋳造する際に、図3に示したものと同様の装
置を用い、表1に示す各種の磁場印加条件にてストラン
ドの鋳型部位に磁場を印加しながら鋳造を行い、得られ
た鋳片について、圧延後の鋼板表面欠陥検査による表面
欠陥指数と、鋼板プレス加工時の介在物起因加工割れ検
査による加工割れ指数を調査した。表面欠陥指数、加工
割れ指数は、それぞれ電磁流動制御を実施しない場合を
1.0 とした指数である。
[Example] Low-carbon aluminum killed steel with a width of 1500 mm and a thickness of 220 mm was immersed in a vertical bending type continuous casting machine at a discharge angle of 15 ° downward from horizontal, at a casting speed of 1.2 m / min.
At the time of casting at 2.5 m / min, using the same apparatus as that shown in FIG. 3, casting was performed while applying a magnetic field to the mold part of the strand under various magnetic field application conditions shown in Table 1, and the casting was performed. For the cast slab, the surface defect index by the steel plate surface defect inspection after rolling and the work crack index by the inclusion-induced work crack inspection during the steel plate press working were investigated. The surface defect index and the processing crack index are based on the case where electromagnetic flow control is not performed.
The index is 1.0.

【0023】なお、表1中、移動型をA型とした磁極で
は、従来のように溶鋼に水平旋回流を付与するべく、図
3において、三相交流の幅方向相配列を図3記載の配列
に代えて、左から順にU相、V相、W相、U相、V相、
W相とした。これにより発生する交流磁場(A型交流磁
場と称する;従来の移動磁場に該当)は鋳造幅の一端か
ら他端に向かって移動する。これに対し、移動型をB型
とした磁極では、本発明に則り溶鋼に鋳造幅両端から中
心に向かう流れを付与するべく、三相交流の幅方向相配
列を図3記載の配列の通り左右対称とした。これにより
発生する交流磁場(B型交流磁場と称する)は鋳造幅の
両端から中心に向かって左右対称に移動する。
In Table 1, in the magnetic pole having the moving type of the A type, the width direction phase arrangement of the three-phase alternating current in FIG. 3 is shown in FIG. 3 in order to impart a horizontal swirling flow to the molten steel as in the prior art. Instead of the arrangement, U-phase, V-phase, W-phase, U-phase, V-phase,
The phase was W. The resulting AC magnetic field (referred to as an A-type AC magnetic field; corresponding to a conventional moving magnetic field) moves from one end to the other end of the casting width. On the other hand, in the magnetic pole having the movable type of B type, the width direction phase arrangement of the three-phase alternating current is changed to the left and right as shown in FIG. Symmetric. The generated AC magnetic field (referred to as a B-type AC magnetic field) moves symmetrically from both ends of the casting width toward the center.

【0024】また、表1中、交流磁場の強さは単独印加
時の鋳型銅板内側位置での磁束密度実効値、直流磁場の
強さは単独印加時の鋳造厚み中心位置での磁束密度値で
それぞれ示した。交流磁場、直流磁場双方とも強さが0
Tでない極が、交流直流重畳磁場を印加した極である。
表1の条件1〜5は本発明範囲外の比較例であり、条件
6が本発明範囲内の実施例である。
In Table 1, the strength of the AC magnetic field is the effective value of the magnetic flux density at the position inside the mold copper plate when applied alone, and the strength of the DC magnetic field is the magnetic flux density value at the center position of the casting thickness when applied alone. Each is shown. Both AC and DC magnetic fields have zero strength
A pole other than T is a pole to which an AC / DC superimposed magnetic field is applied.
Conditions 1 to 5 in Table 1 are comparative examples outside the scope of the present invention, and condition 6 is an example within the scope of the present invention.

【0025】表面欠陥指数および加工割れ指数の調査結
果を表1に示す。なおこの調査結果は二つの鋳造速度条
件別調査値の平均値である。
Table 1 shows the inspection results of the surface defect index and the work crack index. In addition, this investigation result is an average value of two investigation values according to casting speed conditions.

