JP2009302165A - Dust core and manufacturing method thereof - Google Patents

Dust core and manufacturing method thereof Download PDF

Info

Publication number
JP2009302165A
JP2009302165A JP2008152470A JP2008152470A JP2009302165A JP 2009302165 A JP2009302165 A JP 2009302165A JP 2008152470 A JP2008152470 A JP 2008152470A JP 2008152470 A JP2008152470 A JP 2008152470A JP 2009302165 A JP2009302165 A JP 2009302165A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
treatment
molding
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008152470A
Other languages
Japanese (ja)
Inventor
Yasuo Oshima
泰雄 大島
Susumu Shigeta
進 繁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2008152470A priority Critical patent/JP2009302165A/en
Publication of JP2009302165A publication Critical patent/JP2009302165A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dust core having low loss by planarizing the surface of a soft magnetic powder, and performing insulation processing to improve an annealing temperature and to provide a manufacturing method thereof. <P>SOLUTION: The dust core includes a soft magnetic powder principally containing iron produced by a water atomizing method, and an insulator for covering the surface of the soft magnetic powder. The soft magnetic powder is subjected to planarization treatment, and pre-molding heat treatment for heating the powder at ≥700°C. Insulation treatment for covering the insulator is executed before or after the pre-molding heat treatment. After the insulation treatment, molding treatment for pressurizing and molding the soft magnetic powder is executed. After the molding treatment, annealing treatment for heating the powder at ≥550°C is executed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、軟磁性粉末からなる圧粉磁心及びその製造方法に関するものである。   The present invention relates to a dust core made of soft magnetic powder and a method for producing the same.

従来から、OA機器、太陽光発電システム、自動車、無停電電源などの制御用電源には電子機器としてチョークコイルが用いられており、そのコアとしてフェライト磁心や圧粉磁心が使用されている。   Conventionally, choke coils have been used as electronic devices for control power supplies such as OA equipment, photovoltaic power generation systems, automobiles, and uninterruptible power supplies, and ferrite cores and dust cores have been used as the cores.

この磁心の中で、フェライト磁心は飽和密度が小さいという欠点を有している。これに対して、金属粉末を成形して作製される圧粉磁心は、軟磁性フェライトに比べて高い飽和磁束密度を持つため、直流重量特性に優れている。また、圧粉磁心は、エネルギー交換効率の向上や低発熱などの要求から、小さな印加磁場で、大きな磁束密度を得ることが出来る磁気特性と、磁束密度変化におけるエネルギー損失が小さいという磁気特性が求められる。   Among these magnetic cores, the ferrite magnetic core has a drawback of low saturation density. On the other hand, a dust core produced by molding metal powder has a higher saturation magnetic flux density than soft magnetic ferrite, and therefore has excellent DC weight characteristics. In addition, due to demands such as improved energy exchange efficiency and low heat generation, the dust core requires magnetic properties that can obtain a large magnetic flux density with a small applied magnetic field and magnetic properties that have low energy loss due to changes in magnetic flux density. It is done.

そして、圧粉磁心を交流磁場で使用した場合、鉄損と呼ばれるエネルギー損失が生じる。この鉄損は、ヒステリシス損失、渦電流損失、異常渦電流の和で表され、主に問題となるのは、ヒステリシス電流と渦電流損失である。このヒステリシス損失は動作周波数に比例し、渦電流損失は動作周波数の2乗に比例する。そのため、ヒステリシス損失は、低周波側領域で支配的になり、渦電流損失は高周波領域で支配的になる。圧粉磁心は、この鉄損の発生を少なくする磁気特性が求められている。   When the dust core is used in an alternating magnetic field, energy loss called iron loss occurs. This iron loss is expressed as the sum of hysteresis loss, eddy current loss, and abnormal eddy current. The main problems are hysteresis current and eddy current loss. This hysteresis loss is proportional to the operating frequency, and the eddy current loss is proportional to the square of the operating frequency. Therefore, the hysteresis loss is dominant in the low frequency region, and the eddy current loss is dominant in the high frequency region. The dust core is required to have magnetic characteristics that reduce the occurrence of this iron loss.

圧粉磁心のヒステリシス損失を低減するためには、磁壁の移動を容易にすればよく、そのためには、軟磁性粉末の保持力を低下させればよい。この保持力を低下することで、初透磁率の向上とヒステリシス損失の低減が図られる。   In order to reduce the hysteresis loss of the dust core, it is only necessary to facilitate the movement of the domain wall. To that end, the retention of the soft magnetic powder may be reduced. By reducing this holding force, the initial permeability can be improved and the hysteresis loss can be reduced.

一方、高密度成形された圧粉磁心は、高い磁束密度を有する。しかし、高密度成形された圧粉磁心は、成形時に多くの歪みが軟磁性粉末の粒子内に発生する。この歪みは圧粉磁心の保持力を高めて、ヒステリシス損失を増加させる。 On the other hand, a high-density molded magnetic core has a high magnetic flux density. However, a powder magnetic core molded with high density generates a lot of distortion in the soft magnetic powder particles during molding. This distortion increases the holding power of the dust core and increases hysteresis loss.

この歪みを除去するために焼純作業を行う必要がある。鉄を主成分とする軟磁性粉末では、この歪みを除去するためには、500℃以上の高い焼純温度が必要となる。しかし、500℃以上の高い焼純温度では、従来技術として特許文献1に記載のように、リン酸塩系の絶縁処理が行われている場合、絶縁被膜が、破壊、焼失してしまい、渦電流損失が増大する結果になってしまう。   In order to remove this distortion, it is necessary to perform a tempering operation. In the soft magnetic powder containing iron as a main component, a high calcination temperature of 500 ° C. or higher is required to remove this distortion. However, at a high tempering temperature of 500 ° C. or higher, as described in Patent Document 1, as a conventional technique, when a phosphate-based insulating treatment is performed, the insulating coating is destroyed and burned out, and the vortex As a result, current loss increases.

そのため、耐熱性に優れた絶縁被覆が提案されている。特許文献2では、鉄粉に対してリン酸塩系の絶縁処理を行い、そのうえにシリコーン樹脂による被膜を施すことによって耐熱性を高める工夫がされている。   Therefore, an insulating coating excellent in heat resistance has been proposed. In Patent Document 2, a contrivance is made to increase heat resistance by performing a phosphate-based insulation treatment on iron powder and then applying a coating with a silicone resin thereon.

また、特許文献3では、表面が平坦化された球形粉末に、希土類フッ化物、アルカリ金属フッ化物、アルカリ土類金属フッ化物の被膜による連続かつ均一な厚みの絶縁層を形成して、圧粉磁心の抵抗値を高くした製造手法が提案されている。   In Patent Document 3, an insulating layer having a continuous and uniform thickness is formed on a spherical powder whose surface is flattened by a coating of rare earth fluoride, alkali metal fluoride, or alkaline earth metal fluoride. A manufacturing method in which the resistance value of the magnetic core is increased has been proposed.

特開2000−504785JP2000-504785A 特開2006−5173JP 2006-5173 A 特開2008−16670JP2008-16670

ところが、特許文献2のリン酸塩系の被膜の上に、シリコーン樹脂を被膜する方法でも、600℃を超えると、絶縁体が破壊されて渦電流損失が増加してしまう。また、特許文献3のような表面が平坦化された球形粉末に、連続かつ均一な厚みの絶縁層を形成して、圧粉磁心の抵抗値を高くした製造手法においても、渦電流損失については特別な配慮をしていない。さらに、特許文献3の方法では、平坦化処理後に加工歪み除去を目的とした熱処理を行っていないために、ヒステリシス損失が大きくなる。   However, even in the method of coating a silicone resin on the phosphate-based film of Patent Document 2, if the temperature exceeds 600 ° C., the insulator is destroyed and eddy current loss increases. Also, in the manufacturing method in which a continuous and uniform thickness insulating layer is formed on a spherical powder whose surface is flattened as in Patent Document 3 and the resistance value of the dust core is increased, eddy current loss is There is no special consideration. Furthermore, in the method of Patent Document 3, since the heat treatment for removing processing strain is not performed after the flattening process, the hysteresis loss increases.

本発明は、上記課題を解決するために提案されたものであって、その目的は、軟磁性粉末の表面を平坦化した後、絶縁処理を行うことで、焼純温度の向上を図った低損失な圧粉磁心と、その製造方法を提供することである。   The present invention has been proposed in order to solve the above-mentioned problems, and its purpose is to reduce the temperature of the smelting by improving the sintering temperature by performing an insulation treatment after the surface of the soft magnetic powder is flattened. It is to provide a lossy dust core and a manufacturing method thereof.

