JP2000144206A - Compression molding method of powder for powder metallurgy - Google Patents

Compression molding method of powder for powder metallurgy

Info

Publication number
JP2000144206A
JP2000144206A JP31503198A JP31503198A JP2000144206A JP 2000144206 A JP2000144206 A JP 2000144206A JP 31503198 A JP31503198 A JP 31503198A JP 31503198 A JP31503198 A JP 31503198A JP 2000144206 A JP2000144206 A JP 2000144206A
Authority
JP
Japan
Prior art keywords
powder
lubricant
molding
temperature
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31503198A
Other languages
Japanese (ja)
Inventor
Takehiro Tsuchida
武広 土田
Hiroshi Kako
浩 家口
Yoshikazu Seki
義和 関
Masaaki Sato
正昭 佐藤
Nobuaki Akagi
宣明 赤城
Tetsuya Sawayama
哲也 澤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31503198A priority Critical patent/JP2000144206A/en
Priority to CA002287783A priority patent/CA2287783C/en
Priority to US09/433,071 priority patent/US6344169B2/en
Publication of JP2000144206A publication Critical patent/JP2000144206A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely obtain a compression molded body of high density by filling a powder for powder metallurgy with a lubricant blended therein in a forming die to an inner wall surface the lubricant is applied, and setting the forming temperature in the compression molding to be not lower than the melting point of the lubricant blended in the powder. SOLUTION: In compression molding a powder for powder metallurgy such as iron powder and iron-based alloy powder, the forming temperature is controlled to >= Tm, more preferably, >= Tm and <= [Tm×3] where Tm is the melting point of the lubricant blended in raw powder. The lubricant is melted and exuded to a surface of a molded body, and naturally removed from pores between the raw powders, and the exuded lubricant effectively works to reduce the friction between the forming die and the powder, and the compression molded body can highly be densified. Thus, the mechanical characteristics and the magnetic characteristics of the final molded body can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば鉄粉や鉄基
合金粉末の如き粉末冶金用粉末を圧縮成形する際に、成
形体密度を効率よく高めることができ、最終成形体の機
械的特性や磁気的特性などを高めることのできる方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for compressively molding powder for powder metallurgy such as iron powder or iron-based alloy powder. And a method capable of improving magnetic characteristics and the like.

【0002】[0002]

【従来の技術】例えば鉄粉や鉄基合金粉末の如き粉末冶
金用粉末を圧縮成形するに当たっては、圧縮成形の原料
粉末に予め潤滑剤を配合しておくことにより粉末の流動
性を高め、成形型との摩擦を低減する方法が採用されて
いる。潤滑剤の配合量は、焼結しようとする粉末に対し
0.2〜10重量%の範囲が一般的であり(たとえば特
開平2−156002号など)、Metal powd
er report、Vol.42.No.11,p7
81〜786(1987)でも、潤滑剤の配合量は0.
5%のときに最大の圧縮密度が得られると報告されてお
り、現在の実用化例でも、殆どは0.5〜1.0重量%
の範囲である。
2. Description of the Related Art In compression molding powders for powder metallurgy such as iron powders and iron-base alloy powders, for example, a lubricant is added to a raw material powder for the compression molding in advance to increase the fluidity of the powder and to form the powder. A method of reducing friction with the mold has been adopted. The compounding amount of the lubricant is generally in the range of 0.2 to 10% by weight based on the powder to be sintered (for example, JP-A-2-156002), and Metal powder is used.
er report, Vol. 42. No. 11, p7
81-786 (1987), the compounding amount of the lubricant is 0.1.
It is reported that the maximum compression density can be obtained at 5%, and even in the present practical examples, most of them are 0.5 to 1.0% by weight.
Range.