【0026】[0026]

【表1】 [Table 1]

【0027】比較例では、A型交流磁場と直流磁場を単
独であるいは重畳して印加する条件としている。直流磁
場のみの場合、溶鋼熱供給不良となり初期凝固部に爪状
組織が成長する。この爪状組織はパウダを噛込み、表面
欠陥指数を高める。A型交流磁場のみの場合、爪状組織
成長は抑制できるが、電磁ブレーキ力に乏しいため介在
物の鋳片内未凝固溶鋼浴深部侵入が生じるほか、メニス
カス部で鋳型周方向の旋回流と吐出反転浮上流とが衝突
し渦や淀みが形成される。介在物の鋳片内未凝固溶鋼浴
深部侵入は加工割れ指数を高める。渦はパウダ巻き込み
を生じ、淀みは介在物の凝固シェルへの捕捉を助長して
いずれも表面欠陥指数を高める。A型交流磁場に直流磁
場を重畳すると、介在物の深部侵入は抑制できるが、渦
や淀みは解消できない。そのため、比較例では、上下両
極にA型交流磁場・直流磁場を重畳印加したベストの条
件5でも、加工割れ指数は0.1 に低減するものの表面欠
陥指数はなお0.2 と高い。
In the comparative example, the conditions are such that the A-type AC magnetic field and the DC magnetic field are applied singly or in an overlapping manner. In the case of only a DC magnetic field, heat supply of molten steel is insufficient, and a nail-like structure grows in the initially solidified portion. The nail-like structure bites the powder and increases the surface defect index. In the case of the A-type AC magnetic field alone, claw-like structure growth can be suppressed, but the electromagnetic braking force is poor, so that the inclusions penetrate deep into the unsolidified molten steel bath in the slab, and the swirl flow and discharge in the circumferential direction of the mold at the meniscus portion A vortex or stagnation is formed due to collision with the inverted floating upstream. The penetration of inclusions deep into the unsolidified molten steel bath in the slab increases the work crack index. The vortex causes powder entrainment, and the stagnation helps trap inclusions in the solidified shell, all of which increase the surface defect index. When a DC magnetic field is superimposed on an A-type AC magnetic field, deep penetration of inclusions can be suppressed, but eddies and stagnation cannot be eliminated. Therefore, in the comparative example, even under the best condition 5 in which an A-type AC magnetic field and a DC magnetic field are applied to both the upper and lower poles, the work crack index is reduced to 0.1 but the surface defect index is still high at 0.2.

【0028】これに対し、実施例では、条件5において
A型交流磁場に代えてB型交流磁場とした条件6(周波
数は2Hzから5Hzに最適化)を採用したことにより、凝
固シェル前面でのWashing 効果を強化し、鋳造厚み中心
部には電磁ブレーキ力を作用させて溶鋼流(吐出流から
の上向き流、下向き流)の流速低減・層流化を促進し、
さらにメニスカス部での旋回流生成を抑制してそこでの
渦や淀みの形成をなくしたので、比較例では到達できな
かった表面欠陥指数、加工割れ指数0.05に到達すること
ができた。
On the other hand, in the embodiment, the condition 6 (the frequency is optimized from 2 Hz to 5 Hz) in which the B-type AC magnetic field is used instead of the A-type AC magnetic field in the condition 5 is adopted. Strengthening the washing effect and applying electromagnetic braking force to the center of the casting thickness to reduce the flow velocity of the molten steel flow (upward flow, downward flow from the discharge flow) and promote laminar flow,
Furthermore, since the generation of swirling flow in the meniscus portion was suppressed and the formation of vortices and stagnation there was eliminated, it was possible to reach a surface defect index and a work crack index of 0.05, which could not be reached in the comparative example.

【0029】[0029]

【発明の効果】かくして本発明によれば、鋼の連続鋳造
において、吐出流からの上向き流、下向き流を減衰さ
せ、同時に凝固シェル前面の溶鋼流動を活発化し、しか
もメニスカス部での電磁攪拌旋回流と吐出反転浮上流と
の干渉による渦や淀みの形成を防止できるようになるの
で、一段と高品質の鋳片を製造できるようになるという
優れた効果を奏する。
As described above, according to the present invention, in continuous casting of steel, the upward flow and the downward flow from the discharge flow are attenuated, and at the same time, the molten steel flow on the front surface of the solidified shell is activated. Since the formation of vortices and stagnation due to the interference between the flow and the discharge inversion floating upstream can be prevented, there is an excellent effect that a higher quality cast piece can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】左右対称移動交流磁場と直流磁場との重畳二段
印加による吐出流起因溶鋼流動パターンを示す側面模式
図である。
FIG. 1 is a schematic side view showing a flow pattern of molten steel caused by a discharge flow by two-stage superposition of a symmetric moving AC magnetic field and a DC magnetic field.

【図2】直流磁場単独二段印加による吐出流起因溶鋼流
動パターンを示す側面模式図である。
FIG. 2 is a schematic side view showing a flow pattern of molten steel caused by a discharge flow by applying a DC magnetic field alone in two steps.

【図3】本発明に係る装置の一例を示す平断面模式図
(a)および(b)側断面模式図である。
FIGS. 3A and 3B are schematic cross-sectional views showing an example of an apparatus according to the present invention.

【図4】メニスカス部での電磁攪拌による旋回流と吐出
反転浮上流との干渉を示す平断面模式図である。
FIG. 4 is a schematic plan cross-sectional view showing interference between a swirling flow due to electromagnetic stirring in a meniscus portion and a discharge reversal floating upstream.

【符号の説明】[Explanation of symbols]

1 交流電磁石 2 浸漬ノズル 3 鋳型 4 旋回流 5 吐出反転浮上流 6A 渦 6B 淀み 7 交流直流両用電磁石 8 直流電磁石 8A 直流コイル 9 吐出流起因溶鋼流動パターン 10 本発明に係る交流磁場の移動方向を示す矢印 11 交流コイル 12 鉄心部(ヨーク) 13 凝固シェル DESCRIPTION OF SYMBOLS 1 AC electromagnet 2 Immersion nozzle 3 Mold 4 Swirling flow 5 Discharge reversal floating upstream 6A Vortex 6B Stagnation 7 AC / DC dual-purpose electromagnet 8 DC electromagnet 8A DC coil 9 Discharge flow caused molten steel flow pattern 10 Shows the moving direction of AC magnetic field according to the present invention Arrow 11 AC coil 12 Iron core (yoke) 13 Solidified shell

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋳型内溶鋼の、浸漬ノズル吐出口より上
方および下方の部位に交流磁場と直流磁場とを重畳して
鋳造厚み方向に印加しながら連続鋳造する方法におい
て、前記交流磁場を鋳造幅の両端から中心に向かって左
右対称に移動させることを特徴とする鋼の連続鋳造方
法。
1. A method for continuous casting while superimposing an AC magnetic field and a DC magnetic field on portions above and below a discharge port of an immersion nozzle of a molten steel in a mold and applying the AC magnetic field and a DC magnetic field in a casting thickness direction. A continuous casting method of steel, wherein the steel is moved symmetrically from both ends toward the center.
【請求項2】 前記交流磁場の周波数は0.1 〜10Hzであ
る請求項1記載の鋼の連続鋳造方法。
2. The continuous casting method for steel according to claim 1, wherein the frequency of the alternating magnetic field is 0.1 to 10 Hz.
【請求項3】 鋳型内溶鋼の、浸漬ノズル吐出口より上
方および下方の部位に磁場を印加しながら連続鋳造する
装置において、鋳造幅の両端から中心に向かって左右対
称に移動する交流磁場を発生させるコイルと直流磁場を
発生させるコイルとを共通の鉄心に巻き、磁場の方向と
鋳造厚み方向が一致するように鋳型の鋳造厚み方向両側
に配設してなることを特徴とする鋼の連続鋳造装置。
3. An apparatus for continuously casting a molten steel in a mold while applying a magnetic field to a portion above and below a discharge port of an immersion nozzle, generating an alternating magnetic field moving symmetrically from both ends of the casting width toward the center. Continuous casting of steel characterized in that a coil to be generated and a coil for generating a DC magnetic field are wound around a common iron core, and are disposed on both sides in the casting thickness direction of the mold so that the direction of the magnetic field and the casting thickness direction match. apparatus.
JP18113799A 1999-06-28 1999-06-28 Steel continuous casting method and apparatus Expired - Fee Related JP3965545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18113799A JP3965545B2 (en) 1999-06-28 1999-06-28 Steel continuous casting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18113799A JP3965545B2 (en) 1999-06-28 1999-06-28 Steel continuous casting method and apparatus

Publications (2)

Publication Number Publication Date
JP2001009559A true JP2001009559A (en) 2001-01-16
JP3965545B2 JP3965545B2 (en) 2007-08-29

Family

ID=16095542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18113799A Expired - Fee Related JP3965545B2 (en) 1999-06-28 1999-06-28 Steel continuous casting method and apparatus

Country Status (1)

Country Link
JP (1) JP3965545B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001609A1 (en) * 2007-06-28 2008-12-31 Sumitomo Metal Industries, Ltd. Continuous casting method of steel
WO2009063711A1 (en) * 2007-11-16 2009-05-22 Sumitomo Metal Industries, Ltd. Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
WO2009063712A1 (en) * 2007-11-16 2009-05-22 Sumitomo Metal Industries, Ltd. Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
CN104384465A (en) * 2014-10-30 2015-03-04 中国科学院电工研究所 High-temperature superconducting magnetic stirrer used for continuous casting machine
CN105170927A (en) * 2010-08-05 2015-12-23 丹尼尔和科菲森梅克尼齐有限公司 Process And Apparatus For Controlling The Flows Of Liquid Metal In A Crystallizer For The Continuous Casting Of Thin Flat Slabs
CN108380851A (en) * 2018-01-24 2018-08-10 重庆文理学院 A kind of device and its process for refining of multi- scenarios method thinning metal solidification texture
KR20190137469A (en) * 2018-06-01 2019-12-11 경북대학교 산학협력단 System and method for draining of electrically conductive liquid

