JPH0745093B2 - Magnetic force control device for molten steel flow in cast slab - Google Patents

Magnetic force control device for molten steel flow in cast slab

Info

Publication number
JPH0745093B2
JPH0745093B2 JP63116313A JP11631388A JPH0745093B2 JP H0745093 B2 JPH0745093 B2 JP H0745093B2 JP 63116313 A JP63116313 A JP 63116313A JP 11631388 A JP11631388 A JP 11631388A JP H0745093 B2 JPH0745093 B2 JP H0745093B2
Authority
JP
Japan
Prior art keywords
molten steel
iron core
slab
steel flow
magnetic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63116313A
Other languages
Japanese (ja)
Other versions
JPH01289550A (en
Inventor
忠志 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63116313A priority Critical patent/JPH0745093B2/en
Publication of JPH01289550A publication Critical patent/JPH01289550A/en
Publication of JPH0745093B2 publication Critical patent/JPH0745093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、連続鋳造機における未凝固の鋳片内容鋼流
に対する磁力分布を制御する装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an apparatus for controlling a magnetic force distribution with respect to an unsolidified slab-content steel flow in a continuous casting machine.

〔従来技術〕[Prior art]

第9図に示すように、連続鋳造機において、タンディッ
シュ1から浸積ノズル2を介して鋳型3内に注入される
溶鋼は、鋳型3内あるいは鋳片S内で流動するが、周知
のとおり、この溶鋼流に制動を加えてその動きを速やか
に遅くしてやる事は、溶鋼内に介在する不純物の浮上を
促進し、良好な鋳片の品質を保つ上で極めて効果があ
る。
As shown in FIG. 9, in the continuous casting machine, the molten steel injected from the tundish 1 into the casting mold 3 through the immersion nozzle 2 flows in the casting mold 3 or the cast slab S. The braking of the molten steel flow to slow its movement promptly promotes the floating of impurities existing in the molten steel and is extremely effective in maintaining good quality of the cast slab.

この溶鋼流に制動力を与える方法として、鋳型内に静磁
場を形成し、溶鋼流に誘導された電流と静磁場との相互
作用により誘起される電磁力を利用する電磁気装置4が
ある。
As a method of applying a braking force to the molten steel flow, there is an electromagnetic device 4 that forms a static magnetic field in a mold and utilizes an electromagnetic force induced by an interaction between a current induced in the molten steel flow and the static magnetic field.

このような電磁気装置4は、第5図に示すように、鉄芯
5とこの鉄芯に巻回した電磁コイル6からなり、従来に
おいては、鋳型3の長辺3Aに鉄芯5を固定し、電磁コイ
ル6に流す電流の大小を調整することにより、制動力を
調整している。また、電磁気装置4を鋳片の幅方向や長
さ方向に移動させ得る装置が提案されている。(実開昭
59−85653号公報) なお、溶鋼及び鋳片内の均質化のために溶鋼流を積極的
に流動させる動磁場装置は、電磁気装置を多数設置し、
順に磁力を切換える事により行っており、その磁力調整
も前述静磁場同様の方式で行っている。
As shown in FIG. 5, such an electromagnetic device 4 comprises an iron core 5 and an electromagnetic coil 6 wound around the iron core 5. In the conventional case, the iron core 5 is fixed to the long side 3A of the mold 3. The braking force is adjusted by adjusting the magnitude of the current passed through the electromagnetic coil 6. Further, there has been proposed a device capable of moving the electromagnetic device 4 in the width direction and the length direction of the slab. (Actual development
59-85653 gazette) Incidentally, a dynamic magnetic field device for actively flowing a molten steel flow for homogenization of molten steel and a slab has a large number of electromagnetic devices installed,
The magnetic force is sequentially changed, and the magnetic force is adjusted in the same manner as the static magnetic field described above.

〔この発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、静磁場の場合に前述のように電磁コイル
の電流調整だけで制動力を調整すると、第5図に示すよ
うに、全体的にその大きさが大小するだけで、磁束の分
布状態を調整することは不可能である。
However, in the case of a static magnetic field, if the braking force is adjusted only by adjusting the current of the electromagnetic coil as described above, as shown in FIG. It is impossible to do.

このため、溶鋼流に制動力が必要な部分にのみならず、
不必要な部分にも制動力が作用し、鋳片品質上悪影響を
与える。とりわけ、溶鋼湯面の最上端のメニスカス部分
に、制動力を与えると、溶鋼の温度低下が著しくなり、
皮張り等が発生し、鋳型表面疵となる。
Therefore, not only the portion where the molten steel flow needs a braking force,
The braking force also acts on unnecessary parts, which adversely affects the quality of the slab. In particular, when a braking force is applied to the uppermost meniscus portion of the molten steel surface, the temperature drop of the molten steel becomes remarkable,
Skinning etc. occurs, causing mold surface defects.

もし、このメニスカス部の制動力をなくすために電流を
小さくして行くと、従来技術では本来制動内が必要な部
分の磁束も小さくなり、制動力が不充分となり、本来の
目的を達成できなくなる。
If the current is reduced in order to eliminate the braking force of the meniscus portion, the magnetic flux in the portion that originally needs to be braked also becomes smaller in the conventional technology, the braking force becomes insufficient, and the original purpose cannot be achieved. .

また、電磁気装置自体を移動させてもメニスカス部の制
動力をなくすことが可能であるが、やはり必要な部分の
制動力が不足する事になり好ましくない。特に、鋳型内
の溶鋼湯面を下げて使用する時等は、表面品質を犠牲に
せざるをえなかった。
Further, although it is possible to eliminate the braking force of the meniscus portion by moving the electromagnetic device itself, the braking force of a necessary portion is also insufficient, which is not preferable. In particular, when lowering the molten steel surface in the mold for use, the surface quality had to be sacrificed.

動磁場の場合も、同様な問題を有していた。The dynamic magnetic field has the same problem.

この発明は、このような事情に鑑みてなされたもので、
その目的は、電磁気装置によって形成する静磁場又は動
磁場の磁束分布を調整することができ、溶鋼流に与える
磁力分布を最適に制御し得る磁力制御装置を提供するこ
とにある。
The present invention has been made in view of such circumstances,
An object of the invention is to provide a magnetic force control device capable of adjusting a magnetic flux distribution of a static magnetic field or a dynamic magnetic field formed by an electromagnetic device and optimally controlling a magnetic force distribution given to a molten steel flow.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の磁力制御装置は、第1図に示すように、電磁気
装置4の鉄芯5に、鋳込方向及び又は鋳込み幅方向に複
数に分割した可動鉄芯5B,5Cを用い、これら可動鉄芯5B,
5Cをそれぞれ独立して駆動機構7により鋳型3に対して
進退可能にして構成される。
As shown in FIG. 1, the magnetic force control device of the present invention uses, as the iron core 5 of the electromagnetic device 4, movable iron cores 5B and 5C divided into a plurality of parts in the casting direction and / or the casting width direction. Wick 5B,
Each of 5C is configured to be independently movable to and from the mold 3 by the drive mechanism 7.

〔作用〕[Action]

可動鉄芯5B,5Cを鋳片S又は鋳型3に対して別々に進退
させることにより、磁束分布を変えることができる。例
えば、第4図に示すように、上側の可動鉄芯5Bを鋳型3
から遠ざけ、下側の可動鉄芯5Cを近付けるように配置す
ると、メニスカス部の磁束をなくし、本来制動力の必要
な部分に最大の磁場を形成できる。
The magnetic flux distribution can be changed by separately moving the movable iron cores 5B and 5C with respect to the cast slab S or the mold 3. For example, as shown in FIG. 4, the upper movable iron core 5B is attached to the mold 3
By arranging the movable iron core 5C on the lower side closer to the above, the magnetic flux in the meniscus portion can be eliminated, and the maximum magnetic field can be formed in the portion where the braking force is originally required.

鋳片幅方向に多数の電磁気装置4を配した駆動磁場装置
の場合も,鋳片幅に応じて端部の電磁気装置を幅方向に
磁束分布を変える事により不要な部分の磁束を減じ、磁
気作用を適正にする事ができる。
Also in the case of a driving magnetic field device in which a large number of electromagnetic devices 4 are arranged in the width direction of the slab, the magnetic flux distribution of the end electromagnetic device is changed in accordance with the width of the slab to reduce the magnetic flux in unnecessary portions, thereby reducing the magnetic field. The action can be made proper.

〔実施例〕〔Example〕

以下、この発明を静磁場の場合を図示する一実施例に基
づいて説明する。なお、従来と同一あるいは相当する部
分については同一符号を付する。
The present invention will be described below with reference to an embodiment showing a case of a static magnetic field. In addition, the same reference numerals are given to the same or corresponding portions as in the conventional case.

第1図ないし第3図に示すように、スラブSの鋳型3の
長辺3Aに、対向配置した一対の電磁気装置4を、浸漬ノ
ズル2の長辺方向左右に配設した4極構造の例であり、
鉄芯5を、角筒状の固定鉄芯5Aと、上下に2分割され、
固定鉄芯5A内を水平方向に移動自在な可動鉄芯5B,5Cと
から構成し、上下の可動鉄芯5B,5Cをスクリューロッド
式等の駆動機構7によりそれぞれ独立して鋳型3に対し
て水平方向に進退可能とする。また、同じ側の固定鉄芯
5Aを、磁路を形成する継鉄8により連結する。
As shown in FIGS. 1 to 3, an example of a four-pole structure in which a pair of electromagnetic devices 4 facing each other are arranged on the long side 3A of the mold 3 of the slab S on the left and right in the long side direction of the immersion nozzle 2. And
The iron core 5 is divided into a rectangular tubular fixed iron core 5A and upper and lower parts,
It is composed of movable iron cores 5B and 5C that can move horizontally in the fixed iron core 5A, and the upper and lower movable iron cores 5B and 5C are independently with respect to the mold 3 by a driving mechanism 7 such as a screw rod type. It is possible to move back and forth horizontally. Also, fixed iron core on the same side
5A is connected by a yoke 8 forming a magnetic path.

可動鉄芯5B,5Cおよび継鉄8は、磁気抵抗を小さくする
ため磁性鋼を用い、固定鉄芯5Aは可動鉄芯5B,5Cを支持
し、長辺3Aに取付けられる構造体であり、どのような材
質でも良いが、磁束を全て可動鉄芯5B,5Cに集中させる
ためには、非磁性体が好ましい。
The movable iron cores 5B, 5C and the yoke 8 are made of magnetic steel to reduce the magnetic resistance, and the fixed iron core 5A supports the movable iron cores 5B, 5C and is a structure attached to the long side 3A. Although such a material may be used, a non-magnetic material is preferable in order to concentrate all the magnetic flux on the movable iron cores 5B and 5C.

以上のような構成において、第4図(A)に示すよう
に、上下の可動鉄芯5B,5C共に、長辺3Aに密着させ、電
磁コイル6に電流を通電すると、鋳型内の磁束分布は従
来と同様になる。
In the above configuration, as shown in FIG. 4 (A), when the upper and lower movable iron cores 5B and 5C are closely attached to the long side 3A and a current is applied to the electromagnetic coil 6, the magnetic flux distribution in the mold is It becomes the same as the conventional one.

ところが、上側の可動鉄芯5Bのみを長辺3Aより遠ざける
ように配置すると、磁束分布の最大部は、第4図(B)
に示すように、鋳型の下方へ移動する。これにより、上
方の制動力はなくなり、下方の制動力が第4図(A)の
最大制動力のまま保持される。
However, when only the upper movable iron core 5B is arranged away from the long side 3A, the maximum part of the magnetic flux distribution is shown in FIG. 4 (B).
As shown in FIG. As a result, the upper braking force disappears, and the lower braking force is maintained at the maximum braking force shown in FIG. 4 (A).

第5図(B)の電流を下げる従来技術では、磁束分布が
全体的に減少し、最大部分が大幅に減少しているが、本
発明では、メニスカス部分の制動力をなくしつつ、必要
な部分に最大の制動力を与えることができる。
In the conventional technique of lowering the current shown in FIG. 5 (B), the magnetic flux distribution is wholly reduced, and the maximum portion is greatly reduced. However, in the present invention, the necessary portion is eliminated while eliminating the braking force of the meniscus portion. The maximum braking force can be applied to.

また、可動鉄芯5B,5Cの上下の押込量を逆にすれば、磁
束分布を上下逆にでき、上下の押込量と電磁コイル6の
電流を調整することにより、種々の磁束分布が得られる
ことはいうまでもない。
Further, by reversing the vertical pushing amounts of the movable iron cores 5B and 5C, the magnetic flux distribution can be reversed, and various magnetic flux distributions can be obtained by adjusting the vertical pushing amount and the current of the electromagnetic coil 6. Needless to say.

さらに、駆動機構7に電動力や油圧力を用いて遠隔操作
ができるようにすれば、溶鋼湯面レベルや、溶鋼温度等
に合わせたダイナミックな制御が可能である。
Further, if the drive mechanism 7 can be operated remotely by using electric power or hydraulic pressure, it is possible to perform dynamic control according to the molten steel level, the molten steel temperature and the like.