【0003】その場合、成形体密度を高めるべく成形圧
力を高くしても、潤滑剤が原料粉末間の空隙に充満され
て密度の向上を阻害するので、高密度成形には自ずと限
界があった。かといって潤滑剤の配合量を減らすと、粉
末と成形型との摩擦が大きくなるため高圧密化ができ
ず、しかも成形型の寿命を低下させるという問題も生じ
てくる。
In this case, even if the molding pressure is increased in order to increase the density of the compact, the lubricant is filled in the gaps between the raw material powders and the improvement in the density is hindered. . On the other hand, if the amount of the lubricant is reduced, the friction between the powder and the mold becomes large, so that high-pressure densification cannot be performed, and the problem of shortening the life of the mold arises.

【0004】一方、成形型の内壁面に潤滑剤を塗布して
おくと、粉末と成形型との摩擦が低減されることも周知
である。しかしながら、原料粉末に潤滑剤が配合されて
いないため紛末の流動性や充填性が悪く、高圧力で圧縮
成形しても高密度の成形体は得られ難い。
[0004] On the other hand, it is also known that when a lubricant is applied to the inner wall surface of a mold, friction between the powder and the mold is reduced. However, since the lubricant is not blended with the raw material powder, the fluidity and the filling property of the powder are poor, and it is difficult to obtain a high-density molded product even by compression molding under high pressure.

【0005】また圧縮成形体の密度を高めるため、原料
粉末や成形型を潤滑剤の融点以下(通常は70℃〜12
0℃程度)に加熱して加圧成形することが米国特許N
o.4,9555,798号に開示されている。また、
特開平5−271709号公報には、潤滑剤が完全に溶
融する温度よりも低い温度(具体的には370℃程度以
下)に加熱して加圧成形することが示されている。これ
らの方法は、いずれも潤滑剤が溶融すると粉末の流動性
が著しく低下するという知見に基づいている。
[0005] In order to increase the density of the compression molded body, the raw material powder and the molding die are set at a temperature lower than the melting point of the lubricant (usually 70 ° C to 12 ° C).
U.S. Pat. No.
o. No. 4,9555,798. Also,
Japanese Patent Application Laid-Open No. Hei 5-271709 discloses that pressure molding is performed by heating to a temperature lower than the temperature at which the lubricant is completely melted (specifically, about 370 ° C. or lower). These methods are all based on the finding that when the lubricant is melted, the fluidity of the powder is significantly reduced.

【0006】しかしこの場合も、通常の潤滑剤配合量で
は潤滑剤が成形体内に残存するので、根本的な高密度化
対策にはならない。
However, even in this case, the lubricant remains in the molded body with the usual amount of the lubricant, so that it is not a fundamental measure for increasing the density.

【0007】そこで、特開平9−272901号公報に
は、潤滑剤を含まない粉末を使用し、成形型の内壁面に
潤滑剤を塗布してから該成形型を150〜400℃に加
熱して加圧成形することにより、成形体密度を高める方
法を提案している。しかしこの方法では、原料粉末内に
潤滑剤が全く配合されていないため紛末の流動性が悪
く、結果的に十分な高密度を達成できない。しかもこの
方法では、成形体内部の密度バラツキが大きくなるとい
う問題も生じてくる。
[0007] Japanese Patent Application Laid-Open No. 9-272901 discloses that a lubricant-free powder is used, a lubricant is applied to the inner wall surface of the mold, and the mold is heated to 150 to 400 ° C. A method of increasing the density of a compact by pressure molding has been proposed. However, in this method, since no lubricant is blended in the raw material powder, the fluidity of the powder is poor, and as a result, a sufficient high density cannot be achieved. In addition, in this method, there is also a problem that the density variation inside the molded body increases.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記の様な従
来技術の問題点、特に圧縮成形時における粉末の流動性
不足の問題や、圧縮型との摩擦の問題を解決し、高密度
の圧縮成形体を確実に得ることのできる技術を確立する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention solves the problems of the prior art as described above, in particular, the problem of insufficient fluidity of powder during compression molding and the problem of friction with a compression mold. It is an object of the present invention to establish a technique for reliably obtaining a compression molded body.

【0009】[0009]

【課題を解決するための手投】上記課題を解決すること
のできた本発明にかかる圧縮成形法とは、内壁面に潤滑
剤が塗布された成形型内に、潤滑剤が配合された粉末冶
金用粉末を充填して圧縮成形するに当たり、成形温度
を、前記粉末に配合された潤滑剤の融点に設定するとこ
ろ要旨がある。
The compression molding method according to the present invention, which can solve the above-mentioned problems, is a powder metallurgy in which a lubricant is compounded in a mold in which a lubricant is applied to an inner wall surface. In filling and compressing the powder, the molding temperature is set at the melting point of the lubricant compounded in the powder.

【0010】上記方法を実施するに当たり、前記粉末に
配合される潤滑剤の配合量は0.01〜0.20重量%
の範囲がよく、またより好ましい成形温度は、上記粉末
に配合される潤滑剤の融点(Tm)以上で且つ[Tm×
3]以下の範囲である。
In carrying out the above method, the amount of the lubricant to be added to the powder is 0.01 to 0.20% by weight.
The molding temperature is preferably not less than the melting point (Tm) of the lubricant compounded in the powder and [Tm ×
3] The range is as follows.

【0011】[0011]

【発明の実施の形態】本発明者らは、圧縮成形体の高密
度化を増進すべく、様々の角度から検討を重ねた結果、
上記の様に成形型の内壁面に潤滑剤を塗布しておき、こ
れに比較的少量の潤滑剤を配合した紛末冶金用粉末を充
填して圧縮成形する際に、加圧成形時の温度を、潤滑剤
の融点以上にコントロールしてやれば、上記の目的が見
事に達成されることをつきとめた。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies from various angles in order to increase the density of a compression molded article.
As described above, a lubricant is applied to the inner wall surface of the mold, and the powder for powder metallurgy containing a relatively small amount of lubricant is filled into the mold for compression molding. Was controlled to be equal to or higher than the melting point of the lubricant.

【0012】以下、本発明の構成と好ましい実施形態を
詳細に説明していく。本発明において粉末冶金用紛末と
は、粉末を加圧成形して所定の形状を付与し、場合によ
ってはその後で焼結などの工程を経て任意の形状の成形
体を製造するために用いられる粉末を総称する。また本
明細書では、成形型と粉末との摩擦や、粉末同志の摩擦
を低減するために潤滑剤等が配合されたものも含めて、
粉末冶金用粉末ということがある。
Hereinafter, the configuration and preferred embodiments of the present invention will be described in detail. In the present invention, the powder for powder metallurgy is used to produce a molded article of an arbitrary shape through a process such as sintering after applying powder to a predetermined shape by pressure molding. Powder is generically referred to. Also, in this specification, friction between the molding die and the powder, including those in which a lubricant or the like is blended to reduce friction between the powders,
Sometimes referred to as powder for powder metallurgy.

【0013】その具体例としては、金属粉末やセラミッ
クス粉末があり、特に成形時に塑性変形を伴う金属粉末
に対して本発明は極めて有効に適用されるが、最も代表
的なのは、純鉄紛(不純物として少量のC、Mn、S
i、P、S、Cr、O、Nなどを含むものを包含する)
や、焼結後の強度向上を期してNi、Mo、Mn、C
r、Si、その他の元素を意図的に添加した合金粉(プ
レアロイ型、拡散型、それらのハイブリッド型など)な
どである。
Specific examples thereof include metal powders and ceramic powders, and the present invention is very effectively applied to metal powders which undergo plastic deformation during molding. The most typical example is pure iron powder (impurity). Small amounts of C, Mn, S
including those containing i, P, S, Cr, O, N, etc.)
And Ni, Mo, Mn, C to improve the strength after sintering.
Alloy powder (pre-alloy type, diffusion type, hybrid type thereof and the like) to which r, Si and other elements are intentionally added.

【0014】但し合金元素の添加量が過ぎると、鉄粉が
硬質化して圧縮性が低下し、粉末冶金用製品としての高
密度化を阻害する要因になることがあるので注意すべき
である。
However, it should be noted that if the amount of the alloying element is too large, the iron powder hardens and the compressibility decreases, which may hinder the high density of powder metallurgy products.