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001609A1 (en) * 2007-06-28 2008-12-31 Sumitomo Metal Industries, Ltd. Continuous casting method of steel
JP2009006370A (en) * 2007-06-28 2009-01-15 Sumitomo Metal Ind Ltd Continuous casting method for steel
KR101154055B1 (en) 2007-06-28 2012-06-11 수미도모 메탈 인더스트리즈, 리미티드 Continuous casting method of steel
CN101868311A (en) * 2007-11-16 2010-10-20 住友金属工业株式会社 Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
JP2009119515A (en) * 2007-11-16 2009-06-04 Sumitomo Metal Ind Ltd Electromagnetic coil device usable for both electromagnetic stirring and electromagnetic brake
JP2009119517A (en) * 2007-11-16 2009-06-04 Sumitomo Metal Ind Ltd Electromagnetic coil device usable for both electromagnetic stirring and electromagnetic brake
WO2009063712A1 (en) * 2007-11-16 2009-05-22 Sumitomo Metal Industries, Ltd. Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
WO2009063711A1 (en) * 2007-11-16 2009-05-22 Sumitomo Metal Industries, Ltd. Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
KR101207679B1 (en) 2007-11-16 2012-12-03 수미도모 메탈 인더스트리즈, 리미티드 Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
CN105170927A (en) * 2010-08-05 2015-12-23 丹尼尔和科菲森梅克尼齐有限公司 Process And Apparatus For Controlling The Flows Of Liquid Metal In A Crystallizer For The Continuous Casting Of Thin Flat Slabs
CN105170927B (en) * 2010-08-05 2017-06-30 丹尼尔和科菲森梅克尼齐有限公司 The technique of the continuous casting equipment for thin plate and the stream with its control liquid metals
CN104384465A (en) * 2014-10-30 2015-03-04 中国科学院电工研究所 High-temperature superconducting magnetic stirrer used for continuous casting machine
CN108380851A (en) * 2018-01-24 2018-08-10 重庆文理学院 A kind of device and its process for refining of multi- scenarios method thinning metal solidification texture
KR20190137469A (en) * 2018-06-01 2019-12-11 경북대학교 산학협력단 System and method for draining of electrically conductive liquid
KR102070999B1 (en) * 2018-06-01 2020-01-29 경북대학교 산학협력단 System and method for draining of electrically conductive liquid

Also Published As

Publication number Publication date
JP3965545B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP4824502B2 (en) Metal vertical continuous casting method using electromagnetic field and casting equipment for its implementation
US7628196B2 (en) Method and apparatus for continuous casting of metals
US6164365A (en) Apparatus for electromagnetically braking a molten metal in a continuous casting mold
JPH10305353A (en) Continuous molding of steel
JP2001009559A (en) Method and device for continuously casting steel
JP3700396B2 (en) Steel continuous casting equipment
JP4591156B2 (en) Steel continuous casting method
JP3937651B2 (en) Steel continuous casting method and apparatus
WO1998053936A1 (en) Electromagnetic braking device for continuous casting mold and method of continuous casting by using the same
JPS63188461A (en) Electromagnetic coil apparatus for continuous casting mold
JP4669367B2 (en) Molten steel flow control device
JP3236422B2 (en) Continuous casting method of steel using magnetic field
JPH05154623A (en) Method for controlling fluidity of molten steel in mold
JP2008055431A (en) Method of continuous casting for steel
JPH09262650A (en) Method for controlling fluidity in mold in continuous casting and device therefor
JP3253012B2 (en) Electromagnetic brake device for continuous casting mold and continuous casting method using the same
JP2003525129A (en) Apparatus for supplying molten metal to continuous casting ingot mold and method of using the same
JP3096878B2 (en) Continuous casting method for slabs with excellent surface and internal quality
JPH09262651A (en) Method for reducing non-metallic inclusion in continuous casting
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
JPH11123511A (en) Electromagnetic stirring method and electromagnetic strring device
JP2000351048A (en) Method and apparatus for continuously casting metal
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JP2000158108A (en) Continuous steel casting method
JP2000197952A (en) Method for controlling molten steel flow in mold in continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3965545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees