JPH0471759A - Method for controlling fluidity of molten metal - Google Patents

Method for controlling fluidity of molten metal

Info

Publication number
JPH0471759A
JPH0471759A JP17957090A JP17957090A JPH0471759A JP H0471759 A JPH0471759 A JP H0471759A JP 17957090 A JP17957090 A JP 17957090A JP 17957090 A JP17957090 A JP 17957090A JP H0471759 A JPH0471759 A JP H0471759A
Authority
JP
Japan
Prior art keywords
molten metal
tundish
flow
fluidity
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17957090A
Other languages
Japanese (ja)
Inventor
Satoshi Idokawa
聡 井戸川
Hideji Takeuchi
秀次 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17957090A priority Critical patent/JPH0471759A/en
Publication of JPH0471759A publication Critical patent/JPH0471759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To continuously cast a clean steel having extremely little inclusion by independently controlling coil current conducted to each of plural pairs of electric magnet coils set to outer surface of a tundish, changing magnetic field distribution and executing control of fluidity. CONSTITUTION:By setting the electric magnets 8 at between a molten metal supplying part (ladle nozzle) 3 and a discharging part (tundish nozzle) 7 in the tundish 1, the fluidity of molten metal 5 is controlled. Then, at both outsides of the tundish 1, plural pairs of electric magnets 8 formed with small sized coil, are set. The coil current conducted to the individual magnet coil 8 can be independently controlled. Then, according to variation of the fluidity of molten metal 5 in the tundish 1, distribution of the magnetic field is varied to control the fluidity. By this method, flow of the molten metal can be freely controlled.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、連続鋳造において、タンディツシュ内溶融金
属の流動の制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for controlling the flow of molten metal in a tundish in continuous casting.

〈従来の技術〉 一般に、連続鋳造において、第5図に示すように取鍋2
から取鍋ノズル3を介してタンディツシュ1に供給され
た溶融金属中の介在物あるいは取鍋スラグを浮上、分離
させるためにタンディツシュ1内に堰6を配設すること
によって、溶融金属5の流れを上昇させたり、または層
流にすることを行っている。しかしタンディツシュに堰
を配設することはそのコストが高くなることと、堰で熔
融金属の流れを層流化することは困難であって充分な効
果が得られないことなどの問題点があった。
<Prior art> In general, in continuous casting, as shown in Fig. 5, the ladle 2
A weir 6 is disposed inside the tundish 1 to float and separate inclusions or ladle slag in the molten metal supplied from the ladle nozzle 3 to the tundish 1, thereby controlling the flow of the molten metal 5. The flow is made to rise or become laminar. However, arranging a weir at Tanditshu had problems such as high cost and difficulty in laminarizing the flow of molten metal with a weir, making it impossible to obtain sufficient effects. .

上記問題点を解決するものとして特開昭63−1407
45号公報に開示された技術は、第6図に示すように、
この堰の代わりにタンディツシュ1の両外側に一対の電
磁石8を配設して熔融金属5の流れを制動し、かつ層流
化することによって前記介在物や取鍋スラグの浮上、分
離を促進する方法である。
As a solution to the above problems, Japanese Patent Application Laid-Open No. 63-1407
The technology disclosed in Publication No. 45, as shown in Figure 6,
Instead of this weir, a pair of electromagnets 8 are arranged on both sides of the tundish 1 to brake the flow of the molten metal 5 and create a laminar flow to promote floating and separation of the inclusions and ladle slag. It's a method.

一対の!磁石によっ°ζ流れを制御するという方法では
、注入量の増減等により流れが変化する状態において、
!磁石の強度を変えることによって溶融金属流れの強さ
を制御することが困難であることや電磁石の位置を即座
に変えて流れの方向を制御することが不可能である、と
いうような種々の問題があった。また、電磁石コイルの
空隙が広い場合にはその磁場強度がコイルとコイルの中
間で最も小さくなり、その部分に生ずる強い流れを完全
に制御することが困難であるという問題があった。
A pair! In the method of controlling the °ζ flow using a magnet, when the flow changes due to an increase or decrease in the injection amount,
! Various problems such as the difficulty of controlling the strength of the molten metal flow by changing the strength of the magnet and the impossibility of instantly changing the position of the electromagnet to control the direction of the flow. was there. In addition, when the gap between the electromagnetic coils is wide, the magnetic field strength is the lowest in the middle between the coils, and there is a problem in that it is difficult to completely control the strong flow that occurs in that area.