【0015】また、焼結後の特性を高めるため種々の合
金化元素、たとえばグラファイト、Cu、Ni、Mo等
を単独若しくは2種以上配合したものであっても良く、
更には少量のバインダーを用いて鉄粉の表面にグラファ
イト等を付着させた複合粉末であってもよい。
In order to enhance the properties after sintering, various alloying elements, for example, graphite, Cu, Ni, Mo, etc. may be used alone or in combination of two or more.
Further, a composite powder in which graphite or the like is adhered to the surface of iron powder using a small amount of a binder may be used.

【0016】本発明において極めて重要なのは、圧縮成
形時の温度を規定した点にあるので、以下、成形温度を
主体にして説明を進める。
In the present invention, what is extremely important is that the temperature at the time of compression molding is specified. Therefore, the following description will be made mainly on the molding temperature.

【0017】本発明では、原料粉末中に配合される潤滑
剤の融点(Tm)を基準にして、成形温度をTm以上、
より好ましくはTm以上で且つ[Tm×3]以下の温度
に制御するところに特徴を有しており、この様な成形温
度を採用することによって、圧縮成形体を著しく高密度
化することが可能となる。その理由は次の通りである。
In the present invention, based on the melting point (Tm) of the lubricant compounded in the raw material powder, the molding temperature is set to Tm or more,
It is more preferable to control the temperature to be not less than Tm and not more than [Tm × 3]. By adopting such a molding temperature, it is possible to remarkably increase the density of the compression-molded body. Becomes The reason is as follows.

【0018】即ち、上記範囲の成形温度を採用すると、
圧縮成形時に潤滑剤が溶融することによって潤滑剤が成
形体表面に滲み出し、原料粉末間の空隙から自然に除か
れると共に、滲み出した潤滑剤は成形型と粉末との摩擦
低減に有効に作用し、圧縮成形体を高密度化できるので
ある。
That is, when the molding temperature in the above range is adopted,
When the lubricant is melted during compression molding, the lubricant oozes out on the surface of the molded product and is naturally removed from the gaps between the raw material powders, and the oozed lubricant effectively works to reduce the friction between the molding die and the powder. Thus, the density of the compression molded body can be increased.

【0019】前述した通り従来技術では、粉末の流動性
向上の観点から成形温度は潤滑剤の融点以下が好ましい
とされていたが、本発明では、潤滑剤の配合量を少な目
に抑えることでその様な問題を回避できる。但し、成形
温度が高くなり過ぎると、潤滑剤の熱劣化が激しくなっ
て成形型との焼き付きなどの問題が生じてくるので、潤
滑剤の融点(Tm)に対し[Tm×3]を超えない様に
調整すべきである。
As described above, in the prior art, the molding temperature is preferably lower than the melting point of the lubricant from the viewpoint of improving the fluidity of the powder. However, in the present invention, the amount of the lubricant is reduced to a small extent to reduce the lubricant. Such problems can be avoided. However, if the molding temperature is too high, the thermal deterioration of the lubricant becomes severe, causing problems such as seizure with the molding die. Therefore, the melting point (Tm) of the lubricant does not exceed [Tm × 3]. Should be adjusted accordingly.

【0020】また成形温度は、粉末の変形抵抗を下げて
高密度化を増進するうえでも重要で、使用する原料粉末
の種類に応じて、上記好適温度範囲の中から最適の温度
条件を選定することが望まれる。
The molding temperature is also important for lowering the deformation resistance of the powder and increasing the density, and the most suitable temperature condition is selected from the above-mentioned preferable temperature range according to the type of the raw material powder to be used. It is desired.