次に、第6図ないし第8図は変形例であり、第6図は鋳
片幅方向にも2分割し、4分割の可動鉄芯5A〜5Eとした
もので、鋳片の幅は方向に対しても磁束分布の制御が可
能となる。第7図は、3分割した例であり、第1図の2
分割よりも細かな磁束分布の制御を行なえる。第8図
は、鉄芯9内に貫通孔9aを設け、該貫通孔9a内に刻設し
たネジ部に係合した可動鉄芯5を駆動機構7により旋回
させる事により進退可能とした例である。
Next, FIG. 6 to FIG. 8 show a modified example, and FIG. 6 shows a movable iron core 5A to 5E which is divided into two in four in the width direction of the slab, and the width of the slab is directional. Also, it is possible to control the magnetic flux distribution. FIG. 7 shows an example of division into three parts, which is shown in FIG.
The magnetic flux distribution can be controlled more finely than the division. FIG. 8 shows an example in which a through hole 9a is provided in the iron core 9, and the movable iron core 5 engaged with a screw part engraved in the through hole 9a is swung by a drive mechanism 7 so as to be able to move forward and backward. is there.

〔発明の効果〕〔The invention's effect〕

前述のとおり、本発明の装置は、鋳込方向又は/及び鋳
込み幅方向に複数分割した可動鉄芯を鋳片に対して進退
できるように構成したため、鋳片内の磁場磁束密度分布
を任意に変化させることができ、鋳片のサイズ、鋳型溶
鋼湯面のレベル、浸漬ノズル深さ、溶鋼温度等によって
種々変化する溶鋼流動状況の変化に合わせて最適な磁束
密度分布、すなわち最適な制動力又は、駆動力を溶鋼流
に与えることができる。これによりメニスカス部におけ
る制動力の悪影響を皆無にしながら、所望の制動力を与
えて、鋳片の表面疵をなくしつつ、内室も良好にするこ
とができる。又は、鋳片幅に応じた最適磁束分布を形成
でき、無駄な電力を低減できる。
As described above, the device of the present invention is configured such that the movable iron core divided into a plurality of parts in the casting direction or / and the casting width direction can be moved back and forth with respect to the slab, so that the magnetic field magnetic flux density distribution in the slab can be arbitrarily set. It is possible to change, the optimal magnetic flux density distribution, that is, the optimal braking force or The driving force can be applied to the molten steel flow. As a result, it is possible to give a desired braking force while eliminating the adverse effect of the braking force in the meniscus portion, to eliminate the surface flaw of the slab and to improve the inner chamber. Alternatively, it is possible to form an optimum magnetic flux distribution according to the width of the slab and reduce unnecessary power.

【図面の簡単な説明】 第1図,第2図,第3図は本発明の装置を示す縦断面
図、平面図、側面図、第4図は本発明の作動状態を示す
説明図、第5図は従来の作動状態を示す説明図、第6
図,第7図,第8図は本発明装置の変形例を示し、
(A)は縦断面図、(B)は側面図、第9図は連鋳機を
示す全体図である。 1……タンディッシュ、2……浸積ノズル、3……鋳
型、4……電磁気装置、3A……長辺、5……鉄芯、5A…
…固定鉄芯、5B〜5E……可動鉄芯、6……電磁コイル、
7……駆動機構、8……継鉄、9……固定鉄芯。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1, FIG. 2, and FIG. 3 are a longitudinal sectional view showing a device of the present invention, a plan view, a side view, and FIG. 4 is an explanatory view showing an operating state of the present invention. FIG. 5 is an explanatory view showing a conventional operating state, and FIG.
FIGS. 7, 7 and 8 show modified examples of the device of the present invention,
(A) is a longitudinal sectional view, (B) is a side view, and FIG. 9 is an overall view showing a continuous casting machine. 1 ... Tundish, 2 ... Immersion nozzle, 3 ... Mold, 4 ... Electromagnetic device, 3A ... Long side, 5 ... Iron core, 5A ...
... Fixed iron core, 5B-5E ... Movable iron core, 6 ... Electromagnetic coil,
7 ... Drive mechanism, 8 ... Yoke, 9 ... Fixed iron core.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄芯とこの鉄芯に巻回した電磁コイルから
なる電磁気装置を、鋳型内もしくは鋳型以降の未凝固鋳
片の側方に配設し、この電磁気装置により鋳片内に磁場
を形成して鋳片内の溶鋼流に磁力を与える装置におい
て、 前記電磁気装置の鉄芯に、鋳込方向及び/又は鋳込み幅
方向に複数に分割した可動鉄芯を用い、この複数の可動
鉄芯をそれぞれ独立して駆動機構により鋳片に対して進
退可能としたことを特徴とする鋳片内溶鋼流の磁力制御
装置。
1. An electromagnetic device comprising an iron core and an electromagnetic coil wound around the iron core is arranged in a mold or on the side of an unsolidified cast piece after the mold, and a magnetic field is generated in the cast piece by the electromagnetic apparatus. In the device for applying a magnetic force to the molten steel flow in the cast slab by forming a plurality of movable iron cores in the casting direction and / or the casting width direction in the iron core of the electromagnetic device, A magnetic force control device for molten steel flow in a slab, characterized in that the cores are independently movable with respect to the slab by a drive mechanism.
JP63116313A 1988-05-13 1988-05-13 Magnetic force control device for molten steel flow in cast slab Expired - Fee Related JPH0745093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63116313A JPH0745093B2 (en) 1988-05-13 1988-05-13 Magnetic force control device for molten steel flow in cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63116313A JPH0745093B2 (en) 1988-05-13 1988-05-13 Magnetic force control device for molten steel flow in cast slab