〈発明が解決しようとする課題〉 本発明は、前記問題を解決するべく複数の電磁石を設け
ることによって溶融金属流れを自由に制御でき、溶鋼中
の介在物を減少できるような流動制御方法を提供するた
めになされたものである。
<Problems to be Solved by the Invention> In order to solve the above problem, the present invention provides a flow control method that can freely control the flow of molten metal and reduce inclusions in molten steel by providing a plurality of electromagnets. It was done in order to

く課題を解決するための手段〉 本発明は、タンディツシュの給湯部と排出部との間に1
!1磁石を配設し゛ζ溶融金属の流動を制御する方法に
おいて、タンディツシュの両外側に小型コイルで形成さ
れる複数対のtift石を配設し、個々の電磁石コイル
に流すコイル電流を独立に制御できるようにし、タンデ
ィツシュ内熔融金属の流動の変化に応して磁場分布を変
化させて流動の制御を行うことを特徴とする熔融金属の
流動制御■方法である。
Means for Solving the Problems〉 The present invention provides a means for solving the problems of the present invention.
! In the method of controlling the flow of molten metal by arranging one magnet, multiple pairs of tift stones formed by small coils are arranged on both sides of the tundish, and the coil current flowing through each electromagnetic coil is independently controlled. This method is characterized by controlling the flow of molten metal by changing the magnetic field distribution in response to changes in the flow of molten metal in a tundish.

く作 用〉 タンディツシュ内の溶融金属の流れに対し、タンディツ
シュ両外側に設けられた電磁石の発する静磁場によって
電磁力を作用させることによって流れは制動(電磁制動
)を受ける。
Effect> The flow of molten metal in the tundish is braked (electromagnetic braking) by applying electromagnetic force to the flow of molten metal in the tundish by applying static magnetic fields generated by electromagnets installed on both sides of the tundish.

第1図〜第3図に示したように、本発明では電磁石を複
数の小型電磁石に分けて配設する。これによって流れの
強い領域に対して選択的に強い磁場を印加して強い流れ
に制動をかけ、流れの弱い領域に対しては磁場を印加せ
ず流れに制動をかけないといった流れの制御ができる。
As shown in FIGS. 1 to 3, in the present invention, the electromagnet is divided into a plurality of small electromagnets. This makes it possible to control the flow by selectively applying a strong magnetic field to areas where the flow is strong and braking the strong flow, and not applying a magnetic field and not braking the flow to areas where the flow is weak. .

また、コイル間中央部での磁場の減衰に対しては、片側
のコイルに流す電流を増すことによって第4図に示すよ
うなmlJ%分布を作り出し、流れの方向に順に設けら
れた電磁石に対してこの分布が交互に変わるように設定
すれば解決する。
In addition, for the attenuation of the magnetic field in the center between the coils, by increasing the current flowing through one coil, a mlJ% distribution as shown in Figure 4 is created, and the electromagnets installed in order in the direction of flow are The problem can be solved by setting the lever distribution to alternate.

このように、タンディツシュ内の流れの方向と強さを自
由に制御することによって介在物浮上に最適な上下方向
、幅方向とも均一な流れを作り出すことができるように
なる。
In this way, by freely controlling the direction and strength of the flow within the tundish, it becomes possible to create a uniform flow in both the vertical and width directions that is optimal for floating inclusions.

〈実施例〉 第7図は本発明の一実施例を示す図面である。<Example> FIG. 7 is a diagram showing an embodiment of the present invention.

