JP7283031B2 - dust core - Google Patents

dust core Download PDF

Info

Publication number
JP7283031B2
JP7283031B2 JP2018035650A JP2018035650A JP7283031B2 JP 7283031 B2 JP7283031 B2 JP 7283031B2 JP 2018035650 A JP2018035650 A JP 2018035650A JP 2018035650 A JP2018035650 A JP 2018035650A JP 7283031 B2 JP7283031 B2 JP 7283031B2
Authority
JP
Japan
Prior art keywords
fine particles
magnetic material
dust core
particle size
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018035650A
Other languages
Japanese (ja)
Other versions
JP2018152557A (en
Inventor
遼馬 中澤
毅 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to US15/915,852 priority Critical patent/US11915847B2/en
Priority to KR1020180028213A priority patent/KR102048566B1/en
Priority to CN201810194141.XA priority patent/CN108570214B/en
Publication of JP2018152557A publication Critical patent/JP2018152557A/en
Application granted granted Critical
Publication of JP7283031B2 publication Critical patent/JP7283031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys

Description

本発明は、圧粉磁心に関する。 The present invention relates to dust cores.

近年、インダクタ、チョークコイル、トランス等といったコイル部品やモータなどの小型化が求められていることから、フェライトと比較して飽和磁束密度が大きく、直流重畳特性が高磁界まで保たれる金属磁性材料が広く用いられるようになっている。また、これらの圧粉磁心は、様々な環境下での使用も期待されているため、信頼性の向上が望まれている。 In recent years, due to the demand for miniaturization of coil components such as inductors, choke coils, and transformers, as well as motors, etc., metal magnetic materials that have a higher saturation magnetic flux density than ferrite and maintain DC superimposition characteristics even in high magnetic fields. has become widely used. In addition, since these powder magnetic cores are expected to be used in various environments, it is desired to improve their reliability.

そして、信頼性の中でも特に耐食性の向上が望まれている。現在使用されている圧粉磁心の大部分はFe系合金粒子で構成されているため、特に耐食性の向上が望まれている。 Further, among the reliability, improvement in corrosion resistance is particularly desired. Since most of the powder magnetic cores currently in use are composed of Fe-based alloy particles, it is particularly desired to improve corrosion resistance.

特許文献1には、金属磁性材料としてCrを含有させることで耐食性を向上させた例が記載されている。しかし、Crを必須とする場合には、材料選択の幅が狭くなる。 Patent Document 1 describes an example in which corrosion resistance is improved by containing Cr as a metallic magnetic material. However, when Cr is essential, the range of material selection becomes narrow.

特許文献2には、金属磁性材料を無機物コート(リン酸塩)で被覆した例が記載されている。しかし、リン酸塩は靱性が低く、成形圧力を増加させた場合にコーティング膜が破損してしまう場合がある。 Patent Document 2 describes an example in which a metal magnetic material is coated with an inorganic coat (phosphate). However, phosphate has low toughness, and the coating film may be damaged when the molding pressure is increased.

特許文献3には、磁性製品をセラミックスおよび樹脂でコーティングすることによって耐食性を向上させた例が記載されている。しかし、特許文献3に記載の方法では圧粉磁心を800℃以上の高温で熱処理する必要がある。圧粉磁心中に絶縁処理した銅の巻線などを含む場合には、巻線の絶縁性が破壊されてしまう場合がある。 Patent Document 3 describes an example in which corrosion resistance is improved by coating a magnetic product with ceramics and resin. However, in the method described in Patent Document 3, it is necessary to heat-treat the dust core at a high temperature of 800° C. or higher. If the dust core includes an insulated copper winding or the like, the insulation of the winding may be destroyed.

特開2010-062424号公報JP 2010-062424 A 特開2009-120915号公報JP 2009-120915 A 特許第5190331号公報Japanese Patent No. 5190331

本発明は、このような実状に鑑みてなされ、耐食性に優れた圧粉磁心を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a powder magnetic core having excellent corrosion resistance.

上記の目的を達成するために、本発明に係る圧粉磁心は、
金属磁性材料および樹脂を含む圧粉磁心であって、
前記圧粉磁心の表面において微粒子が存在していることを特徴とする。
In order to achieve the above object, the powder magnetic core according to the present invention is
A powder magnetic core containing a metal magnetic material and a resin,
It is characterized in that fine particles are present on the surface of the powder magnetic core.

本発明に係る圧粉磁心は、上記の構成を有することにより、耐食性に優れた圧粉磁心となる。 The powder magnetic core according to the present invention is a powder magnetic core having excellent corrosion resistance by having the above configuration.

前記圧粉磁心の表面における前記微粒子の平均粒径が1.0~200nmであることが好ましい。 It is preferable that the fine particles have an average particle diameter of 1.0 to 200 nm on the surface of the dust core.

前記圧粉磁心の表面における前記微粒子の粒径の標準偏差σが30nm以下であることが好ましい。 It is preferable that the standard deviation σ of the particle size of the fine particles on the surface of the dust core is 30 nm or less.

前記微粒子がSi-O系の化合物を含むことが好ましい。 It is preferable that the fine particles contain a Si—O-based compound.

前記金属磁性材料に前記微粒子が付着していることが好ましい。 It is preferable that the fine particles adhere to the metallic magnetic material.

前記金属磁性材料が、Feを主成分として含むことが好ましい。 It is preferable that the metallic magnetic material contains Fe as a main component.

前記金属磁性材料が、FeおよびSiを主成分として含むことが好ましい。 The metallic magnetic material preferably contains Fe and Si as main components.

前記金属磁性材料の表面にSi-O系の酸化物からなる酸化膜が存在することが好ましい。 It is preferable that an oxide film made of Si—O-based oxide is present on the surface of the metallic magnetic material.

本発明の一実施形態に係る圧粉磁心の断面の模式図である。1 is a schematic cross-sectional view of a powder magnetic core according to an embodiment of the present invention; FIG. 表1の実施例における微粒子の平均粒径と錆面積比率との関係を示すグラフである。4 is a graph showing the relationship between the average particle size of fine particles and the rust area ratio in Examples in Table 1. FIG. 表2の実施例における微粒子の粒径の標準偏差σと錆面積比率との関係を示すグラフである。3 is a graph showing the relationship between the standard deviation σ of particle diameters of fine particles and the rust area ratio in Examples in Table 2. FIG. 圧粉磁心の表面を原子間力顕微鏡で観察した写真である。It is the photograph which observed the surface of the powder magnetic core with the atomic force microscope.

以下、本発明の実施形態を図面に基づき説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described based on the drawings.

本実施形態に係る圧粉磁心は金属磁性材料および樹脂からなり、当該圧粉磁心の表面において微粒子が存在していることを特徴とする。当該圧粉磁心の表面において微粒子が存在していることにより、当該圧粉磁心の耐食性が向上する。 The powder magnetic core according to the present embodiment is made of a metal magnetic material and a resin, and is characterized in that fine particles are present on the surface of the powder magnetic core. The presence of fine particles on the surface of the dust core improves the corrosion resistance of the dust core.

本実施形態に係る圧粉磁心1は図1に示すように、金属磁性材料11および樹脂12を含む。さらに、金属磁性材料11の表面に微粒子13が付着している。なお、本実施形態では、金属磁性材料11の表面に後述する酸化膜(図示せず)が存在している場合には、当該酸化膜に微粒子13が付着している場合も金属磁性材料11の表面に微粒子13が付着している場合に含まれるとする。 A dust core 1 according to this embodiment includes a metal magnetic material 11 and a resin 12, as shown in FIG. Furthermore, fine particles 13 adhere to the surface of the metallic magnetic material 11 . In this embodiment, if an oxide film (not shown), which will be described later, is present on the surface of the metal magnetic material 11, the metal magnetic material 11 will not be affected even if the fine particles 13 adhere to the oxide film. It is assumed to be included when fine particles 13 adhere to the surface.

金属磁性材料11の成分には特に制限はないが、金属磁性材料11がFeを主成分として含むことが、飽和磁化が高くなるため好ましい。また、金属磁性材料11がFeおよびSiを主成分として含むことが、透磁率が高くなるため好ましい。なお、本実施形態での「主成分として含む」とは、金属磁性材料全体を100重量%とする場合において、含有量が合計80重量%以上であることを指す。すなわち、Feを主成分として含む場合には、Feの含有量が80重量%以上である。また、FeおよびSiを主成分として含む場合には、FeおよびSiの含有量が合計80重量%以上である。また、FeとSiとの比率には特に制限はないが、重量比でSi/Fe=0/100~10/90であることが、飽和磁化が高くなるため好ましい。なお、本実施形態の金属磁性材料における主成分以外の成分の種類には特に制限はない。主成分以外の成分の種類としては、例えば、Ni,Coなどが挙げられる。 The composition of the metal magnetic material 11 is not particularly limited, but it is preferable that the metal magnetic material 11 contain Fe as a main component because the saturation magnetization is increased. In addition, it is preferable that the metal magnetic material 11 contains Fe and Si as main components because the magnetic permeability is increased. In this embodiment, "contained as a main component" means that the total content is 80% by weight or more when the entire metallic magnetic material is taken as 100% by weight. That is, when Fe is included as a main component, the Fe content is 80% by weight or more. Moreover, when Fe and Si are included as main components, the total content of Fe and Si is 80% by weight or more. The ratio of Fe and Si is not particularly limited, but it is preferable that the weight ratio of Si/Fe is 0/100 to 10/90, because the saturation magnetization is increased. There are no particular restrictions on the types of components other than the main component in the metallic magnetic material of this embodiment. Examples of types of components other than the main component include Ni and Co.

樹脂12の種類には特に制限はないが、エポキシ樹脂および/またはイミド樹脂を用いてもよい。エポキシ樹脂としては、例えばクレゾールノボラックなどが挙げられる。イミド樹脂としては、例えばビスマレイミドなどが挙げられる。 The type of resin 12 is not particularly limited, but epoxy resin and/or imide resin may be used. Epoxy resins include, for example, cresol novolac. Examples of imide resins include bismaleimide.

金属磁性材料11および樹脂12の含有量には特に制限はない。圧粉磁心1全体に占める金属磁性材料11の含有量は90重量%~98重量%であることが好ましく、樹脂12の含有量は2重量%~10重量%であることが好ましい。 The contents of the metal magnetic material 11 and the resin 12 are not particularly limited. The content of the metal magnetic material 11 in the entire dust core 1 is preferably 90% to 98% by weight, and the content of the resin 12 is preferably 2% to 10% by weight.

本実施形態に係る圧粉磁心1は、さらに潤滑剤を含有してもよい。潤滑剤の種類は任意であるが、例えばステアリン酸亜鉛が挙げられる。 The dust core 1 according to this embodiment may further contain a lubricant. Any type of lubricant may be used, but zinc stearate is an example.

図1に示すように、本実施形態に係る圧粉磁心1は、金属磁性材料11に微粒子13が付着していることに特徴がある。また、微粒子13の材質には特に制限はないが、例えばSi-O系酸化物が挙げられる。Si-O系酸化物の種類には特に制限はない。例えば、SiOなどのSiの酸化物の他、Siおよびその他の元素を含む複合酸化物などであってもよい。 As shown in FIG. 1, the powder magnetic core 1 according to this embodiment is characterized in that fine particles 13 adhere to a metal magnetic material 11 . Also, the material of the fine particles 13 is not particularly limited, but examples thereof include Si—O-based oxides. The type of Si—O-based oxide is not particularly limited. For example, in addition to Si oxides such as SiO 2 , composite oxides containing Si and other elements may be used.

本実施形態に係る圧粉磁心1は、金属磁性材料11に微粒子13が付着していることにより、耐食性が向上する。微粒子13の付着により圧粉磁心1の表面に微粒子13が存在し、圧粉磁心1の耐食性が向上するメカニズムは以下に示すメカニズムであると本発明者らは考えている。 The powder magnetic core 1 according to this embodiment has improved corrosion resistance due to the fine particles 13 adhering to the metal magnetic material 11 . The present inventors believe that the mechanism by which fine particles 13 are present on the surface of dust core 1 due to adhesion of fine particles 13 and the corrosion resistance of dust core 1 is improved is the following mechanism.

金属磁性材料11に微粒子13が付着することにより、最終的に得られる圧粉磁心1の表面または表面近傍に微粒子13が存在する。そして、微粒子13の存在により圧粉磁心1の表面にナノスケールの凹凸が生じる。圧粉磁心1の表面にナノスケールの凹凸が生じることは、原子間力顕微鏡(AFM)により確認することができる。そして、当該凹凸が生じることにより、圧粉磁心1の撥水性が高まる。そして、圧粉磁心1の撥水性が高まることにより、圧粉磁心1の耐食性が高まる。 As the fine particles 13 adhere to the metal magnetic material 11 , the fine particles 13 are present on or near the surface of the finally obtained dust core 1 . The presence of the fine particles 13 causes the surface of the dust core 1 to have nanoscale irregularities. The occurrence of nanoscale unevenness on the surface of the powder magnetic core 1 can be confirmed by an atomic force microscope (AFM). The water repellency of the powder magnetic core 1 is enhanced by the occurrence of the unevenness. Further, the water repellency of the powder magnetic core 1 is enhanced, so that the corrosion resistance of the powder magnetic core 1 is enhanced.

圧粉磁心1の表面における微粒子13の平均粒径には特に制限はなく、例えば0.5~247.3nmとしてもよい。圧粉磁心1の表面における微粒子13の平均粒径が1.0~200nmであることが好ましい。微粒子13の平均粒径が1.0~200nmであることにより、圧粉磁心1の撥水性が高まり、耐食性が向上する。なお、微粒子13の平均粒径は、1.1~199.4nmとしてもよい。 The average particle diameter of the fine particles 13 on the surface of the dust core 1 is not particularly limited, and may be, for example, 0.5 to 247.3 nm. It is preferable that the average particle size of the fine particles 13 on the surface of the dust core 1 is 1.0 to 200 nm. By setting the average particle diameter of the fine particles 13 to 1.0 to 200 nm, the water repellency of the powder magnetic core 1 is enhanced and the corrosion resistance is improved. Incidentally, the average particle diameter of the fine particles 13 may be 1.1 to 199.4 nm.

なお、圧粉磁心1の表面における微粒子13の平均粒径は原子間力顕微鏡(AFM)により測定することができる。具体的には、まず、圧粉磁心1の表面を原子間力顕微鏡で撮影する。圧粉磁心1の表面を原子間力顕微鏡で撮影した画像の一例を図4に示す。次に、圧粉磁心1の表面における金属磁性材料11を最低5粒子以上、好ましくは10粒子以上をランダムに選択する。そして、選択した粒子を中心として周囲5μm×5μmを原子間力顕微鏡により観察する。得られた形状像の観察範囲内に存在する微粒子13の粒径を全て測定する。具体的には、微粒子13の面積を画像解析により求めた上で、該面積を有する円の直径(円相当径)を微粒子13の粒径とする。そして、(微粒子13の粒径の合計値)/(微粒子13の個数)により算出した算術平均値を平均粒径と定義する。 The average particle diameter of the fine particles 13 on the surface of the dust core 1 can be measured with an atomic force microscope (AFM). Specifically, first, the surface of the dust core 1 is photographed with an atomic force microscope. An example of an image of the surface of the dust core 1 photographed with an atomic force microscope is shown in FIG. Next, at least 5 particles, preferably 10 particles or more, of the metal magnetic material 11 on the surface of the dust core 1 are randomly selected. Then, an area of 5 μm×5 μm around the selected particle is observed with an atomic force microscope. All the particle diameters of the fine particles 13 existing within the observation range of the obtained shape image are measured. Specifically, after obtaining the area of the fine particles 13 by image analysis, the diameter of the circle having the area (equivalent circle diameter) is taken as the particle diameter of the fine particles 13 . An arithmetic average value calculated by (total value of particle diameters of fine particles 13)/(number of fine particles 13) is defined as an average particle diameter.

さらに、圧粉磁心1の表面における微粒子13の粒径の標準偏差σが30nm以下であることが好ましい。圧粉磁心1の表面における微粒子13の粒径の標準偏差σが30nm以下であることにより、耐食性を更に向上させることができる。 Furthermore, it is preferable that the standard deviation σ of the particle size of the fine particles 13 on the surface of the dust core 1 is 30 nm or less. Corrosion resistance can be further improved by setting the standard deviation σ of the particle size of the fine particles 13 on the surface of the powder magnetic core 1 to 30 nm or less.

微粒子13の含有量に特に制限はない。圧粉磁心1の表面に占める微粒子13の面積割合が1~100%であってもよい。 There is no particular limitation on the content of the fine particles 13 . The area ratio of the fine particles 13 to the surface of the dust core 1 may be 1 to 100%.

なお、圧粉磁心1の表面における金属磁性材料11の平均粒径(D50)は3~100μmであることが好ましい。金属磁性材料11の粒径は原子間力顕微鏡(AFM)により測定することができる。具体的には、まず、圧粉磁心1の表面を原子間力顕微鏡で撮影する。圧粉磁心1の表面を原子間力顕微鏡で撮影した画像の一例を図4に示す。次に、圧粉磁心1の表面における金属磁性材料11を最低5粒子以上、好ましくは10粒子以上をランダムに選択する。そして、選択した金属磁性材料の粒径を測定する。具体的には、金属磁性粒子11の面積を画像解析により求めた上で、該面積を有する円の直径(円相当径)を金属磁性粒子11の粒径とする。そして、測定した各金属磁性粒子11の粒径より平均粒径(D50)を算出することができる。 The average particle size (D50) of the metal magnetic material 11 on the surface of the dust core 1 is preferably 3 to 100 μm. The particle size of the metal magnetic material 11 can be measured with an atomic force microscope (AFM). Specifically, first, the surface of the dust core 1 is photographed with an atomic force microscope. An example of an image of the surface of the dust core 1 photographed with an atomic force microscope is shown in FIG. Next, at least 5 particles, preferably 10 particles or more, of the metal magnetic material 11 on the surface of the dust core 1 are randomly selected. Then, the particle size of the selected metallic magnetic material is measured. Specifically, after obtaining the area of the metal magnetic particles 11 by image analysis, the diameter of the circle having the area (equivalent circle diameter) is taken as the particle size of the metal magnetic particles 11 . Then, the average particle size (D50) can be calculated from the measured particle size of each metal magnetic particle 11 .

本実施形態に係る圧粉磁心1の製造方法を以下に示すが、圧粉磁心1の製造方法は下記の方法に限定されない。 A method for manufacturing the dust core 1 according to this embodiment will be described below, but the method for manufacturing the dust core 1 is not limited to the following method.

まず、金属磁性材料11となる金属粒子を作製する。金属粒子の作製方法には特に制限はないが、例えばガスアトマイズ法,水アトマイズ法などが挙げられる。金属粒子の粒子径および円形度には特に制限はないが、粒子径の中央値(D50)は1μm~100μmであることが、透磁率が高くなるため好ましい。 First, metal particles to be the metal magnetic material 11 are produced. There are no particular restrictions on the method for producing metal particles, but examples thereof include gas atomization and water atomization. Although there are no particular restrictions on the particle diameter and circularity of the metal particles, the median particle diameter (D50) is preferably 1 μm to 100 μm because the magnetic permeability increases.

次に、金属磁性材料11にSi-O系の酸化物からなる酸化膜を形成するためのコーティングを行った。コーティング方法には特に制限はないが、例えばアルコキシシラン溶液を、金属磁性材料11へ塗布する方法が例示される。アルコキシシラン溶液を金属磁性材料11へ塗布する方法には特に制限はなく、例えば湿式噴霧による方法が挙げられる。アルコキシシランの種類には特に制限はなくトリメトキシシラン,などが用いられる。また、アルコキシシラン溶液の濃度および溶媒にも特に制限はない。アルコキシシラン溶液の濃度は50重量%~95重量%でることが好ましい。また、アルコキシシラン溶液の溶媒にも特に制限はない。例えば水,エタノールなどが挙げられる。 Next, the metal magnetic material 11 was coated to form an oxide film made of a Si—O-based oxide. Although the coating method is not particularly limited, for example, a method of applying an alkoxysilane solution to the metal magnetic material 11 is exemplified. The method of applying the alkoxysilane solution to the metal magnetic material 11 is not particularly limited, and examples thereof include wet spraying. The type of alkoxysilane is not particularly limited, and trimethoxysilane and the like are used. Also, the concentration and solvent of the alkoxysilane solution are not particularly limited. The concentration of the alkoxysilane solution is preferably between 50% and 95% by weight. Also, the solvent for the alkoxysilane solution is not particularly limited. Examples include water and ethanol.

湿式噴霧後の粉体に対し、第1焼成を行うことで、Si-O系の酸化物からなる酸化膜を形成した。このときに水素分圧1~3%の窒素雰囲気下で第1焼成を行うことで、加熱中の雰囲気が還元性となる。還元性雰囲気で加熱処理を行うことで、酸化膜はSi結晶性の低いアモルファス層となる。また、加熱条件は400℃~600℃で1~10時間としてもよい。水素分圧が高くなるほど、最終的に得られる微粒子13の平均粒径が大きくなる傾向にある。加熱時間(焼成時間)が長くなるほど微粒子13の粒径の標準偏差σが小さくなる傾向にある。 By subjecting the powder after the wet spraying to the first firing, an oxide film made of a Si—O-based oxide was formed. At this time, by performing the first firing in a nitrogen atmosphere with a hydrogen partial pressure of 1 to 3%, the atmosphere during heating becomes reducing. By performing heat treatment in a reducing atmosphere, the oxide film becomes an amorphous layer with low Si crystallinity. The heating conditions may be 400° C. to 600° C. for 1 to 10 hours. The higher the hydrogen partial pressure, the larger the average particle size of the fine particles 13 finally obtained. The standard deviation σ of the particle size of the fine particles 13 tends to decrease as the heating time (baking time) increases.

次に、Si-O系の酸化物からなる微粒子13を金属磁性材料11に付着させるために第2焼成を行う。酸素分圧0.1~1%の窒素雰囲気下で800℃~1200℃で10~30時間、第2焼成を行う。当該焼成により、上述したSi結晶性の低いアモルファス層の球状化が進む。その結果、金属磁性材料11の表面に酸化膜が生成し、さらに酸化膜に微粒子13が生成し付着する。ここまでに得られた粉体を「微粒子付着金属材料」とする。焼成時間が長くなるほど微粒子13の平均粒径が大きくなる傾向にある。酸素分圧が低くなるほど微粒子13の粒径の標準偏差σが小さくなる傾向にある。 Next, a second firing is performed to adhere the fine particles 13 made of Si—O-based oxides to the metal magnetic material 11 . A second firing is performed at 800° C. to 1200° C. for 10 to 30 hours in a nitrogen atmosphere with an oxygen partial pressure of 0.1 to 1%. By the firing, the amorphous layer with low crystallinity of Si described above is made spherical. As a result, an oxide film is formed on the surface of the metal magnetic material 11, and fine particles 13 are formed and attached to the oxide film. The powder thus obtained is referred to as "fine particle-adhered metal material". The average particle size of the fine particles 13 tends to increase as the firing time increases. The standard deviation σ of the particle size of the fine particles 13 tends to decrease as the oxygen partial pressure decreases.

次に、樹脂溶液を作成する。樹脂溶液には、上記したエポキシ樹脂および/またはイミド樹脂の他、硬化剤を添加してもよい。硬化剤の種類には特に制限はなく、例えばエピクロルヒドリンなどが挙げられる。また、樹脂溶液の溶媒についても特に制限はないが、揮発性の溶媒であることが好ましい。例えば、アセトン,エタノール等を用いることができる。また、樹脂溶液全体を100重量%とした場合における樹脂および硬化剤の合計濃度は0.01~0.1重量%とすることが好ましい。 Next, a resin solution is prepared. In addition to the epoxy resin and/or imide resin described above, a curing agent may be added to the resin solution. The type of curing agent is not particularly limited, and examples thereof include epichlorohydrin. Also, the solvent for the resin solution is not particularly limited, but it is preferably a volatile solvent. For example, acetone, ethanol, etc. can be used. The total concentration of the resin and curing agent is preferably 0.01 to 0.1% by weight when the total resin solution is 100% by weight.

次に、微粒子付着金属材料および樹脂溶液を混合する。そして、樹脂溶液の溶媒を揮発させて顆粒を得る。得られた顆粒はそのまま金型に充填してもよいが、整粒してから金型に充填してもよい。整粒する場合の整粒方法には特に制限はなく、例えば、目開き45~500μmのメッシュを用いてもよい。 Next, the fine particle-adhered metal material and the resin solution are mixed. Then, the solvent of the resin solution is volatilized to obtain granules. The obtained granules may be filled into a mold as they are, or may be filled into a mold after sizing. There is no particular limitation on the sizing method for sizing, and for example, a mesh with an opening of 45 to 500 μm may be used.

次に得られた顆粒を所定の形状の金型に充填し、加圧して圧粉体を得た。加圧時の圧力には特に制限はなく、例えば600~1500MPaとすることができる。また、加圧時において、微粒子13は滑材の役割も果たす。このことにより、金属磁性材料11上の酸化膜が金型の摺動面においても剥離しづらくなる。その結果、圧粉磁心表面に微粒子が残存することになり、撥水性が向上し耐食性が向上する。 Next, the obtained granules were filled into a mold of a predetermined shape and pressed to obtain a powder compact. The pressure during pressurization is not particularly limited, and can be, for example, 600 to 1500 MPa. In addition, the fine particles 13 also serve as a lubricant during pressurization. This makes it difficult for the oxide film on the metal magnetic material 11 to peel off even on the sliding surface of the mold. As a result, fine particles remain on the surface of the powder magnetic core, improving water repellency and corrosion resistance.

作製した圧粉体に対し、熱硬化処理を行うことで、圧粉磁心が得られる。熱硬化処理の条件に特に制限はなく、例えば150~220℃で1~10時間、熱処理を行う。また、熱処理時の雰囲気にも特に制限はなく、大気中で熱処理をしてもよい。 A powder magnetic core is obtained by subjecting the produced powder compact to a heat curing treatment. There are no particular restrictions on the conditions for the heat curing treatment, and the heat treatment is performed, for example, at 150 to 220° C. for 1 to 10 hours. Moreover, the atmosphere during the heat treatment is not particularly limited, and the heat treatment may be performed in the air.

以上、本実施形態に係る圧粉磁心およびその製造方法について説明したが、本発明の圧粉磁心およびその製造方法は上記の実施形態に限定されない。例えば、成形工程までは通常の方法で圧粉磁心を作成し、成形終了後の圧粉磁心表面に化学的な処理を行うことによって微粒子を付着させてもよい。 Although the dust core and the method for manufacturing the same according to the present embodiment have been described above, the dust core and the method for manufacturing the same according to the present invention are not limited to the above embodiments. For example, a powder magnetic core may be produced by an ordinary method up to the molding step, and fine particles may be adhered by chemically treating the surface of the powder magnetic core after molding.

また、本発明の圧粉磁心の用途にも特に制限はない。例えば、インダクタ、チョークコイル、トランス等のコイル部品が挙げられる。 Moreover, there is no particular limitation on the use of the powder magnetic core of the present invention. Examples include coil components such as inductors, choke coils, and transformers.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。 The present invention will be described below based on more detailed examples, but the present invention is not limited to these examples.

実験例1
金属磁性材料として、重量比でSi/Fe=4.5/95.5であり、FeとSiとの
合計量が99重量%であるFe-Si系合金粒子をガスアトマイズ法で作製した。なお、当該Fe-Si系合金粒子の粒子径の中央値(D50)は30μmであった。
Experimental example 1
As a metal magnetic material, Fe—Si alloy particles having a weight ratio of Si/Fe=4.5/95.5 and a total content of Fe and Si of 99% by weight were produced by a gas atomization method. The median particle size (D50) of the Fe—Si alloy particles was 30 μm.

次に、前記金属磁性材料にSi-O系酸化物からなる酸化膜を形成するため、金属磁性材料100wt%に対してアルコキシシラン溶液2wt%を湿式噴霧した。なお、前記アルコキシシラン溶液としてトリメトキシランの50wt%溶液を用いた。 Next, 2 wt % of an alkoxysilane solution was wet-sprayed to 100 wt % of the metal magnetic material in order to form an oxide film of Si—O-based oxide on the metal magnetic material. A 50 wt % solution of trimethoxysilane was used as the alkoxysilane solution.

ここで、湿式噴霧量は5mL/minとし、アルコキシシラン溶液の全量を塗布した。 Here, the wet spray amount was set to 5 mL/min, and the entire amount of the alkoxysilane solution was applied.

湿式噴霧後の粉体に対し、第1焼成を行った。第1焼成は水素分圧1%~3%の窒素雰
囲気下、600℃で0.5時間~3時間行った。なお、最終的に得られる圧粉磁心表面における微粒子の平均粒径および粒径の標準偏差σを表1および表2に記載した大きさにするため、第1焼成の条件を制御した。
First firing was performed on the powder after wet spraying. The first firing was performed at 600° C. for 0.5 hour to 3 hours in a nitrogen atmosphere with a hydrogen partial pressure of 1% to 3%. The conditions of the first firing were controlled so that the average particle size and the standard deviation σ of the particle size on the surface of the finally obtained powder magnetic core were as shown in Tables 1 and 2.

次に、SiOからなる微粒子を形成するため、第2焼成を行った。第2焼成は酸素分圧0.1%~1%の窒素雰囲気下、1000℃で10時間~30時間行った。なお、最終的に得られる圧粉磁心表面における微粒子の平均粒径および粒径の標準偏差σを表1および表2に記載した大きさにするため、第2焼成の条件を制御した。 Next, a second firing was performed to form fine particles of SiO 2 . The second firing was performed at 1000° C. for 10 to 30 hours in a nitrogen atmosphere with an oxygen partial pressure of 0.1% to 1%. The conditions of the second sintering were controlled so that the average particle size and the standard deviation σ of the particle size on the surface of the finally obtained powder magnetic core were as shown in Tables 1 and 2.

次に、エポキシ樹脂、硬化剤、イミド樹脂およびアセトンを混合して樹脂溶液を作成した。エポキシ樹脂としてはクレゾールノボラックを用いた。硬化剤としてはエピクロルヒドリンを用いた。イミド樹脂としてはビスマレイミドを用いた。エポキシ樹脂、硬化剤およびイミド樹脂の重量比が96:3:1であり、樹脂溶液全体を100重量%としてエポキシ樹脂、硬化剤およびイミド樹脂の合計が4重量%となるように各成分を混合した。 Next, an epoxy resin, a curing agent, an imide resin and acetone were mixed to prepare a resin solution. Cresol novolac was used as the epoxy resin. Epichlorohydrin was used as a curing agent. Bismaleimide was used as the imide resin. The weight ratio of the epoxy resin, the curing agent and the imide resin is 96:3:1, and each component is mixed so that the total of the epoxy resin, the curing agent and the imide resin is 4% by weight when the total resin solution is 100% by weight. bottom.

上記の微粒子付着金属材料に対し、上記の樹脂溶液を混合した。次にアセトンを揮発させて顆粒を得た。次に、目開き355μmのメッシュを用いて整粒した。得られた顆粒を外径17.5mm、内径11.0mmのトロイダル形状の金型に充填し、成形圧980MPaで加圧し、圧粉体を得た。圧粉体の重量が5gとなるように充填した。次に、作製した圧粉体を大気中にて200℃で5時間加熱することで熱硬化処理を行い、圧粉磁心を得た。樹脂の混合量は、最終的に得られる圧粉磁心を100重量%とする場合において、金属磁性材料が97重量%程度となるようにした。なお、圧粉磁心は、以下に記載する測定を全て行うために必要な数を作成した。 The above resin solution was mixed with the above fine particle-adhered metal material. Next, acetone was volatilized to obtain granules. Next, the particles were sized using a mesh with an opening of 355 μm. The obtained granules were filled in a toroidal mold having an outer diameter of 17.5 mm and an inner diameter of 11.0 mm, and pressed at a molding pressure of 980 MPa to obtain a compact. It filled so that the weight of the green compact might be set to 5g. Next, the produced green compact was heated at 200° C. for 5 hours in the atmosphere for thermal curing treatment, and a powder magnetic core was obtained. The resin was mixed in an amount of about 97% by weight of the metal magnetic material when the powder magnetic core finally obtained was 100% by weight. The number of dust cores required for performing all the measurements described below was prepared.

得られた圧粉磁心の表面を原子間力顕微鏡(日立ハイテクサイエンス社製AFM5100II)によって観察した。画像のスキャンモードはDFM、感知レバーはSI-DF40P2、走査周波数は0.3Hz、Iゲインは0.1、Aゲインは0.0249とし、SISモードを利用し、退避距離は20nmとした。圧粉磁心の表面における金属磁性材料を10粒子、ランダムに選択した。そして、選択した粒子を中心として周囲5μm×5μmを観察した。そして、観察範囲内に存在する微粒子の粒径を全て測定して平均することで、圧粉磁心の表面における微粒子の平均粒径を算出した。さらに、得られた微粒子の粒径より粒径の標準偏差σを算出した。 The surface of the obtained powder magnetic core was observed with an atomic force microscope (AFM5100II manufactured by Hitachi High-Tech Science). The image scanning mode was DFM, the sensing lever was SI-DF40P2, the scanning frequency was 0.3 Hz, the I gain was 0.1, the A gain was 0.0249, the SIS mode was used, and the retraction distance was 20 nm. Ten particles of the metallic magnetic material on the surface of the dust core were randomly selected. Then, an area of 5 μm×5 μm around the selected particle was observed. Then, the average particle size of the fine particles on the surface of the powder magnetic core was calculated by measuring and averaging all the particle sizes of the fine particles present within the observation range. Further, the standard deviation σ of the particle size was calculated from the particle size of the fine particles obtained.

次に、圧粉磁心の耐食性を評価するために、各圧粉磁心に対して塩水噴霧試験を行った。塩水噴霧試験はW900mm、D600mm、H350mmの塩水噴霧試験器中で行った。塩水噴霧量は1.5±0.5mL/h at 80cmとした。本条件の下35℃
で24時間塩水噴霧試験を行った。塩水噴霧後、3mm×3mmの測定部位をランダムに10か所設定した。各測定部位について、光学顕微鏡(倍率50倍)に備え付けたカメラにより撮影し、各測定部位の錆面積比率を算出した。そして、10か所の測定部位の平均の錆面積比率を算出した。平均の錆面積比率が15.0%以下である場合を良好とした。そして、10.0%以下である場合をより良好とし、5.0%以下である場合を最も良好とした。
Next, in order to evaluate the corrosion resistance of the powder magnetic cores, each powder magnetic core was subjected to a salt spray test. The salt spray test was performed in a salt spray tester with W900 mm, D600 mm, and H350 mm. The salt spray amount was 1.5±0.5 mL/h at 80 cm 2 . 35°C under these conditions
A 24-hour salt spray test was performed at After spraying with salt water, 10 measurement sites of 3 mm×3 mm were randomly set. Each measurement site was photographed with a camera attached to an optical microscope (50x magnification), and the rust area ratio of each measurement site was calculated. Then, the average rust area ratio of the 10 measurement sites was calculated. A case where the average rust area ratio was 15.0% or less was evaluated as good. A case of 10.0% or less was evaluated as better, and a case of 5.0% or less was evaluated as best.

Figure 0007283031000001
Figure 0007283031000001

Figure 0007283031000002
Figure 0007283031000002

表1の実施例1~18は第1焼成および第2焼成における焼成時間および焼成雰囲気を変化させることで微粒子の平均粒径を変化させた実施例である。また、表1の結果をグラフに表すと図2になる。 Examples 1 to 18 in Table 1 are examples in which the average particle size of fine particles was changed by changing the firing time and firing atmosphere in the first and second firings. Also, the results of Table 1 are represented in a graph as shown in FIG.

表1に記載した微粒子の平均粒径は上記した平均粒径の定義に基づく値である。微粒子の平均粒径が0より大きい場合には、圧粉磁心の表面に微粒子が存在することになる。表1では、全ての実施例において微粒子の平均粒径が0より大きい。すなわち、表1の全ての実施例において圧粉磁心の表面に微粒子が存在する。表1より、全ての実施例において耐食性が良好であることが分かる。特に、微粒子の平均粒径が1.0nm以上200nm以下である実施例3~16は微粒子の平均粒径が上記の範囲外である実施例1,2,17および18より良好な耐食性を示した。 The average particle size of fine particles shown in Table 1 is a value based on the definition of the average particle size described above. If the average particle size of the fine particles is greater than 0, the fine particles are present on the surface of the powder magnetic core. In Table 1, the average particle size of the microparticles is greater than 0 in all examples. That is, in all the examples in Table 1, fine particles exist on the surface of the powder magnetic core. From Table 1, it can be seen that the corrosion resistance is good in all the examples. In particular, Examples 3 to 16, in which the average particle diameter of the fine particles was 1.0 nm or more and 200 nm or less, exhibited better corrosion resistance than Examples 1, 2, 17, and 18, in which the average particle diameter of the fine particles was outside the above range. .

表2の実施例21~31は、第1焼成および第2焼成における焼成温度を変化させることで微粒子の平均粒径を40nm付近に制御しながら微粒子の粒径の標準偏差σを変化させた実施例である。また、表2の結果をグラフに表すと図3になる。 In Examples 21 to 31 in Table 2, the standard deviation σ of the particle size of the fine particles was changed while controlling the average particle size of the fine particles to around 40 nm by changing the firing temperature in the first firing and the second firing. For example. Moreover, when the results of Table 2 are expressed in a graph, FIG. 3 is obtained.

表2より、全ての実施例において耐食性が良好であることが分かる。特に微粒子の粒径の標準偏差σが30nm以下である実施例24~31はσが30nm超である実施例21~23と比較して耐食性が特に良好であった。 From Table 2, it can be seen that corrosion resistance is good in all the examples. In particular, Examples 24 to 31 in which the standard deviation σ of particle diameters of the fine particles was 30 nm or less exhibited particularly good corrosion resistance compared to Examples 21 to 23 in which σ exceeded 30 nm.

1・・・圧粉磁心
11・・・金属磁性材料
12・・・樹脂
13・・・微粒子
Reference Signs List 1 Dust core 11 Metal magnetic material 12 Resin 13 Fine particles

Claims (6)

金属磁性材料および樹脂を含む圧粉磁心であって、
前記圧粉磁心の表面において微粒子が存在し、
前記圧粉磁心の表面における前記微粒子の平均粒径が38.7~200nmであり、前記微粒子の粒径の標準偏差σが29.8nm以下であり、
前記樹脂の含有量が2重量%~10重量%であることを特徴とする圧粉磁心。
A powder magnetic core containing a metal magnetic material and a resin,
Fine particles are present on the surface of the powder magnetic core,
The average particle size of the fine particles on the surface of the dust core is 38.7 to 200 nm, and the standard deviation σ of the particle size of the fine particles is 29.8 nm or less,
A powder magnetic core, wherein the content of the resin is 2% by weight to 10% by weight.
前記微粒子がSi-O系の化合物を含む請求項1に記載の圧粉磁心。 2. The dust core according to claim 1, wherein the fine particles contain a Si—O-based compound. 前記金属磁性材料に前記微粒子が付着している請求項1または2に記載の圧粉磁心。 3. The dust core according to claim 1, wherein the fine particles are attached to the metallic magnetic material. 前記金属磁性材料が、Feを主成分として含む請求項1~3のいずれかに記載の圧粉磁心。 The dust core according to any one of claims 1 to 3, wherein the metallic magnetic material contains Fe as a main component. 前記金属磁性材料が、FeおよびSiを主成分として含む請求項1~4の何れかに記載の圧粉磁心。 The dust core according to any one of claims 1 to 4, wherein the metallic magnetic material contains Fe and Si as main components. 前記金属磁性材料の表面にSi-O系の酸化物からなる酸化膜が存在する請求項1~5のいずれかに記載の圧粉磁心。
The dust core according to any one of claims 1 to 5, wherein an oxide film made of a Si—O-based oxide is present on the surface of the metallic magnetic material.
JP2018035650A 2017-03-09 2018-02-28 dust core Active JP7283031B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/915,852 US11915847B2 (en) 2017-03-09 2018-03-08 Dust core
KR1020180028213A KR102048566B1 (en) 2017-03-09 2018-03-09 Dust Core
CN201810194141.XA CN108570214B (en) 2017-03-09 2018-03-09 Dust core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017045481 2017-03-09
JP2017045481 2017-03-09

Publications (2)

Publication Number Publication Date
JP2018152557A JP2018152557A (en) 2018-09-27
JP7283031B2 true JP7283031B2 (en) 2023-05-30

Family

ID=63680619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018035650A Active JP7283031B2 (en) 2017-03-09 2018-02-28 dust core

Country Status (2)

Country Link
JP (1) JP7283031B2 (en)
KR (1) KR102048566B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7392275B2 (en) 2019-03-27 2023-12-06 Tdk株式会社 Composite particles, cores and inductor elements
JP7281359B2 (en) * 2019-07-31 2023-05-25 太陽誘電株式会社 Coil component and its manufacturing method
JP2021036576A (en) * 2019-08-21 2021-03-04 Tdk株式会社 Composite particles and dust core
JP2021036577A (en) * 2019-08-21 2021-03-04 Tdk株式会社 Dust core
JP7375469B2 (en) * 2019-10-30 2023-11-08 セイコーエプソン株式会社 Insulator-coated magnetic alloy powder particles, powder magnetic cores, and coil parts
JP2021174935A (en) * 2020-04-28 2021-11-01 Tdk株式会社 Mold, core, and electronic component
JP7459639B2 (en) * 2020-04-28 2024-04-02 Tdk株式会社 Composite particles, cores and electronic components
KR20230173414A (en) 2022-06-17 2023-12-27 제닉스주식회사 Power core manufacturing method and power core manufactured by the method
KR20240003268A (en) 2022-06-30 2024-01-08 제닉스주식회사 Amorphous composite powder core production method for high frequency

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129716A (en) 2003-10-23 2005-05-19 Sumitomo Electric Ind Ltd Dust core
JP2009158652A (en) 2007-12-26 2009-07-16 Panasonic Corp Compound magnetic material and manufacturing method thereof
JP2009302165A (en) 2008-06-11 2009-12-24 Tamura Seisakusho Co Ltd Dust core and manufacturing method thereof
JP2011035004A (en) 2009-07-29 2011-02-17 Tdk Corp Method of manufacturing dust core
JP2011146604A (en) 2010-01-15 2011-07-28 Toyota Motor Corp Powder for dust core, dust core formed by compacting powder for dust core, and method of producing powder for dust core
JP2011233860A (en) 2010-04-09 2011-11-17 Hitachi Chem Co Ltd Dust core and manufacturing method thereof
WO2013100143A1 (en) 2011-12-28 2013-07-04 株式会社ダイヤメット Composite soft magnetic material and production method therefor
JP2016035959A (en) 2014-08-01 2016-03-17 株式会社アドマテックス Dust core powder
WO2017138158A1 (en) 2016-02-10 2017-08-17 株式会社トーキン Composite magnetic material and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957918A (en) 1974-12-31 1976-05-18 Ford Motor Company Radiation polymerizable coating composition containing an unsaturated phosphoric ester
JP5067544B2 (en) * 2007-09-11 2012-11-07 住友電気工業株式会社 Reactor core, manufacturing method thereof, and reactor
JP4740417B2 (en) 2007-11-16 2011-08-03 株式会社神戸製鋼所 Iron powder for dust core and manufacturing method thereof
JP5553978B2 (en) 2008-09-05 2014-07-23 東光株式会社 Manufacturing method of electronic parts

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129716A (en) 2003-10-23 2005-05-19 Sumitomo Electric Ind Ltd Dust core
JP2009158652A (en) 2007-12-26 2009-07-16 Panasonic Corp Compound magnetic material and manufacturing method thereof
JP2009302165A (en) 2008-06-11 2009-12-24 Tamura Seisakusho Co Ltd Dust core and manufacturing method thereof
JP2011035004A (en) 2009-07-29 2011-02-17 Tdk Corp Method of manufacturing dust core
JP2011146604A (en) 2010-01-15 2011-07-28 Toyota Motor Corp Powder for dust core, dust core formed by compacting powder for dust core, and method of producing powder for dust core
JP2011233860A (en) 2010-04-09 2011-11-17 Hitachi Chem Co Ltd Dust core and manufacturing method thereof
WO2013100143A1 (en) 2011-12-28 2013-07-04 株式会社ダイヤメット Composite soft magnetic material and production method therefor
JP2016035959A (en) 2014-08-01 2016-03-17 株式会社アドマテックス Dust core powder
WO2017138158A1 (en) 2016-02-10 2017-08-17 株式会社トーキン Composite magnetic material and method for manufacturing same

Also Published As

Publication number Publication date
JP2018152557A (en) 2018-09-27
KR102048566B1 (en) 2019-11-25
KR20180103771A (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP7283031B2 (en) dust core
TWI406305B (en) Iron-based soft magnetic powder and dust core for powder core
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
JP5372481B2 (en) Powder magnetic core and manufacturing method thereof
WO2007015378A1 (en) Soft magnetic material, process for production of the material, powder compressed magnetic core, and process for production of the magnetic core
JP5715614B2 (en) Powder magnetic core and manufacturing method thereof
JP5327765B2 (en) Powder core
US10811176B2 (en) Dust core
CN108570214B (en) Dust core
TWI478184B (en) Powder mixture for dust cores, dust cores and manufacturing method for dust cores
JP5023041B2 (en) Powder magnetic core and manufacturing method thereof
JP7128439B2 (en) Dust core and inductor element
CN109256251A (en) The method that surface oxidation technique prepares high magnetic conductance low-power consumption metal soft magnetic composite material
JP2009032880A (en) Iron-based soft magnetic powder for dust core for high frequency, and dust core
JP7069849B2 (en) Powder magnetic core
JP6688373B2 (en) Coil parts
JP7128438B2 (en) Dust core and inductor element
JP6891638B2 (en) Powder magnetic core
JP2008297622A (en) Soft magnetic material, dust core, method for manufacturing soft magnetic material and method for manufacturing dust core
CN108573799B (en) Dust core
JP2023150133A (en) Soft magnetic particle, powder magnetic core and magnetic component
JP2016167477A (en) Coil-sealed dust core
JP2023059186A (en) Mixture for producing iron-based sintered body, iron-based sintered body, and method for producing iron-based sintered body
JP2000021618A (en) Powder magnetic core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R150 Certificate of patent or registration of utility model

Ref document number: 7283031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150