Publications (2)

Publication Number Publication Date
JPH01289550A JPH01289550A (en) 1989-11-21
JPH0745093B2 true JPH0745093B2 (en) 1995-05-17

Family

ID=14683903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63116313A Expired - Fee Related JPH0745093B2 (en) 1988-05-13 1988-05-13 Magnetic force control device for molten steel flow in cast slab

Country Status (1)

Country Link
JP (1) JPH0745093B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE501322C2 (en) * 1993-01-19 1995-01-16 Asea Brown Boveri Device for injection molding in mold
AT404104B (en) * 1994-07-01 1998-08-25 Voest Alpine Ind Anlagen CONTINUOUS CHOCOLATE WITH A STIRRIER INCLUDING A MAGNETIC CIRCLE
AT404805B (en) * 1994-07-01 1999-03-25 Voest Alpine Ind Anlagen Continuous casting mould
DE19513045C3 (en) * 1995-03-29 2002-09-12 Mannesmann Ag Mold device
JP3304884B2 (en) * 1998-06-09 2002-07-22 住友金属工業株式会社 Molten metal braking device and continuous casting method
IT1401311B1 (en) * 2010-08-05 2013-07-18 Danieli Off Mecc PROCESS AND APPARATUS FOR THE CONTROL OF LIQUID METAL FLOWS IN A CRYSTALLIZER FOR CONTINUOUS THIN BRAMME BREAKS
CN110303126A (en) * 2019-08-09 2019-10-08 湖南中科电气股份有限公司 A kind of intelligence slab electromagnetic stirring system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985653U (en) * 1982-12-02 1984-06-09 川崎製鉄株式会社 Stirring device for poured molten steel in continuous casting

Also Published As

Publication number Publication date
JPH01289550A (en) 1989-11-21

Similar Documents

Publication Publication Date Title
KR101207687B1 (en) Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
JPH0745093B2 (en) Magnetic force control device for molten steel flow in cast slab
CA2059030A1 (en) Method for continuous casting of slab
JPS60106651A (en) Device for controlling flow of molten metal
JPH0623498A (en) Device for controlling supply of molten steel in continuous casting
KR20000029610A (en) Electromagnetic braking device for continuous casting mold and method of continuous casting by using the same
US20220158534A1 (en) Electromagnetic brake for a mold of a slab contnuous casting assembly
JP3131762B2 (en) Electromagnetic brake device for continuous casting mold
JP3253012B2 (en) Electromagnetic brake device for continuous casting mold and continuous casting method using the same
JP2930448B2 (en) Continuous casting method of steel using static magnetic field
JPS6236782B2 (en)
JP7119684B2 (en) continuous casting machine
KR20040023911A (en) Apparatus for mold clamping of continuous casting device
JP3304884B2 (en) Molten metal braking device and continuous casting method
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
JPH0195849A (en) Method and device for controlling molten metal level in continuous casting
JPH04118160A (en) Method for continuously casting steel and device for impressing static magnetic field thereof
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JPH02235554A (en) Apparatus for controlling flow of molten metal in mold
KR960007626B1 (en) Electromagnetic braking apparatus for continuous casting mold
KR100244660B1 (en) Control device for molten metal of continuous casting mould
JPH0957401A (en) Electromagnetic brake device for continuous casting mold
JPH04327343A (en) Method and device for changing mold width in continuous casting impressing static magnetic field
JPH03118949A (en) Method and apparatus for continuous casting
JP2000197951A (en) Apparatus for continuously casting steel using static magnetic field

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees