JPH02235554A - Apparatus for controlling flow of molten metal in mold - Google Patents

Apparatus for controlling flow of molten metal in mold

Info

Publication number
JPH02235554A
JPH02235554A JP5343189A JP5343189A JPH02235554A JP H02235554 A JPH02235554 A JP H02235554A JP 5343189 A JP5343189 A JP 5343189A JP 5343189 A JP5343189 A JP 5343189A JP H02235554 A JPH02235554 A JP H02235554A
Authority
JP
Japan
Prior art keywords
mold
molten metal
braking force
electromagnetic coils
submerged nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5343189A
Other languages
Japanese (ja)
Inventor
Yoshinori Tanizawa
谷澤 好徳
Hidemasa Nakajima
中島 英雅
Tadao Watabe
渡部 忠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5343189A priority Critical patent/JPH02235554A/en
Publication of JPH02235554A publication Critical patent/JPH02235554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To eliminate surface flaw on a cast slab and to improve the inner quality by setting one or more pairs of electromagnetic coil to facing sides of a mold at both sides of a submerged nozzle and impressing the same magnetic poles to the pair of the electromagnetic coils. CONSTITUTION:Static magnetic field (line of magnetic force) 4 is impressed in the mold 2 for supplying molten metal with the submerged nozzle 1. Then, one or plural pairs of the electromagnetic coils 3a, 3b, 3a', 3b' faced to the thickness direction of the mold 2 are set to the faced side of the mold 2 at both sides of the submerged nozzle 1, respectively. The same magnetic poles are impressed to the pair of electromagnetic coils 3a, 3b, 3a', 3b' mutually faced. By this method, advance effect to braking force at the meniscus part can be eliminated.

Description

【発明の詳細な説明】 く産業上の利用分野〉 この発明は、鋳型内溶融金属の流動制御装置に関するも
のである. く従来技術〉 一般に、浸漬ノズルを用いて鋳型内に溶融金属を供給し
、鋳型および二次冷却帯において冷却しつつ引抜いて鋳
造する連続鋳造法においては、鋳型内および鋳片未凝固
部における溶融金属流を抑制すると、溶融金属中の介在
物の浮上が促進され、鋳片内部の品質向上に効果がある
ことがよく知られている。
[Detailed description of the invention] Industrial application field> This invention relates to a flow control device for molten metal in a mold. In general, in the continuous casting method in which molten metal is supplied into a mold using a submerged nozzle, and then pulled out and cast while being cooled in the mold and a secondary cooling zone, the molten metal in the mold and in the unsolidified part of the slab is It is well known that suppressing the metal flow promotes the floating of inclusions in the molten metal and is effective in improving the quality inside the slab.

このような溶融金属流中に制動力を与える方法の一つと
して静磁場を印加する電磁ブレーキがある。第8図、第
9図に示すのは、このような電磁ブレーキを、長辺鋳型
2Aと短辺鋳型2Bからなり、水.平吐出孔IAを有す
る浸漬ノズル1を中央に配置したスラブ用鋳型2に適用
した従来例であり、鋳型厚み方向に対向させた一対の電
磁コイル3を、浸漬ノズル1の左右における長辺鋳型2
Aの外側に配置し、対向する一対の電磁コイル3の磁極
を互いに異なるN極、S極とし、磁力線4が鋳込方向と
直交する静磁場を形成するようにしたものである。
One method of applying braking force to such a molten metal flow is an electromagnetic brake that applies a static magnetic field. FIGS. 8 and 9 show such an electromagnetic brake consisting of a long-side mold 2A and a short-side mold 2B. This is a conventional example applied to a slab mold 2 in which an immersion nozzle 1 having a flat discharge hole IA is arranged in the center, and a pair of electromagnetic coils 3 facing each other in the mold thickness direction are attached to the long side mold 2 on the left and right sides of the immersion nozzle 1.
The magnetic poles of a pair of electromagnetic coils 3 facing each other are set to different N and S poles, and lines of magnetic force 4 form a static magnetic field perpendicular to the casting direction.

浸漬ノズルの水平吐出孔IAからの溶融金属流は、第1
0図に示すように、流出するが、前記静磁場を直角に横
切るので溶融金属流内に誘導電流が生じ、この電流と再
び静磁場の相互作用により溶融金属流に対し逆向きの電
磁力Fが発生し、これにより溶融金属流が減速されて制
動される. くこの発明が解決しようとする課題〉 しかしながら、従来の磁束分布では、溶融金属流に制動
力が必要な部分のみならず、不必要な部分にも制動力が
与えられ(上昇流にも逆向きの電磁力Fが働ク)、鋳片
品賞に悪影響を及ぼす.とりわけ、溶湯面の最上端のメ
ニスカス近傍に制動力を与えると、溶融金属の温度低下
が著し《なり、皮張り等が発生し、縦割れ、ピンホール
等の表面疵の原因となる。
The molten metal flow from the horizontal discharge hole IA of the submerged nozzle is
As shown in Figure 0, the flow crosses the static magnetic field at right angles, so an induced current is generated within the molten metal flow, and the interaction between this current and the static magnetic field causes an electromagnetic force F in the opposite direction to the molten metal flow. occurs, which slows down and brakes the molten metal flow. However, in the conventional magnetic flux distribution, braking force is applied not only to parts of the molten metal flow where braking force is necessary, but also to parts where it is unnecessary (even in the upward flow, the braking force is applied in the opposite direction). The electromagnetic force F acts), which has a negative effect on the quality of the slab product. In particular, if a braking force is applied near the meniscus at the top of the molten metal surface, the temperature of the molten metal will drop significantly, causing skinning, etc., and causing surface defects such as vertical cracks and pinholes.

また、このメニスカス近傍の制動力を小さくするために
、磁束に強弱を調節している印加電流を小さくすると、
本来制動力の必要な部分の磁束も小さくなり、制動力が
充分に働かず本来の目的が達成できなくなる。さらに、
介在物の浮上についても、単に溶融金属流に制動力を与
えるだけでは、飛躍的な改善は望めない.この発明は、
前述のような問題点を解消すべくなされたもので、その
目的は、必要な部分にのみ制動力を与えることができる
と共に、溶融金属流の方向および速度を制御することの
できる鋳型内溶融金属の流動制御装置を提供することに
ある。
In addition, in order to reduce the braking force near this meniscus, if the applied current that adjusts the strength of the magnetic flux is reduced,
The magnetic flux in the part that originally requires braking force also becomes small, and the braking force does not work sufficiently, making it impossible to achieve the original purpose. moreover,
Regarding the floating of inclusions, it is not possible to expect a dramatic improvement simply by applying a braking force to the molten metal flow. This invention is
This was created to solve the above-mentioned problems, and its purpose was to create an in-mold molten metal that can apply braking force only to the necessary parts and control the direction and speed of the molten metal flow. An object of the present invention is to provide a flow control device.

く課題を解決するための手段〉 本発明では、第1図に示すように浸漬ノズル1の両側に
おいて鋳型厚み方向に対向する一対の電磁コイル3に同
一の磁極を印加し、第1図、第2図に示すように、鋳型
2の幅方向に沿う中央縦断面で磁力線4が反発し合う静
磁場を形成する。
In the present invention, as shown in FIG. 1, the same magnetic pole is applied to a pair of electromagnetic coils 3 facing each other in the mold thickness direction on both sides of the immersion nozzle 1, and As shown in FIG. 2, lines of magnetic force 4 repel each other to form a static magnetic field in the central longitudinal section along the width direction of the mold 2.

反発磁場であればよいので、第1図とは逆に3ajJ−
N極、3bをS極としてもよいし、第4図に示すように
、全部をN極とし、あるいは全部をS極としてもよい。
As long as it is a repulsive magnetic field, 3ajJ-
The N pole and 3b may be S poles, or as shown in FIG. 4, all of them may be N poles, or all of them may be S poles.

また、第3図に示すように、片側のi!磁コイル3aと
3bの磁束を強めたり、あるいは対角方向の電磁コイル
の磁束を強めたりするなどして磁束の分布形態を変化さ
せることもできる。
Moreover, as shown in FIG. 3, i! on one side! The distribution form of the magnetic flux can also be changed by increasing the magnetic flux of the magnetic coils 3a and 3b, or by increasing the magnetic flux of the diagonal magnetic coils.

さらに、電磁コイル3の中心軸と長辺鋳型2Aの背面と
のなす角度を変えることにより、対向する同一磁極から
発生した磁場がぶつかり合う磁束密度の小さい空間の形
状を制御することができる。
Furthermore, by changing the angle between the central axis of the electromagnetic coil 3 and the back surface of the long side mold 2A, it is possible to control the shape of the space where the magnetic flux density is low, where the magnetic fields generated from the same opposing magnetic poles collide.

く作 用》 各tM1コイル3に電流を印加すると、第1図、第2図
に示すような反発し合う静磁場が形成される.水平吐出
孔IAからの下降流は、鋳型近傍において鋳込方向と直
交する方向の磁束により、従来とほぼ同様に逆向きの制
動力が働き、溶融金属中の介在物の浮上が促進される。
Effect》 When a current is applied to each tM1 coil 3, repelling static magnetic fields are formed as shown in Figs. 1 and 2. In the downward flow from the horizontal discharge hole IA, a braking force in the opposite direction acts in the vicinity of the mold due to the magnetic flux in a direction perpendicular to the casting direction, similar to the conventional method, and the floating of inclusions in the molten metal is promoted.

第2図よりコイル付近のメニスカス近傍では、場面に垂
直な方向(鋳込方向)の磁束密度の勾配は小さいが、平
行な方向の磁束密度の勾配は大きくなり、従来と比較す
ると場面への上昇流に働く制動力はかなり小さ《なるた
め、温度低下を防止できる. また、水平吐出孔IAからの吐出流は、互いに対向する
同一磁極から発生した磁場がぶつかり合う磁束密度の小
さい空間を優先的に流動して整流化するため、各コイル
の磁束を変化させあるいは各コイルの設置角度を変える
ことによって前記空間の位置や大きさを制御することで
、流動方向やその速度分布を容易に制御できる。
Figure 2 shows that in the vicinity of the meniscus near the coil, the gradient of magnetic flux density in the direction perpendicular to the scene (the casting direction) is small, but the gradient of magnetic flux density in the parallel direction becomes large, and compared to the conventional case, the gradient of magnetic flux density increases toward the scene. Since the braking force acting on the flow is considerably small, a drop in temperature can be prevented. In addition, the discharge flow from the horizontal discharge hole IA is rectified by preferentially flowing through a space with a low magnetic flux density where the magnetic fields generated from the same magnetic poles facing each other collide, so the magnetic flux of each coil is changed or each By controlling the position and size of the space by changing the installation angle of the coil, the flow direction and its velocity distribution can be easily controlled.

〈実 施 例〉 第1図、第2図に示すように、長辺鋳型2Aの背面に近
接させて電磁コイル3をその中心軸の鋳込方向位置が水
平吐出孔IAのそれとほぼ一致するように設置すると共
に、鋳型幅方向に一対の電磁コイル3を継鉄5で連結す
る。各電磁コイル3は、その中心軸が長辺鋳型2Aの背
面に対して上下方向、水平方向に傾斜できるように取付
けられるのが好ましい. このような装置を用いて連続鋳造を行なった結果を従来
法と共に第5図ないし第7図に示す,このグラフから明
らかなとおり、本発明ではメニスカス近傍における制動
力を大幅に低下させることができ、メニスカス近傍の温
度低下を解消させ、縦割疵の発生を従来よりも低減させ
ることができる。
<Example of implementation> As shown in Figs. 1 and 2, the electromagnetic coil 3 is placed close to the back side of the long-side mold 2A so that the position of its central axis in the casting direction almost coincides with that of the horizontal discharge hole IA. At the same time, a pair of electromagnetic coils 3 are connected by a yoke 5 in the width direction of the mold. It is preferable that each electromagnetic coil 3 is installed so that its central axis can be tilted vertically and horizontally with respect to the back surface of the long side mold 2A. The results of continuous casting using such a device are shown in Figures 5 to 7 together with the conventional method.As is clear from the graphs, the present invention can significantly reduce the braking force near the meniscus. , it is possible to eliminate the temperature drop near the meniscus and to reduce the occurrence of vertical cracks compared to the conventional method.

また、本発明では、吐出流を整流化すると共に、介在物
の捕捉され易い鋳型近傍において制動力が付与されるた
め、スラブ表面下における介在物を従来よりも低減でき
る。
Further, in the present invention, since the discharge flow is rectified and a braking force is applied in the vicinity of the mold where inclusions are likely to be captured, inclusions under the surface of the slab can be reduced more than before.

く発明の効果〉 前述のとおり、この発明によれば、鋳型内に同一極性の
磁極によりぶつかり合う静磁場を形成するようにしたた
め、必要な部分にのみ制動力が与えられると共に、浸漬
ノズルからの吐出流が整流化され、鋳型内溶融金属流に
対し最適な制動力を与えることができる。この結果、特
にメニスカス部における制動力の悪影響を皆無にし、鋳
片の表面疵をなくしつつ、内質も良好にすることができ
る。
Effects of the Invention> As described above, according to the present invention, a static magnetic field is formed in the mold by magnetic poles of the same polarity, which collide with each other. The discharge flow is rectified, and an optimal braking force can be applied to the flow of molten metal in the mold. As a result, the adverse effects of the braking force, especially in the meniscus portion, can be completely eliminated, and while surface flaws in the slab can be eliminated, the internal quality can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明に係る流動制御装置を示す平面
図、断面図、第3図は磁束の強さを変えた状態を示す平
面図、第4図は変形例を示す平面図、第5図は介在物指
数を示すグラフ、第6図は縦割疵発生率を示すグラフ、
第7図は鋳型内温度を示すグラフ、第8図、第9図は従
来の電磁ブレーキ装置を示す平面図、断面図、第10図
はその溶湯流れと制動力を示す断面図である。 1・・・浸漬ノズル、IA・・・水平吐出孔、2・・・
スラブ用鋳型、2A・・・長辺鋳型、2B・・・短辺鋳
型、3・・・電磁コイル、4・・・磁力線、5・・・継
鉄。 第 図 第 図 第 図 第 図 第10 図
1 and 2 are a plan view and a sectional view showing a flow control device according to the present invention, FIG. 3 is a plan view showing a state in which the strength of magnetic flux is changed, and FIG. 4 is a plan view showing a modified example. , Figure 5 is a graph showing the inclusion index, Figure 6 is a graph showing the incidence of vertical cracks,
FIG. 7 is a graph showing the temperature inside the mold, FIGS. 8 and 9 are a plan view and a cross-sectional view of a conventional electromagnetic brake device, and FIG. 10 is a cross-sectional view showing the molten metal flow and braking force. 1... Immersion nozzle, IA... Horizontal discharge hole, 2...
Mold for slab, 2A... Long side mold, 2B... Short side mold, 3... Electromagnetic coil, 4... Line of magnetic force, 5... Yoke. Figure Figure Figure Figure 10

Claims (1)

【特許請求の範囲】[Claims] (1)浸漬ノズルにより溶融金属が供給される鋳型内に
静磁場を印加する装置において、 鋳型厚み方向に対向させた一対もしくは複数の対の電磁
コイルを、浸漬ノズルの両側における鋳型対向辺にそれ
ぞれ設置し、この対向するそれぞれの対となる電磁コイ
ルに同一の磁極を印加して構成したことを特徴とする鋳
型内溶融金属の流動制御装置
(1) In a device that applies a static magnetic field to a mold into which molten metal is supplied by a submerged nozzle, one or more pairs of electromagnetic coils facing each other in the thickness direction of the mold are placed on opposite sides of the mold on both sides of the submerged nozzle. A flow control device for molten metal in a mold, characterized in that the same magnetic pole is applied to each pair of opposing electromagnetic coils.
JP5343189A 1989-03-06 1989-03-06 Apparatus for controlling flow of molten metal in mold Pending JPH02235554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5343189A JPH02235554A (en) 1989-03-06 1989-03-06 Apparatus for controlling flow of molten metal in mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5343189A JPH02235554A (en) 1989-03-06 1989-03-06 Apparatus for controlling flow of molten metal in mold

Publications (1)

Publication Number Publication Date
JPH02235554A true JPH02235554A (en) 1990-09-18

Family

ID=12942654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5343189A Pending JPH02235554A (en) 1989-03-06 1989-03-06 Apparatus for controlling flow of molten metal in mold

Country Status (1)

Country Link
JP (1) JPH02235554A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239694A (en) * 2001-02-19 2002-08-27 Sumitomo Heavy Ind Ltd Control unit for fluidity of molten steel
JP2020011257A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Continuous casting machine
JP2020523199A (en) * 2017-06-16 2020-08-06 アーベーベー・シュバイツ・アーゲーABB Schweiz AG Electromagnetic brake system and method of controlling electromagnetic brake system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239694A (en) * 2001-02-19 2002-08-27 Sumitomo Heavy Ind Ltd Control unit for fluidity of molten steel
JP2020523199A (en) * 2017-06-16 2020-08-06 アーベーベー・シュバイツ・アーゲーABB Schweiz AG Electromagnetic brake system and method of controlling electromagnetic brake system
JP2020011257A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Continuous casting machine

Similar Documents

Publication Publication Date Title
CA1178779A (en) Continuous casting mold stirring
EP0401504B2 (en) Apparatus and method for continuous casting
CA2305283A1 (en) Continuous casting method, and device therefor
JPH02235554A (en) Apparatus for controlling flow of molten metal in mold
EP0922512A1 (en) Electromagnetic braking device for continuous casting mold and method of continuous casting by using the same
CA2266085C (en) Continuous casting machine
JPS59101261A (en) Continuous casting method with which flow of molten steel is braked by static magnetic field
JP3056659B2 (en) Continuous casting method of molten metal
JP2990555B2 (en) Continuous casting method
JPH04118160A (en) Method for continuously casting steel and device for impressing static magnetic field thereof
JPH09262651A (en) Method for reducing non-metallic inclusion in continuous casting
JP3253012B2 (en) Electromagnetic brake device for continuous casting mold and continuous casting method using the same
JP2930448B2 (en) Continuous casting method of steel using static magnetic field
JP3408374B2 (en) Continuous casting method
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JPS61140355A (en) Electromagnetic stirrer for controlling molten steel flow in casting mold
JP2000015404A (en) Production of continuously cast slab having little inclusion defect
KR100244660B1 (en) Control device for molten metal of continuous casting mould
JPS611459A (en) Continuous casting method of steel
JP2887625B2 (en) Continuous casting equipment
KR960007626B1 (en) Electromagnetic braking apparatus for continuous casting mold
JP2969579B2 (en) Steel continuous casting method
JPH03118949A (en) Method and apparatus for continuous casting
JPH0441058A (en) Device for controlling flow of molten metal in mold
JPH0994643A (en) Continuous casting method