1itiff制動をかけない比較例1、従来型の一対の
電磁石を用いた比較例2、そして本発明の小型を磁石を
配設して流れを制御した実施例を横軸に並べ、縦軸には
モールド内湾jll(低炭素アルミキルド鋼)中の介在
物量を、従来型の電磁ブレーキを使用した比較例2を1
として指数で表示した。実施例において各小型コイルに
流した電流量は、取鍋ノズル3側から流れの方向に向か
って、1段目では右側上部コイルで最も小さく、左側下
部コイルで最も大きくし、2段目では左側下部コイルで
最も小さく、右側上部コイルで最も大きくし、3段目で
は左右上下の6つのコイルに同じ量の電流を流した。比
較例2、実施例の使用電力はいずれも400kllであ
る。
Comparative Example 1 in which 1itiff braking is not applied, Comparative Example 2 in which a pair of conventional electromagnets are used, and an example in which the small size of the present invention is equipped with magnets to control the flow are arranged on the horizontal axis, and the vertical axis is The amount of inclusions in the mold inner bay Jll (low carbon aluminum killed steel) was compared to Comparative Example 2 using a conventional electromagnetic brake.
It is expressed as an index. In the example, the amount of current applied to each small coil was set from the ladle nozzle 3 side toward the direction of flow: the smallest in the upper right coil in the first stage, the largest in the lower left coil, and the largest in the left lower coil in the second stage. The lower coil was the smallest, the upper right coil was the largest, and in the third stage, the same amount of current was passed through the six coils on the left, right, top, and bottom. The power used in both Comparative Example 2 and Example is 400 kll.

ここで鋳造条件は以下のとおりである。Here, the casting conditions are as follows.

タンディツシュ容量:30も 2ストランド鋳造 鋳造溶Ill:2t/分・ストランド クンデイツシュの溶鋼温度: 1560°C第7図から
明らかなように従来型の電磁ブレーキ(比較例2)に比
して、本発明に係る1i磁ブレーキによる介在物量の減
少効果が大であることが明らかである。
Tundish capacity: 30 2 strand casting Molten steel temperature: 2 t/min・Strand kundish temperature: 1560°C As is clear from Fig. 7, compared to the conventional electromagnetic brake (comparative example 2), It is clear that the 1i magnetic brake according to the present invention has a large effect of reducing the amount of inclusions.

〈発明の効果〉 本発明によると、溶融金属の流れを自由に制御できるよ
うになったため、溶鋼中の介在物を減少でき、介在物の
極めで少ない清浄鋼の連続鋳造ができる。
<Effects of the Invention> According to the present invention, since the flow of molten metal can be freely controlled, inclusions in molten steel can be reduced, and clean steel with very few inclusions can be continuously cast.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を説明するためのタンディツシュの要
部断面図、第2図は、本発明を説明するためのタンディ
ツシュの概略上面図、第3図は、第2図におけるX−X
断面図、第4図は、第3図におけるY−Y間での磁束密
度分布の一例を示すグラフ、第5図は従来の堰設置例の
要部断面図、第6図は、従来の電磁石設置例の要部断面
図、第7図は比較例・実施例における介在物指数を示す
グラフである。 ・・・タンディツシュ、     2・・・取鍋、・・
・取鍋ノズル、 ・・・タンデインシュ・フランクス、 ・・・溶融金属、        6・・・堰、・・・
タンディツシュノズル、  8・・・tm石。
FIG. 1 is a sectional view of essential parts of a tundish for explaining the present invention, FIG. 2 is a schematic top view of the tundish for explaining the present invention, and FIG.
4 is a graph showing an example of the magnetic flux density distribution between Y and Y in FIG. 3, FIG. 5 is a sectional view of a main part of a conventional weir installation example, and FIG. 6 is a graph of a conventional electromagnet. FIG. 7, which is a sectional view of the main part of the installation example, is a graph showing the inclusion index in the comparative example and the example. ...Tanditshu, 2...Ladle,...
・Ladle nozzle, ・・・Tandins Franks, ・・・molten metal, 6...Weir,...
Tanditshu nozzle, 8...tm stone.

Claims (1)

【特許請求の範囲】 タンディッシュの給湯部と排出部との間に電磁石を配設
して溶融金属の流動を制御する方法において、 タンディッシュの両外側に小型コイルで形成される複数
対の電磁石を配設し、個々の電磁石コイルに流すコイル
電流を独立に制御できるようにし、タンディッシュ内溶
融金属の流動の変化に応じて磁場分布を変化させて流動
の制御を行うことを特徴とする溶融金属の流動制御方法
[Scope of Claim] A method for controlling the flow of molten metal by disposing electromagnets between a hot water supply part and a discharge part of a tundish, comprising a plurality of pairs of electromagnets formed of small coils on both sides of the tundish. A molten metal melting system characterized in that the coil current flowing through each electromagnetic coil can be independently controlled, and the magnetic field distribution is changed in response to changes in the flow of molten metal in the tundish to control the flow. Metal flow control method.
JP17957090A 1990-07-09 1990-07-09 Method for controlling fluidity of molten metal Pending JPH0471759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17957090A JPH0471759A (en) 1990-07-09 1990-07-09 Method for controlling fluidity of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17957090A JPH0471759A (en) 1990-07-09 1990-07-09 Method for controlling fluidity of molten metal

Publications (1)

Publication Number Publication Date
JPH0471759A true JPH0471759A (en) 1992-03-06

Family

ID=16068051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17957090A Pending JPH0471759A (en) 1990-07-09 1990-07-09 Method for controlling fluidity of molten metal

Country Status (1)

Country Link
JP (1) JPH0471759A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006822A (en) * 1997-07-01 1999-12-28 Ipsco Enterprises Inc. Controllable variable magnetic field apparatus for flow control of molten steel in a casting mold
US6341642B1 (en) 1997-07-01 2002-01-29 Ipsco Enterprises Inc. Controllable variable magnetic field apparatus for flow control of molten steel in a casting mold
KR101328251B1 (en) * 2011-12-28 2013-11-14 주식회사 포스코 Apparatus for controlling flow of molten steel in Tundish, and Continuous casting Apparatus having the Same and Continuous casting Method using the Same
CN110000368A (en) * 2019-05-20 2019-07-12 湖南中科电气股份有限公司 A kind of intelligent multi-function metallurgy tundish and its casting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006822A (en) * 1997-07-01 1999-12-28 Ipsco Enterprises Inc. Controllable variable magnetic field apparatus for flow control of molten steel in a casting mold
US6341642B1 (en) 1997-07-01 2002-01-29 Ipsco Enterprises Inc. Controllable variable magnetic field apparatus for flow control of molten steel in a casting mold
US6502627B2 (en) 1997-07-01 2003-01-07 Ipsco Enterprises Inc. Controllable variable magnetic field apparatus for flow control of molten steel in a casting mold
KR101328251B1 (en) * 2011-12-28 2013-11-14 주식회사 포스코 Apparatus for controlling flow of molten steel in Tundish, and Continuous casting Apparatus having the Same and Continuous casting Method using the Same
CN110000368A (en) * 2019-05-20 2019-07-12 湖南中科电气股份有限公司 A kind of intelligent multi-function metallurgy tundish and its casting method
CN110000368B (en) * 2019-05-20 2024-08-20 湖南中科电气股份有限公司 Intelligent multifunctional metallurgical tundish and casting method thereof

Similar Documents

Publication Publication Date Title
US6253832B1 (en) Device for casting in a mould
SE500745C2 (en) Methods and apparatus for casting in mold
US9156084B2 (en) Process and apparatus for controlling the flows of liquid metal in a crystallizer for the continuous casting of thin flat slabs
CN101259523B (en) Electro-magnetic braking device for controlling molten metal flow in continuous cast crystallizer
JPH0471759A (en) Method for controlling fluidity of molten metal
KR20000029610A (en) Electromagnetic braking device for continuous casting mold and method of continuous casting by using the same
JPS62254954A (en) Control method for molten steel flow in mold of continuous casting
JPS60106651A (en) Device for controlling flow of molten metal
JPS63140745A (en) Tundish for continuous casting
CN113557097A (en) Electromagnetic brake for a casting mould of a continuous slab casting installation
JP3253012B2 (en) Electromagnetic brake device for continuous casting mold and continuous casting method using the same
JPH0745093B2 (en) Magnetic force control device for molten steel flow in cast slab
JPH048134B2 (en)
JPH03118949A (en) Method and apparatus for continuous casting
US9352386B2 (en) Process and apparatus for controlling the flows of liquid metal in a crystallizer for the continuous casting of thin flat slabs
JPS61140355A (en) Electromagnetic stirrer for controlling molten steel flow in casting mold
JP7119684B2 (en) continuous casting machine
CA2242037C (en) Controllable variable magnetic field apparatus for flow control of molten steel in a casting mold
US6341642B1 (en) Controllable variable magnetic field apparatus for flow control of molten steel in a casting mold
JP7180383B2 (en) continuous casting machine
JP3659329B2 (en) Molten steel flow control device
JP2001521444A (en) Apparatus for continuous casting of two strands in parallel
WO1999011404A1 (en) Method and device for continuous or semi-continuous casting of metal
JPH10328791A (en) Electromagnetic braking device of mold for continuous casting and continuous casting method using this braking device
JP2000158108A (en) Continuous steel casting method