本発明は、水アトマイズ法で製造された鉄を主成分とする軟磁性粉末と、前記軟磁性粉末の表面を被覆する絶縁体とを成形処理してなる圧粉磁心であって、前記軟磁性粉末が、平坦化処理と700℃以上且つ軟磁性粉末が焼結を開始する温度以下の非酸化雰囲気中で成形前熱処理を施され、且つその表面を前記絶縁体で被覆されたものであり、前記成形処理後の成形品に、550℃以上の温度で焼鈍処理を行うことで製造されたことを特徴とする。 The present invention is a powder magnetic core obtained by molding a soft magnetic powder mainly composed of iron manufactured by a water atomization method and an insulator covering the surface of the soft magnetic powder, The powder is subjected to a pre- molding heat treatment in a non-oxidizing atmosphere at a temperature equal to or higher than 700 ° C. and below the temperature at which the soft magnetic powder starts sintering, and the surface thereof is coated with the insulator. in the forming process after the molded article, characterized in that it is produced by performing an annealing process at temperatures above 550 ° C..

すなわち、従来からの軟磁性粉末を製造する方法として知られている水アトマイズ法は、金属粉末の製造一種であり、表面が平坦で比較的球に近い軟磁性粉末を得ることができる。しかし、製造する粉末の粒径が一定以上の大きさ(例えば平均粒径10μm以上)になると、表面に突起等が出来て凹凸のある粉末になってしまう。   That is, the water atomization method known as a conventional method for producing soft magnetic powder is a kind of metal powder production, and a soft magnetic powder having a flat surface and relatively close to a sphere can be obtained. However, when the particle size of the powder to be produced is a certain size or larger (for example, an average particle size of 10 μm or more), protrusions and the like are formed on the surface, resulting in a powder having irregularities.

そこで、本発明では、この凹凸を取り除くための方法として、ボールと粉末を衝突させるボールミルやビーズミルや、粉末同士を衝突させるジェットミルや、高回転するローターを粉末に衝突させる高速気中衝撃装置などを使用して、軟磁性粉末の表面を平坦化する。この時の粉末の球形度を示すアスペクト比は1.0〜1.5になるようにする。   Therefore, in the present invention, as a method for removing the unevenness, a ball mill or a bead mill for colliding the ball and the powder, a jet mill for colliding the powder, a high-speed air impact device for colliding the high-rotation rotor with the powder, etc. Is used to flatten the surface of the soft magnetic powder. At this time, the aspect ratio indicating the sphericity of the powder is set to 1.0 to 1.5.

また、本発明は、前記の様な700℃以上且つ軟磁性粉末が焼結を開始する温度以下とすると共に、非酸化雰囲気中で成形前熱処理を行う。この成形前熱処理により、平均粒径の比較的大きな軟磁性粉末において、水アトマイズ法時の加工歪みと平坦化処理時の加工歪みを除去することができる。 In the present invention, the pre- molding heat treatment is performed in a non-oxidizing atmosphere while the temperature is not lower than 700 ° C. and not higher than the temperature at which the soft magnetic powder starts sintering. By this pre- molding heat treatment, it is possible to remove the processing strain during the water atomization method and the processing strain during the flattening treatment in the soft magnetic powder having a relatively large average particle diameter.

さらに、本発明は、成形後の焼鈍処理は550℃以上で行うことを特徴とする。すなわち、成形後の圧粉磁心に対して、成形時の歪みを除去する目的で焼純作業を行うが、鉄を主成分とする軟磁性鉄粉では、この歪みを有効に除去するには、500℃以上の高い焼純温度が必要となる。なお、この温度としては、成形前熱処理温度以下であることがこのましい。 Furthermore, the present invention is characterized in that the annealing treatment after molding is performed at 550 ° C. or higher. That is, for the dust core after molding , a smelting operation is performed for the purpose of removing distortion at the time of molding, but in soft magnetic iron powder mainly composed of iron, to effectively remove this distortion, A high tempering temperature of 500 ° C. or higher is required. In addition, as this temperature, it is preferable that it is below the heat processing temperature before shaping | molding .

本発明では、平坦化処理時に、無機絶縁粉末であるSiO粉末、Al粉末、SiO粉末、またはAl粉末の混合物を、水アトマイズ法で製造された軟磁性粉末の表面に被覆する。この時のSiO粉末などのの一次粒子の平均粒径は2〜20nmが望ましい。また、SiO粉末の添加量は、0.5wt%以下が望ましく、0.5wt%より多くなると密度低下によるヒステリシス損失の増加や、最大磁束密度の低下や、透磁率低下の要因となる。 In the present invention, the surface of the soft magnetic powder produced by the water atomization method using a mixture of SiO 2 powder, Al 2 O 3 powder, SiO 2 powder, or Al 2 O 3 powder, which is an inorganic insulating powder, during the planarization treatment. To coat. At this time, the average particle diameter of primary particles such as SiO 2 powder is preferably 2 to 20 nm. Further, the addition amount of SiO 2 powder is desirably 0.5 wt% or less, and if it exceeds 0.5 wt%, it causes an increase in hysteresis loss due to a decrease in density, a decrease in maximum magnetic flux density, and a decrease in magnetic permeability.

この絶縁処理としては、軟磁性粉末に対してSiOなどの無機絶縁粉末を添加する以外に、平坦化処理を行った軟磁性粉末に対して、耐熱性保護被膜であるシランカップリング剤や有機バインダーであるシリコーンレジンを添加すると、絶縁処理を行わなかったよりも、鉄損を低減させることが可能となる。 In addition to adding an inorganic insulating powder such as SiO 2 to the soft magnetic powder, the insulating treatment includes a silane coupling agent or organic material that is a heat-resistant protective film for the soft magnetic powder subjected to the planarization treatment. When a silicone resin as a binder is added, iron loss can be reduced as compared with the case where the insulation treatment is not performed.

さらに、シランカップリング剤やシリコーンレジンに加えて、或いは単独で無機絶縁物質であるSiO粉末などにより絶縁処理を行うことで、さらに渦電流損失を低減することができる。 Furthermore, in addition to the silane coupling agent and the silicone resin, or by performing insulation treatment with SiO 2 powder which is an inorganic insulating material alone, eddy current loss can be further reduced.

本発明において、前記軟磁性粉末の平均粒径は10〜100μmとすることが好ましい。すなわち、水アトマイズ法では、平均粒径が10μm以下になると、比較的に表面が平坦で球に近い粉末が得られる。そのために、絶縁性の改善のために、軟磁性粉末の平坦化処理を行う必要がない。逆に10μm以上では、表面に突起等の凹凸があるために、絶縁性の改善には、これを取り除く必要があるので、この粒径の範囲が本発明に適している。また、平均粒径が100μm以上では、粒径が大きくなることにより、渦電流損失が増加してまう。   In the present invention, the soft magnetic powder preferably has an average particle size of 10 to 100 μm. That is, in the water atomization method, when the average particle size is 10 μm or less, a powder having a relatively flat surface and close to a sphere can be obtained. Therefore, it is not necessary to perform a flattening process on the soft magnetic powder in order to improve insulation. On the other hand, when the thickness is 10 μm or more, since there are irregularities such as protrusions on the surface, it is necessary to remove this in order to improve the insulating properties. Therefore, this particle size range is suitable for the present invention. On the other hand, when the average particle size is 100 μm or more, eddy current loss increases as the particle size increases.

なお、前記の様な、軟磁性粉末の表面を平坦化した後、絶縁処理を行うことで、焼純温度の向上を図った低損失な圧粉磁心の製造方法も、本発明の一態様である。   In addition, a method of manufacturing a low-loss powder magnetic core that improves the sintering temperature by performing an insulation treatment after the surface of the soft magnetic powder is planarized as described above is also an aspect of the present invention. is there.

以上のような本発明によれば、平坦化処理後の軟磁性粉末の表面を、無機絶縁粉末で覆うことにより、大気中における高温での熱処理を行った場合であっても絶縁性は劣化せず、酸化等によるヒステリシス損失の増加の影響を低減させることが可能な圧粉磁心と圧粉磁心の製造方法を提供することができる。   According to the present invention as described above, the surface of the soft magnetic powder after the flattening treatment is covered with the inorganic insulating powder, so that the insulation is deteriorated even when the heat treatment is performed at a high temperature in the atmosphere. In addition, it is possible to provide a dust core and a method for manufacturing the dust core capable of reducing the influence of an increase in hysteresis loss due to oxidation or the like.

実施形態は、鉄を主成分とする軟磁性粉末を、表面平坦加工後、加熱処理して、シランカップリング剤やシリコーンレジンを添加し、その後所定の形状に成形し、窒素や水素などからなる非酸化雰囲気中で熱処理をすることで、圧粉磁心を作製する点に特徴を有する。この場合、軟磁性粉末に渦電流損失を低減させることを目的として、SiO等の粉末を添加することで、軟磁性粉末の表面に絶縁層を形成する。 In the embodiment, a soft magnetic powder containing iron as a main component is subjected to a heat treatment after surface flattening, a silane coupling agent or a silicone resin is added, and then molded into a predetermined shape, which is made of nitrogen, hydrogen, or the like. It is characterized in that a dust core is produced by heat treatment in a non-oxidizing atmosphere. In this case, for the purpose of reducing eddy current loss to the soft magnetic powder, an insulating layer is formed on the surface of the soft magnetic powder by adding powder such as SiO 2 .

以下、各工程を具体的に説明する。まず、表面平坦化工程として、純鉄を主成分とし粒径が106μm以下で平均粒径が43μmの純鉄の水アトマイズ粉に対して、この表面の凹凸をなくすために、高速気流中衝撃法によって表面平坦化を行う。水アトマイズ法は比較的に表面が平坦で球に近い粉末が得られる方法であるが、平均粒径が10μm以上では、表面に突起等の凹凸が生じてしまうので、表面平坦化処理が必要である。   Hereafter, each process is demonstrated concretely. First, as a surface flattening step, in order to eliminate the irregularities on the surface of pure iron water atomized powder containing pure iron as a main component and having a particle size of 106 μm or less and an average particle size of 43 μm, a high-speed air current impact method is used. The surface is flattened. The water atomization method is a method in which a powder with a relatively flat surface and close to a sphere can be obtained. However, when the average particle size is 10 μm or more, irregularities such as protrusions are generated on the surface, so a surface flattening treatment is required. is there.

この表面平坦化処理は、高速で回転するローターより衝撃を受けて微粒子化した砕料粒子に、衝撃、せん断、ずり応力、摩擦などの機械的エネルギーを与える装置を使用する。この種の装置によれば、砕料粒子に与えた機械エネルギーと機械的エネルギーの一部が個体粒子内に蓄積され、固体粒子の活性・反応性が高まり、周囲の物質と化学反応を起こすメカノケミカル効果を発現させることができる。   This surface flattening treatment uses a device that gives mechanical energy such as impact, shear, shear stress, and friction to the pulverized particles that have been impacted by a rotor rotating at high speed. According to this type of device, the mechanical energy given to the pulverized particles and a part of the mechanical energy are accumulated in the solid particles, the activity and reactivity of the solid particles are increased, and the mechano- gen that causes a chemical reaction with surrounding substances. A chemical effect can be expressed.

そして成形前熱処理として、表面平坦化処理を施した純鉄のアトマイズ粉を、水素雰囲気中で、900℃の熱を2時間加える処理を行った。900℃で熱処理を行うのは、水アトマイズ法時の加工歪みと平坦化処理時の加工歪みを除去するためである。このためには、温度は低くても、700度以上で行う必要があり、850〜1000℃のときに良好な効果を得ることができるからである。 Then, as pre- molding heat treatment, pure iron atomized powder subjected to surface flattening treatment was subjected to heat treatment at 900 ° C. for 2 hours in a hydrogen atmosphere. The reason why the heat treatment is performed at 900 ° C. is to remove the processing distortion during the water atomization method and the processing distortion during the flattening process. This is because even if the temperature is low, it is necessary to carry out at 700 ° C. or more, and a good effect can be obtained at 850 to 1000 ° C.

次に、絶縁処理として、表面平坦化処理を行い、熱処理に施して歪みをとった粉末と、シランカップリング剤0.1質量%と、シリコーンレジン1.0重量%の順に混合し、180℃の温度で2時間加熱乾燥を行う。潤滑剤としてステアリン酸亜鉛を0.2重量%添加して混合する。   Next, as an insulation treatment, a surface flattening treatment was performed, and the powder subjected to the heat treatment to remove the strain, 0.1% by mass of the silane coupling agent, and 1.0% by weight of the silicone resin were mixed in this order, and 180 ° C. Heat drying at a temperature of 2 hours. Add 0.2% by weight of zinc stearate as a lubricant and mix.

このように、絶縁処理に潤滑剤としてステアリン酸の金属塩であるステアリン酸亜鉛を使用することで、金属の種類によってメチル基の熱分解速度を速めることが可能となり、より低温からでも丈夫なシリカ層が形成される。   In this way, by using zinc stearate, which is a metal salt of stearic acid, as a lubricant for insulation treatment, it becomes possible to increase the thermal decomposition rate of methyl groups depending on the type of metal, and tough silica even at lower temperatures A layer is formed.

本実施形態において、絶縁処理に軟磁性粉末に対して、有機金属カップリング剤(例えば、シランカップリング剤)を混合させて、軟磁性合金粉末の表面に耐熱性保護被膜を形成することで、当該カップリング剤を使用しない場合よりもヒステリシス損失を格段に低減させ、鉄損を低下させることができる。   In this embodiment, by mixing an organic metal coupling agent (for example, a silane coupling agent) with respect to the soft magnetic powder in the insulation treatment, and forming a heat-resistant protective film on the surface of the soft magnetic alloy powder, Hysteresis loss can be remarkably reduced and iron loss can be reduced as compared with the case where the coupling agent is not used.

そして、前記の様な絶縁処理の後に、室温にて加圧成形することで成形体を形成する。ここで、添加されたシリコーンレジンは、成形時のバインダーとして作用する。その後、この成形体に対して、窒素中にて前記成形前熱処理以下の温度で30分間の焼純処理を行うことで圧粉磁心が製造される。 After the insulation treatment as described above, a molded body is formed by pressure molding at room temperature. Here, the added silicone resin acts as a binder during molding . Thereafter, the molded body, the dust core is manufactured by performing the baked net for 30 minutes at the molding prior to the heat treatment temperatures below under nitrogen.

次に、本発明の実施例1〜13を、図1〜5及び表1〜5を参照して、以下に説明する。   Next, Examples 1 to 13 of the present invention will be described below with reference to FIGS. 1 to 5 and Tables 1 to 5.

[1−1.測定項目]
測定項目としては、透磁率と鉄損(コアロス)を次のような手法により測定する。透磁率は、作製された圧粉磁心に1次巻き線(20T)を施し、インピーダンスアナライザーを使用することで、10kHz、0.5Vにおけるインダクタンスから算出した。
[1-1. Measurement item]
As measurement items, magnetic permeability and iron loss (core loss) are measured by the following method. The magnetic permeability was calculated from the inductance at 10 kHz and 0.5 V by applying a primary winding (20T) to the produced dust core and using an impedance analyzer.

鉄損は、圧粉磁心に1次及び2次巻線を施し、BHアナライザを用いて、最大磁束密度Bm=0.1Tの条件下で測定した。また、この測定された鉄損からヒステリシス損失と渦電流損失を、鉄損の周波数曲線で最小2乗法を用いた下記の(1)〜(3)により、ヒステリシス損係数、渦電流損係数を算出することで求めた。   The iron loss was measured under the condition of maximum magnetic flux density Bm = 0.1 T using a BH analyzer with primary and secondary windings applied to the dust core. The hysteresis loss coefficient and eddy current loss coefficient are calculated from the measured iron loss by the following (1) to (3) using the least squares method on the iron loss frequency curve. I asked for it.

Pc=Kh×f+Ke×f2・・・(1)
Ph=Kh×f・・・(2)
Pe=Ke×f2・・・(3)
Pc:鉄損
Kh:ヒステリシス損係数
Ke:渦電流損係数
f:周波数
Ph:ヒステリシス損失
Pe:渦電流損失
Pc = Kh × f + Ke × f2 (1)
Ph = Kh × f (2)
Pe = Ke × f2 (3)
Pc: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Ph: Hysteresis loss Pe: Eddy current loss

[1−2.第1の特性比較(成形前熱処理の有無及び平坦化処理の有無)]
第1の特性比較で使用する試料は、下記のように作製した。粒径を106μm以下に分級した純鉄の水アトマイズ粉(平均粒径43μm)に、表1に示すような表面処理、成形前熱処理、焼鈍処理を行って、比較例1〜5と実施例1〜3の試料を作製した。これらの試料に対して、シランカップリング剤を0.1質量%、シリコーンレジンを1.0重量%の順に混合し乾燥加熱後(180度、2時間)、潤滑剤としてステアリン酸亜鉛を0.2重量%添加して混合した。
[1-2. First characteristic comparison (pre- molding heat treatment and flattening treatment)]
The sample used for the first characteristic comparison was prepared as follows. Comparative examples 1 to 5 and Example 1 were conducted by subjecting water atomized powder of pure iron (average particle size 43 μm) classified to a particle size of 106 μm or less to surface treatment, pre- molding heat treatment, and annealing treatment as shown in Table 1. ~ 3 samples were prepared. These samples were mixed in the order of 0.1% by mass of a silane coupling agent and 1.0% by weight of a silicone resin, dried and heated (180 ° C., 2 hours), and then zinc stearate as a lubricant was added in an amount of 0.0. 2% by weight was added and mixed.

これを室温にて1000MPaの圧力で加圧成形し、外径16mm、内径8mm、高さが7mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を窒素中にて、30分の間、熱処理(焼純)を行った。   This was press-molded at a pressure of 1000 MPa at room temperature to produce a dust core having a ring shape with an outer diameter of 16 mm, an inner diameter of 8 mm, and a height of 7 mm. These powder magnetic cores were heat-treated (purified) for 30 minutes in nitrogen.

比較例1は、純鉄の水アトマイズ粉に対して、平坦化処理と900℃の成形前熱処理を施さなかったものである。比較例2は、純鉄の水アトマイズ粉に対して、平坦化処理と900℃の成形前熱処理を施さず、リン酸塩皮膜処理を施したものである。 In Comparative Example 1, the flattening treatment and the pre- molding heat treatment at 900 ° C. were not performed on the pure iron water atomized powder. In Comparative Example 2, a pure iron water atomized powder was subjected to a phosphate film treatment without being subjected to a flattening treatment and a pre- molding heat treatment at 900 ° C.

比較例3は、純鉄の水アトマイズ粉に対して、900℃の成形前熱処理を行わず、高速気流中衝撃法にて、表面を平坦化したものである。表面平坦化は、高速気流中衝撃法のローターは、回転数4800回/分で時間は3分とした(条件1)。 In Comparative Example 3, the surface of the pure atomized water atomized powder was flattened by the impact method in high-speed air current without performing the pre- molding heat treatment at 900 ° C. For surface flattening, the rotor of the impact method in high-speed air current was set to 4800 revolutions / minute and the time was 3 minutes (Condition 1).

比較例4は、純鉄の水アトマイズ粉に対して、900℃の成形前熱処理を行わず、高速気流中衝撃法にて、表面を平坦化したものである。表面平坦化は、高速気流中衝撃法のローターは、回転数6400回/分で時間は3分とした(条件2)。 In Comparative Example 4, the surface of the pure iron water atomized powder was flattened by a high-speed air-flow impact method without performing a pre- molding heat treatment at 900 ° C. For surface flattening, the rotor of the impact method in high-speed air current was set to 6400 revolutions / minute and the time was 3 minutes (Condition 2).

比較例5は、純鉄の水アトマイズ粉に対して、900℃の成形前熱処理を行わず、高速気流中衝撃法にて、表面を平坦化したものである。表面平坦化は、高速気流中衝撃法のローターは、回転数8000回/分で時間は3分とした(条件3)。 In Comparative Example 5, the surface of the pure atomized water atomized powder was flattened by a high-speed air current impact method without performing a pre- molding heat treatment at 900 ° C. For surface flattening, the rotor of the impact method in high-speed air current was set to 8000 revolutions / minute and the time was 3 minutes (Condition 3).

実施例1は、純鉄の水アトマイズ粉に対して、表面平坦化した後、水素雰囲気中で、900℃で2時間、成形前熱処理を行ったものである。表面平坦化は、高速気流中衝撃法にて行い、高速気流中衝撃法のローターは、回転数4800回/分で時間は3分とした(条件1)。 In Example 1, the surface of the pure iron water atomized powder was flattened and then subjected to pre- molding heat treatment at 900 ° C. for 2 hours in a hydrogen atmosphere. The surface flattening was performed by the high-speed air current impact method, and the rotor of the high-speed air current impact method was set to 4800 revolutions / minute and the time was 3 minutes (Condition 1).

実施例2は、純鉄の水アトマイズ粉に対して、表面平坦化した後、水素雰囲気中で、900℃で2時間、成形前熱処理を行ったものである。表面平坦化は、高速気流中衝撃法にて行い、高速気流中衝撃法のローターは、回転数6400回/分で時間は3分とした(条件2)。 In Example 2, the surface of the pure iron water atomized powder was flattened and then subjected to pre- molding heat treatment at 900 ° C. for 2 hours in a hydrogen atmosphere. Surface flattening was performed by a high-speed air current impact method, and the rotor of the high-speed air current impact method was 6400 revolutions / minute and the time was 3 minutes (Condition 2).

実施例3は、純鉄の水アトマイズ粉に対して、表面平坦化した後、水素雰囲気中で、900℃で2時間、成形前熱処理を行ったものである。表面平坦化は、高速気流中衝撃法にて行い、高速気流中衝撃法のローターは、回転数8000回/分で時間は3分とした(条件3)。 In Example 3, the pure atomized water atomized powder was subjected to pre- molding heat treatment at 900 ° C. for 2 hours in a hydrogen atmosphere after the surface was flattened. Surface flattening was performed by a high-speed air current impact method, and the rotor of the high-speed air current impact method was set at 8000 revolutions / minute and the time was 3 minutes (Condition 3).

表1は比較例1〜5と実施例1〜3についての、密度、透磁率、鉄損(渦電流損失、ヒステリシス損失)の関係について示した表である。また、図1は、純鉄の水アトマイズ粉に対して高速気流中衝撃法(ローターの回転数6400回/分(条件2))にて、表面を平坦化した時と、表面を平坦化しなかったときの粉末の表面の様子を示す図面代用写真である。
Table 1 is a table showing the relationship between density, magnetic permeability, and iron loss (eddy current loss, hysteresis loss) for Comparative Examples 1 to 5 and Examples 1 to 3. In addition, FIG. 1 shows the case where the surface is flattened with a high-speed air impact method (rotor rotation speed 6400 times / minute (condition 2)) with respect to pure iron water atomized powder, and the surface is not flattened. It is a drawing substitute photograph which shows the mode of the surface of the powder at the time.

なお以上のことから判るように、平坦化処理と900℃の成形前熱処理を施さなかった比較例1は、550℃の焼純で渦電流損失が大きく増加した。また、平坦化処理をと900℃の成形前熱処理を施さず、リン酸塩皮膜処理を施した比較例2では、600℃の焼純で渦電流損失が大きく増加した。 As can be seen from the above, in Comparative Example 1 in which the flattening treatment and the pre- molding heat treatment at 900 ° C. were not performed, the eddy current loss was greatly increased by 550 ° C. purification. Further, in Comparative Example 2 in which the flattening treatment and the pre- molding heat treatment at 900 ° C. were not performed and the phosphate film treatment was performed, the eddy current loss increased greatly at 600 ° C. purification.

これらに対して、900℃の成形前熱処理を行わず、高速気流中衝撃法にて、表面を平坦化した比較例3〜5では、600℃で焼純しても、比較例2より渦電流損失が小さくなるが、ヒステリシス損失が大きくなる。これに対して、表面平坦化した後、水素雰囲気中で、900℃で2時間、成形前熱処理を行った実施例1〜3は、成形前熱処理を行うことで、ヒステリシス損失の低減と、透磁率が向上する。これは、表面平坦化時に発生する応用力が除去されたと考えられる。 On the other hand, in Comparative Examples 3 to 5 in which the surface was flattened by the high-speed air-flow impact method without performing the pre- molding heat treatment at 900 ° C., the eddy current was higher than that in Comparative Example 2 even if the sample was purified at 600 ° C. Loss is reduced, but hysteresis loss is increased. In contrast, after the surface planarization, in a hydrogen atmosphere, for 2 hours at 900 ° C., forming before the heat treatment the Examples 1 to 3 was performed, by performing the molding before the heat treatment, reduction of hysteresis loss, Toru Magnetic susceptibility is improved. This is considered that the applied force generated at the time of surface flattening was removed.

[1−3.第2の特性比較(成形前熱処理の有無及び平坦化処理の有無)]
第2の特性比較で使用する試料は以下のように作製した。粒径を106μm以下に分級した純鉄の水アトマイズ粉(平均粒径43μm)に、表2、3に示すような表面処理、第1熱処理、第2熱処理を行って、比較例6、7と実施例4の試料を作製した。これらの試料に対して、シランカップリング剤を0.1質量%、シリコーンレジンを1.0重量%の順に混合し乾燥加熱後(180度、2時間)、潤滑剤としてステアリン酸亜鉛を0.2重量%添加して混合した。
[1-3. Second characteristic comparison (presence / absence of heat treatment before molding and presence / absence of flattening treatment)]
A sample used in the second characteristic comparison was prepared as follows. The surface treatment, first heat treatment, and second heat treatment as shown in Tables 2 and 3 were performed on water atomized powder of pure iron (average particle size 43 μm) classified to a particle size of 106 μm or less. A sample of Example 4 was produced. These samples were mixed in the order of 0.1% by mass of a silane coupling agent and 1.0% by weight of a silicone resin, dried and heated (180 ° C., 2 hours), and then zinc stearate as a lubricant was added in an amount of 0.0. 2% by weight was added and mixed.

これを室温にて1000MPaの圧力で加圧成形し、外径16mm、内径8mm、高さが7mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を窒素中にて、400℃〜625℃の温度で30分の間、焼純処理を行った。   This was press-molded at a pressure of 1000 MPa at room temperature to produce a dust core having a ring shape with an outer diameter of 16 mm, an inner diameter of 8 mm, and a height of 7 mm. These powder magnetic cores were subjected to a sinter treatment at a temperature of 400 ° C. to 625 ° C. for 30 minutes in nitrogen.

比較例6は、純鉄の水アトマイズ粉に対して、平坦化処理と成形前熱処理を施さなかったものである。比較例7は、純鉄の水アトマイズ粉に対して、平坦化処理と成形前熱処理を施さず、リン酸塩皮膜処理を施したものである。 In Comparative Example 6, the flattening treatment and the pre- molding heat treatment were not performed on the water atomized powder of pure iron. In Comparative Example 7, a pure iron water atomized powder was subjected to a phosphate film treatment without being subjected to a flattening treatment and a pre- molding heat treatment.

実施例4は、純鉄の水アトマイズ粉に対して、表面平坦化した後、水素雰囲気中で、900℃で2時間、成形前熱処理を行ったものである。表面平坦化は、高速気流中衝撃法にて行い、高速気流中衝撃法のローターは、回転数4800回/分で時間は3分間とした。 In Example 4, the pure atomized water atomized powder was subjected to a pre- molding heat treatment at 900 ° C. for 2 hours in a hydrogen atmosphere after the surface was flattened. Surface flattening was performed by a high-speed air current impact method, and the rotor of the high-speed air current impact method was 4800 revolutions / minute and the time was 3 minutes.

表2は、比較例6、7と実施例4についての、密度、透磁率、鉄損(渦電流損失、ヒステリシス損失)の関係について示した表である。図2は、比較例6、7と実施例4についての全損失と熱処理の温度の関係について示した図である。図3は、比較例6、7と実施例4についての渦電流損失と熱処理の温度の関係について示したものである。図4は、比較例6、7と実施例4についてのヒステリシス損失と熱処理の温度の関係について示したものである。
Table 2 is a table showing the relationship between density, magnetic permeability, and iron loss (eddy current loss, hysteresis loss) for Comparative Examples 6 and 7 and Example 4. FIG. 2 is a graph showing the relationship between the total loss and the heat treatment temperature for Comparative Examples 6 and 7 and Example 4. FIG. 3 shows the relationship between eddy current loss and heat treatment temperature for Comparative Examples 6 and 7 and Example 4. FIG. 4 shows the relationship between hysteresis loss and heat treatment temperature for Comparative Examples 6 and 7 and Example 4.

以上のことから判るように、純鉄の水アトマイズ粉に対して、平坦化処理と成形前熱処理を施さなかった比較例6では、焼鈍処理温度が550℃になると、渦電流損失が急激に増加した。また、純鉄の水アトマイズ粉に対して、平坦化処理をと成形前熱処理を施さず、リン酸塩皮膜処理を施した比較例7でも、焼鈍処理温度が600℃になると、渦電流損失が急激に増加した。それに伴い、全損失も同じように増加したことが判る。 As can be seen from the above, in Comparative Example 6 where the flattening treatment and the pre- molding heat treatment were not performed on the water atomized powder of pure iron, the eddy current loss increased rapidly when the annealing treatment temperature reached 550 ° C. did. Moreover, even in the comparative example 7 in which pure iron water atomized powder was not subjected to flattening treatment and pre- molding heat treatment and subjected to phosphate film treatment, when the annealing treatment temperature reached 600 ° C., eddy current loss occurred. Increased rapidly. Along with this, it can be seen that the total loss increased in the same way.

これらに対して、純鉄の水アトマイズ粉に対して、表面平坦化した後、水素雰囲気中にて、900℃で2時間、成形前熱処理を行った実施例4では、625℃で焼純しても、渦電流損失の増加しないので、全損失の増加もおこらず、ヒステリシス損失の低減と、透磁率が向上した。これは、表面平坦化時に発生する応力が除去されたと考えられる。 For these, for water atomized powder of pure iron, after surface planarization, at a hydrogen atmosphere, for 2 hours at 900 ° C., in Example 4 was molded prior to heat treatment, and ShoJun at 625 ° C. However, since the eddy current loss does not increase, the total loss does not increase, and the hysteresis loss is reduced and the magnetic permeability is improved. This is considered that the stress which generate | occur | produces at the time of surface planarization was removed.

[1−4.第3の特性比較(SiO粉末添加の有無)]
第3の特性比較で使用する試料は下記のように作製した。粒径を106μm以下に分級した純鉄の水アトマイズ粉(平均粒径43μm)に、表3、4に示すような表面処理、第1熱処理、第2熱処理を行って、実施例5〜12の試料を作製した。これらの試料に対して、シランカップリング剤を0.1質量%、シリコーンレジンを1.0重量%の順に混合し、乾燥加熱後(180度、2時間)、潤滑剤としてステアリン酸亜鉛を0.2重量%添加して混合した。
[1-4. Third characteristic comparison (with or without addition of SiO 2 powder)]
The sample used for the third characteristic comparison was prepared as follows. The surface treatment, the first heat treatment, and the second heat treatment as shown in Tables 3 and 4 were performed on the pure iron water atomized powder (average particle size 43 μm) classified to a particle size of 106 μm or less. A sample was prepared. For these samples, 0.1% by mass of silane coupling agent and 1.0% by weight of silicone resin were mixed in this order, and after drying and heating (180 ° C., 2 hours), 0% zinc stearate as a lubricant was added. Add 2% by weight and mix.

これを室温にて1000MPaの圧力で加圧成形し、外径16mm、内径8mm、高さが7mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を窒素中にて、625℃の温度で30分の間、焼純処理を行った。   This was press-molded at a pressure of 1000 MPa at room temperature to produce a dust core having a ring shape with an outer diameter of 16 mm, an inner diameter of 8 mm, and a height of 7 mm. And these powder magnetic cores were tempered in nitrogen at a temperature of 625 ° C. for 30 minutes.

実施例5は、純鉄の水アトマイズ粉に対して、表面平坦化した後、水素雰囲気中で、900℃で2時間、成形前熱処理を行ったものである。表面平坦化は、高速気流中衝撃法にて行い、高速気流中衝撃法のローターは、回転数4800回/分で時間は3分間とした。 In Example 5, the surface of an iron atomized powder of pure iron was flattened and then subjected to pre- molding heat treatment at 900 ° C. for 2 hours in a hydrogen atmosphere. Surface flattening was performed by a high-speed air current impact method, and the rotor of the high-speed air current impact method was 4800 revolutions / minute and the time was 3 minutes.

実施例6〜8は、純鉄の水アトマイズ粉に対して、SiO微粉末(比表面積300m/g、平均粒径7nm)を0.05〜0.25wt%添加して、表面平坦化した後、水素雰囲気中で、900℃で2時間、成形前熱処理を行ったものである。表面平坦化は、高速気流中衝撃法にて行い、高速気流中衝撃法のローターは、回転数4800回/分で時間は3分間とした。 In Examples 6 to 8, 0.05 to 0.25 wt% of SiO 2 fine powder (specific surface area 300 m 2 / g, average particle size 7 nm) was added to pure iron water atomized powder to flatten the surface. Then, pre- molding heat treatment was performed at 900 ° C. for 2 hours in a hydrogen atmosphere. Surface flattening was performed by a high-speed air current impact method, and the rotor of the high-speed air current impact method was 4800 revolutions / minute and the time was 3 minutes.

実施例9は、純鉄の水アトマイズ粉に対して、表面平坦化した後、水素雰囲気中で、900℃で2時間、成形前熱処理を行ったものである。表面平坦化は、高速気流中衝撃法にて行い、高速気流中衝撃法のローターは、回転数4800回/分で時間は3分間とした。 In Example 9, the surface of the pure iron water atomized powder was flattened and then subjected to pre- molding heat treatment at 900 ° C. for 2 hours in a hydrogen atmosphere. Surface flattening was performed by a high-speed air current impact method, and the rotor of the high-speed air current impact method was 4800 revolutions / minute and the time was 3 minutes.

実施例10〜12は、純鉄の水アトマイズ粉に対して、SiO微粉末(比表面積300m/g、平均粒径7nm)を0.05〜0.25wt%添加して、表面平坦化した後、水素雰囲気中で、900℃で2時間、成形前熱処理を行ったものである。表面平坦化は、高速気流中衝撃法にて行い、高速気流中衝撃法のローターは、回転数6400回/分で時間は3分間とした。 In Examples 10 to 12, 0.05 to 0.25 wt% of SiO 2 fine powder (specific surface area 300 m 2 / g, average particle diameter 7 nm) was added to pure iron water atomized powder to flatten the surface. Then, pre- molding heat treatment was performed at 900 ° C. for 2 hours in a hydrogen atmosphere. Surface flattening was performed by a high-speed airflow impact method, and the rotor of the high-speed airflow impact method was 6400 rotations / minute and the time was 3 minutes.

表3、4は、実施例5〜12についての密度、透磁率、鉄損(渦電流損失、ヒステリシス損失)の関係を示した表である。また、図5は、実施例5〜12についてのSiO微粉末の添加量と渦電流損失との関係を示した図である。
Tables 3 and 4 are tables showing the relationship among density, magnetic permeability, and iron loss (eddy current loss and hysteresis loss) for Examples 5 to 12. Further, FIG. 5 is a diagram showing a relationship between the addition amount and the eddy current loss of the SiO 2 powder for Example 5-12.

以上のことから判るように、純鉄の水アトマイズ粉に対して、SiO微粉末を添加して、表面平坦化した後、成形前熱処理を行うことにより、SiO粉末を添加しない場合に比べて、さらに渦電流損失を低減できる。SiO微粉末の量は、0.5wt%以下が望ましく、これより多くなると密度低下が起こってしまう。なお、無機絶縁粉末として、SiO粉末の替わりにAl粉末やSiO粉末とAl粉末の混合物でも良い。 As can be seen from the above, compared to the case where the SiO 2 powder is not added by adding the SiO 2 fine powder to the pure atomized water atomized powder and performing the pre- molding heat treatment after the surface flattening. Thus, eddy current loss can be further reduced. The amount of the SiO 2 fine powder is desirably 0.5 wt% or less, and if it exceeds this, the density will decrease. As the inorganic insulating powder, Al 2 O 3 powder and SiO 2 powder and Al 2 O 3 may be a mixture of powder instead of SiO 2 powder.

[1−5.第4の特性比較(軟磁性粉末がFe−Si合金の水アトマイズ粉の場合における成形前熱処理及び平坦化処理の有無)]
第4の特性比較で使用する試料は以下のように作製した。粒径を106μm以下に分級したSi成分が6.5%であるFe−Si合金の水アトマイズ粉(平均粒径42μm)に、表5に示すような表面処理、第1熱処理、第2熱処理を行って比較例8と実施例13の試料を作製した。これらの試料に対して、シリコーンレジンを0.75重量%混合し、180℃の温度で2時間、乾燥加熱後、潤滑剤としてステアリン酸亜鉛を0.2重量%添加して混合した。
[1-5. Fourth characteristic comparison (presence / absence of heat treatment before forming and flattening treatment when soft magnetic powder is Fe-Si alloy water atomized powder)]
A sample used in the fourth characteristic comparison was prepared as follows. Surface treatment, first heat treatment, and second heat treatment as shown in Table 5 were performed on Fe-Si alloy water atomized powder (average particle diameter 42 μm) having a Si component of 6.5% classified to a particle size of 106 μm or less. The samples of Comparative Example 8 and Example 13 were prepared. These samples were mixed with 0.75% by weight of silicone resin, dried and heated at a temperature of 180 ° C. for 2 hours, and then mixed with 0.2% by weight of zinc stearate as a lubricant.

これを室温にて1700MPaの圧力で加圧成形し、外径16mm、内径8mm、高さが7mmのリング状をなす圧粉磁心を作製した。そして、これらの圧粉磁心を窒素中にて、700℃の温度で、30分の間、焼純処理を行った。   This was press-molded at a pressure of 1700 MPa at room temperature to produce a dust core having a ring shape with an outer diameter of 16 mm, an inner diameter of 8 mm, and a height of 7 mm. And these powder magnetic cores were tempered in nitrogen at a temperature of 700 ° C. for 30 minutes.

比較例8は、Si成分が6.5%であるFe−Si合金の水アトマイズ粉に対して、平坦化処理と900℃の成形前熱処理を施さなかったものである。実施例13は、Si成分が6.5%であるFe−Si合金の純鉄の水アトマイズ粉に対して、表面平坦化した後、水素雰囲気中で、900℃で2時間、成形前熱処理を行ったものである。表面平坦化は、高速気流中衝撃法にて行い、高速気流中衝撃法のローターは、回転数6400回/分で、時間は3分間とした(条件2)。 In Comparative Example 8, the flattening treatment and the pre- molding heat treatment at 900 ° C. were not performed on the water atomized powder of the Fe—Si alloy whose Si component was 6.5%. In Example 13, a water atomized powder of pure iron of Fe-Si alloy having a Si component of 6.5% was subjected to a pre- molding heat treatment at 900 ° C. for 2 hours in a hydrogen atmosphere after surface flattening. It is what I did. Surface flattening was performed by a high-speed air current impact method, and the rotor of the high-speed air current impact method was 6400 revolutions / minute and the time was 3 minutes (Condition 2).

表5は比較例8と実施例13についての、密度、透磁率、鉄損(渦電流損失、ヒステリシス損失)の関係について示した表である。
Table 5 is a table showing the relationship between density, magnetic permeability, and iron loss (eddy current loss, hysteresis loss) for Comparative Example 8 and Example 13.

以上のことから、Si成分が6.5%であるFe−Si合金の水アトマイズ粉に対して、平坦化処理と成形前熱処理を施さなかった比較例8では、アスペクト比が1.7であり、700℃で焼鈍処理温度を行うと、渦電流損失とヒステリシス損失が共に増加することがわかる。 From the above, in Comparative Example 8 in which the flattening treatment and the pre- molding heat treatment were not performed on the water atomized powder of the Fe—Si alloy having the Si component of 6.5%, the aspect ratio was 1.7. When annealing temperature is performed at 700 ° C., both eddy current loss and hysteresis loss increase.

これに対して、Si成分が6.5%であるFe−Si合金の水アトマイズ粉に対して、表面平坦化した後、水素雰囲気中で、900℃で2時間、成形前熱処理を行った。この時の表面平坦化は、高速気流中衝撃法にて行い、高速気流中衝撃法のローターは、回転数6400回/分で時間は3分間とした。それにより、実施例13のアスペクト比が1.3となり、700℃で焼純しても渦電流損失の増加しないので、全損失の増加もおこらず、ヒステリシス損失の低減と透磁率が向上する。これは、表面平坦化時に発生する応力が除去されたと考えられる。 On the other hand, the surface of the Fe-Si alloy water atomized powder having a Si component of 6.5% was flattened, and then pre- molding heat treatment was performed at 900 ° C. for 2 hours in a hydrogen atmosphere. Surface flattening at this time was performed by a high-speed air current impact method, and the rotor of the high-speed air current impact method was 6400 revolutions / minute and the time was 3 minutes. As a result, the aspect ratio of Example 13 is 1.3, and eddy current loss does not increase even if it is purified at 700 ° C. Therefore, total loss does not increase, and hysteresis loss is reduced and magnetic permeability is improved. This is considered that the stress which generate | occur | produces at the time of surface planarization was removed.

[他の実施例]
本実施形態の他の実施例として、第1熱処理温度が900℃以外の温度にしてもよい。具体的には、700℃以上且つ軟磁性粉末が焼結を開始する温度以下であれば、水アトマイズ法時の加工歪みと平坦化処理時の加工歪みを除去することができる。
[Other embodiments]
As another example of the present embodiment, the first heat treatment temperature may be a temperature other than 900 ° C. Specifically, if it is 700 ° C. or more and not more than the temperature at which the soft magnetic powder starts sintering, it is possible to remove the processing strain during the water atomization method and the processing strain during the flattening process.

本発明の実施形態において、高速気流中衝撃法による表面平坦化処理を行った軟磁性粉末の表面を示した図面代用写真。In the embodiment of the present invention, a drawing-substituting photograph showing the surface of the soft magnetic powder that has been subjected to a surface flattening treatment by a high-speed air-flow impact method. 第2実施形例における熱処理温度と全損失の関係を示したグラフ。The graph which showed the relationship between the heat processing temperature in a 2nd Example, and total loss. 第2実施形例における熱処理温度と渦電流損失の関係を示したグラフ。The graph which showed the heat processing temperature in 2nd Example, and the relationship between eddy current loss. 第2実施形例における熱処理温度とヒステリシス損失の関係を示したグラフ。The graph which showed the relationship between the heat processing temperature and hysteresis loss in 2nd Example. 第3実施形例におけるSiO粉末の添加量と渦電流損失と全損失の関係を示したグラフ。Graph showing the relationship between the added amount and the eddy current loss and the total loss of the SiO 2 powder in the third embodiment forms embodiment.

Claims (6)

水アトマイズ法で製造された鉄を主成分とする軟磁性粉末と、前記軟磁性粉末の表面を被覆する絶縁体とを成型処理してなる圧粉磁心であって、
前記軟磁性粉末が、平坦化処理と700℃以上且つ軟磁性粉末が焼結を開始する温度以下の非酸化雰囲気中で成型前熱処理を施され、且つその表面を前記絶縁体で被覆されたものであり、
前記成型処理後の成型品に550℃以上の温度で焼鈍処理を行うことで製造されたことを特徴とする圧粉磁心。
A powder magnetic core formed by molding a soft magnetic powder mainly composed of iron produced by a water atomization method and an insulator covering the surface of the soft magnetic powder,
The soft magnetic powder is subjected to pre-molding heat treatment in a non-oxidizing atmosphere at a temperature equal to or higher than 700 ° C. and below the temperature at which the soft magnetic powder starts sintering, and the surface thereof is coated with the insulator. And
A dust core produced by subjecting the molded product after the molding treatment to an annealing treatment at a temperature of 550 ° C or higher.
前記平坦化処理時に、無機絶縁粉末であるSiO粉末、Al粉末、またはSiO粉末とAl粉末の混合物で被覆されていることを特徴とする請求項1に記載の圧粉磁心。 2. The pressure according to claim 1, wherein the flattening treatment is performed by coating with an inorganic insulating powder, such as SiO 2 powder, Al 2 O 3 powder, or a mixture of SiO 2 powder and Al 2 O 3 powder. Powder magnetic core. 前記軟磁性粉末は、その平均粒径が10〜100μmであることを特徴とする請求項1または、請求項2に記載の圧粉磁心。   The powder magnetic core according to claim 1, wherein the soft magnetic powder has an average particle size of 10 to 100 μm. 水アトマイズ法で製造された鉄を主成分とする軟磁性粉末と、前記軟磁性粉末の表面を被覆する絶縁体とからなる圧粉磁心の製造方法であって、
前記軟磁性粉末に、その表面の平坦化処理を施し、平坦化処理後の軟磁性粉末に対して、非酸化雰囲気中で、700℃以上且つ軟磁性粉末が焼結を開始する温度以下で加熱する成型前熱処理を行い、
前記成型前熱処理の前後いずれかの工程において、前記軟磁性粉末の表面を前記絶縁体で被覆する絶縁処理を行い、
前記絶縁処理された前記軟磁性粉末を加圧成型する成型処理を行い、
前記成型処理後の成型品に対して、550℃以上の温度で焼鈍処理を行うことを特徴とする圧粉磁心の製造方法。
A method for producing a powder magnetic core comprising a soft magnetic powder mainly composed of iron produced by a water atomizing method and an insulator covering the surface of the soft magnetic powder,
The surface of the soft magnetic powder is subjected to a flattening process, and the soft magnetic powder after the flattening process is heated in a non-oxidizing atmosphere at a temperature of 700 ° C. or more and a temperature at which the soft magnetic powder starts sintering. Perform pre-molding heat treatment,
In any of the steps before and after the pre-molding heat treatment, an insulating treatment for covering the surface of the soft magnetic powder with the insulator is performed,
Performing a molding process for pressure-molding the insulated soft magnetic powder,
A method for producing a powder magnetic core, comprising subjecting a molded product after the molding treatment to an annealing treatment at a temperature of 550 ° C. or higher.
前記平坦化処理時に、無機絶縁粉末であるSiO粉末、Al粉末、またはSiO粉末とAl粉末の混合物で、前記軟磁性粉末を被覆する処理を行うことを特徴とする請求項4に記載の圧粉磁心の製造方法。 During the flattening treatment, the soft magnetic powder is treated with SiO 2 powder, Al 2 O 3 powder, which is an inorganic insulating powder, or a mixture of SiO 2 powder and Al 2 O 3 powder. The manufacturing method of the powder magnetic core of Claim 4. 前記軟磁性粉末の平均粒径が10〜100μmであることを特徴とする請求項4または請求項5に記載の圧粉磁心の製造方法。   6. The method of manufacturing a dust core according to claim 4, wherein the soft magnetic powder has an average particle size of 10 to 100 [mu] m.
JP2008152470A 2008-06-11 2008-06-11 Dust core and manufacturing method thereof Pending JP2009302165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152470A JP2009302165A (en) 2008-06-11 2008-06-11 Dust core and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152470A JP2009302165A (en) 2008-06-11 2008-06-11 Dust core and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009302165A true JP2009302165A (en) 2009-12-24

Family

ID=41548788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152470A Pending JP2009302165A (en) 2008-06-11 2008-06-11 Dust core and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009302165A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077694A1 (en) * 2009-12-25 2011-06-30 株式会社タムラ製作所 Reactor and method for producing same
WO2011118774A1 (en) * 2010-03-26 2011-09-29 日立粉末冶金株式会社 Dust core and method for producing same
JP2011243830A (en) * 2010-05-20 2011-12-01 Tdk Corp Powder magnetic core and method for manufacturing the same
EP2492031A1 (en) * 2009-12-25 2012-08-29 Tamura Corporation Dust core and process for producing same
WO2013108642A1 (en) * 2012-01-17 2013-07-25 株式会社日立産機システム Iron powder for magnetic compact, magnetic compact, method for producing iron powder for magnetic compact, and method for producing magnetic compact
CN103594219A (en) * 2013-11-28 2014-02-19 四川东阁科技有限公司 Method for manufacturing sendust material and mu173 sendust magnetic powder core
JP2014086672A (en) * 2012-10-26 2014-05-12 Tamura Seisakusho Co Ltd Powder magnetic core and manufacturing method therefor, powder for magnetic core and production method therefor
JP2015095570A (en) * 2013-11-12 2015-05-18 株式会社タムラ製作所 Low-noise reactor, powder-compact magnetic core, and manufacturing method thereof
TWI630627B (en) * 2016-12-30 2018-07-21 財團法人工業技術研究院 Magnetic material and magnetic component employing the same
US20180261385A1 (en) * 2017-03-09 2018-09-13 Tdk Corporation Dust core
JP2018152557A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Powder-compact magnetic core
JP2019195068A (en) * 2019-05-31 2019-11-07 株式会社タムラ製作所 Low noise reactor, dust core and method of manufacturing the same
CN111161935A (en) * 2018-11-07 2020-05-15 山东精创磁电产业技术研究院有限公司 Sintering method of soft magnetic composite material with high strength, high magnetic conductivity and high saturation magnetic flux density
KR20210012898A (en) * 2019-07-25 2021-02-03 티디케이가부시기가이샤 Composite magnetic powder, dust core using the same, and method for manufacturing composite magnetic powder
JP2021021097A (en) * 2019-07-25 2021-02-18 Tdk株式会社 Composite magnetic powder, powder magnetic core using the same, and manufacturing method for composite magnetic powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141213A (en) * 2000-08-25 2002-05-17 Daido Steel Co Ltd Dust core
JP2003109811A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Dust core, its manufacturing method, and choke coil and transformer using it
JP2005286145A (en) * 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd Method for manufacturing soft magnetic material, soft magnetic powder and dust core
JP2005281805A (en) * 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd Method for producing soft magnetic material, soft magnetic powder and dust core
JP2006233295A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Soft magnetic metallic powder for powder magnetic core and powder magnetic core
WO2007077689A1 (en) * 2006-01-04 2007-07-12 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141213A (en) * 2000-08-25 2002-05-17 Daido Steel Co Ltd Dust core
JP2003109811A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Dust core, its manufacturing method, and choke coil and transformer using it
JP2005286145A (en) * 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd Method for manufacturing soft magnetic material, soft magnetic powder and dust core
JP2005281805A (en) * 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd Method for producing soft magnetic material, soft magnetic powder and dust core
JP2006233295A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Soft magnetic metallic powder for powder magnetic core and powder magnetic core
WO2007077689A1 (en) * 2006-01-04 2007-07-12 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518740A4 (en) * 2009-12-25 2014-01-29 Tamura Seisakusho Kk Reactor and method for producing same
JP5739348B2 (en) * 2009-12-25 2015-06-24 株式会社タムラ製作所 Reactor and manufacturing method thereof
US9396873B2 (en) 2009-12-25 2016-07-19 Tamura Corporation Dust core and method for manufacturing the same
EP2492031A1 (en) * 2009-12-25 2012-08-29 Tamura Corporation Dust core and process for producing same
CN102667977A (en) * 2009-12-25 2012-09-12 株式会社田村制作所 Reactor and method for producing same
EP2518740A1 (en) * 2009-12-25 2012-10-31 Tamura Corporation Reactor and method for producing same
EP2492031A4 (en) * 2009-12-25 2014-01-22 Tamura Seisakusho Kk Dust core and process for producing same
WO2011077694A1 (en) * 2009-12-25 2011-06-30 株式会社タムラ製作所 Reactor and method for producing same
US8810353B2 (en) 2009-12-25 2014-08-19 Tamura Corporation Reactor and method for manufacturing same
EP3252786A1 (en) * 2009-12-25 2017-12-06 Tamura Corporation Reactor
WO2011118774A1 (en) * 2010-03-26 2011-09-29 日立粉末冶金株式会社 Dust core and method for producing same
JP5462356B2 (en) * 2010-03-26 2014-04-02 日立粉末冶金株式会社 Powder magnetic core and manufacturing method thereof
US9646756B2 (en) 2010-03-26 2017-05-09 Hitachi Powdered Metals Co., Ltd. Powder magnetic core and method for producing the same
KR101493481B1 (en) * 2010-03-26 2015-02-13 히다치 훈마츠 야킨 가부시키가이샤 Dust core and method for producing same
CN102822913B (en) * 2010-03-26 2017-06-09 日立粉末冶金株式会社 Compressed-core and its manufacture method
CN102822913A (en) * 2010-03-26 2012-12-12 日立粉末冶金株式会社 Dust core and method for producing same
JP2011243830A (en) * 2010-05-20 2011-12-01 Tdk Corp Powder magnetic core and method for manufacturing the same
WO2013108642A1 (en) * 2012-01-17 2013-07-25 株式会社日立産機システム Iron powder for magnetic compact, magnetic compact, method for producing iron powder for magnetic compact, and method for producing magnetic compact
JP2013149661A (en) * 2012-01-17 2013-08-01 Hitachi Industrial Equipment Systems Co Ltd Iron powder for pressed powder magnetic body, pressed powder magnetic body, method of manufacturing iron powder for pressed powder magnetic body, and method of manufacturing pressed powder magnetic body
JP2014086672A (en) * 2012-10-26 2014-05-12 Tamura Seisakusho Co Ltd Powder magnetic core and manufacturing method therefor, powder for magnetic core and production method therefor
JP2015095570A (en) * 2013-11-12 2015-05-18 株式会社タムラ製作所 Low-noise reactor, powder-compact magnetic core, and manufacturing method thereof
CN103594219A (en) * 2013-11-28 2014-02-19 四川东阁科技有限公司 Method for manufacturing sendust material and mu173 sendust magnetic powder core
TWI630627B (en) * 2016-12-30 2018-07-21 財團法人工業技術研究院 Magnetic material and magnetic component employing the same
JP7283031B2 (en) 2017-03-09 2023-05-30 Tdk株式会社 dust core
US20180261385A1 (en) * 2017-03-09 2018-09-13 Tdk Corporation Dust core
JP2018152557A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Powder-compact magnetic core
US11915847B2 (en) * 2017-03-09 2024-02-27 Tdk Corporation Dust core
CN111161935A (en) * 2018-11-07 2020-05-15 山东精创磁电产业技术研究院有限公司 Sintering method of soft magnetic composite material with high strength, high magnetic conductivity and high saturation magnetic flux density
JP2019195068A (en) * 2019-05-31 2019-11-07 株式会社タムラ製作所 Low noise reactor, dust core and method of manufacturing the same
KR20210012898A (en) * 2019-07-25 2021-02-03 티디케이가부시기가이샤 Composite magnetic powder, dust core using the same, and method for manufacturing composite magnetic powder
KR102296263B1 (en) * 2019-07-25 2021-08-31 티디케이가부시기가이샤 Composite magnetic powder, dust core using the same, and method for manufacturing composite magnetic powder
JP2021021096A (en) * 2019-07-25 2021-02-18 Tdk株式会社 Composite magnetic powder, powder magnetic core using the same, and manufacturing method for composite magnetic powder
US11682508B2 (en) 2019-07-25 2023-06-20 Tdk Corporation Composite magnetic powder, powder magnetic core using the same, and manufacturing method for composite magnetic powder
JP7400241B2 (en) 2019-07-25 2023-12-19 Tdk株式会社 Composite magnetic powder and powder magnetic core using the same
JP2021021097A (en) * 2019-07-25 2021-02-18 Tdk株式会社 Composite magnetic powder, powder magnetic core using the same, and manufacturing method for composite magnetic powder

Similar Documents

Publication Publication Date Title
JP2009302165A (en) Dust core and manufacturing method thereof
EP2993672B1 (en) Method of producing powder for magnetic core
EP1840907B1 (en) Soft magnetic material and dust core
JP4278147B2 (en) Powder for magnetic core, dust core and method for producing the same
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
TWI406305B (en) Iron-based soft magnetic powder and dust core for powder core
JP4430607B2 (en) Method for producing surface high Si layer coated iron powder
JP2007012994A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP2007088156A (en) Soft magnetic material, manufacturing method thereof, powder magnetic core, and manufacturing method thereof
JP2009302420A (en) Dust core and manufacturing method thereof
KR20140142174A (en) Soft magnetic powder, core, low noise reactor and method for manufacturing core
WO2010084600A1 (en) Method for producing dust core
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
JP6578083B2 (en) Low noise reactor, dust core and manufacturing method thereof
JP4847553B2 (en) Powder magnetic core and manufacturing method thereof
JP2004288983A (en) Dust core and method for manufacturing same
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP4995222B2 (en) Powder magnetic core and manufacturing method thereof
JP5023041B2 (en) Powder magnetic core and manufacturing method thereof
JP2010251473A (en) Dust core and method of manufacturing the same
JP5150535B2 (en) Powder magnetic core and manufacturing method thereof
JP2012151179A (en) Dust core
JP2008305823A (en) Dust core and manufacturing method therefor
JP6571146B2 (en) Soft magnetic material, dust core using soft magnetic material, reactor using dust core, and method for manufacturing dust core
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830