【0021】加熱手段は特に制限されず、粉末自体を適
当な温度に予熱しておくか、成形型に充填した後成形型
からの伝熱を利用して加熱する方法、等を採用できる
が、成形型の温度が低いと加圧成形中に粉末の温度が低
下して圧縮性が低下するので、成形時の温度を適正に維
持できる様な加熱法を採用することが必須となる。
The heating means is not particularly limited, and a method in which the powder itself is preheated to an appropriate temperature, or a method in which the powder is filled into a mold and then heated by utilizing heat transfer from the mold, and the like can be employed. If the temperature of the mold is low, the temperature of the powder decreases during compression molding and the compressibility decreases, so it is essential to employ a heating method that can appropriately maintain the temperature during molding.

【0022】粉末として鉄粉を使用する場合を例に挙げ
ると、成形時の温度が80℃未満の低温では、鉄粉の変
形抵抗が高いため塑性変形能が不十分となって高密度化
が達成され難く、一方、成形温度を高めることによる密
度上昇は約500℃で飽和し、それ以上に成形温度を高
めることは経済的に無駄であるばかりでなく、却って成
形型の寿命短縮などの障害が現れてくる。上記の理由を
加味して、より好ましい成形温度の下限は100℃、よ
り好ましい上限温度は250℃である。
As an example, when iron powder is used as the powder, at a low temperature of less than 80 ° C., the deformation resistance of the iron powder is high, so that the plastic deformation ability becomes insufficient and the density is increased. On the other hand, the increase in density caused by increasing the molding temperature saturates at about 500 ° C., and increasing the molding temperature beyond that is not only economically wasteful, but rather impedes the shortening of the life of the mold. Appears. Taking the above reasons into consideration, a more preferable lower limit of the molding temperature is 100 ° C., and a more preferable upper limit temperature is 250 ° C.

【0023】潤滑剤の添加量については、全く添加しな
い(0%)と加圧中の潤滑効果が得られないので成形体
密度が向上せず、しかも成形体内部の密度バラツキが大
きくなり、焼結時の収縮が部分的に不均一になって寸法
バラツキを生じる原因になる。潤滑剤を少量配合すると
成形体密度のバラツキは解消されるが、配合量が多くな
り過ぎると、成形体内に潤滑剤が取り残されて高密度化
が却って阻害される。
If the amount of the lubricant is not added at all (0%), the lubricating effect during pressurization cannot be obtained, so that the density of the molded body cannot be improved, and the density variation inside the molded body becomes large. The shrinkage at the time of knotting becomes partially non-uniform, causing dimensional variations. When a small amount of the lubricant is blended, the variation in the density of the molded body is eliminated. However, when the blending amount is too large, the lubricant is left in the molded body, and the densification is rather hindered.

【0024】従って、潤滑効果を有効に発揮させつつ過
剰配合による上記難点を回避するには、潤滑剤配合量を
0.01重量%以上、より好ましくは0.02重量%以
上で、0.8重量%以下、より好ましくは0.2重量%
以下、更に好ましくは0.10%以下の範囲から選定す
るのがよい。
Therefore, in order to avoid the above-mentioned difficulties caused by excessive blending while effectively exhibiting the lubricating effect, the amount of the lubricant blended should be 0.01% by weight or more, more preferably 0.02% by weight or more, and 0.8% by weight. Wt% or less, more preferably 0.2 wt%
Below, it is more preferable to select from the range of 0.10% or less.

【0025】潤滑剤の種類には特に制限がなく、要は成
形可能な温度域で溶融するものであれば全ての潤滑剤を
使用できるが、最も一般的なのはステアリン酸等の高級
脂肪酸の金属塩あるいはやワックス系潤滑剤などであ
る。
There are no particular restrictions on the type of lubricant, and all lubricants can be used as long as they can be melted in a moldable temperature range. The most common type is a metal salt of a higher fatty acid such as stearic acid. Alternatively, it is a wax-based lubricant.

【0026】成形型の内壁面に塗布される潤滑剤の種類
も特に制限されず、例えばステアリン酸金属等の高級脂
肪酸金属塩、ワックス系、二硫化モリアデン系、BN
系、グラファイト系など、粉末冶金用として知られた全
ての潤滑剤を使用できる。上記潤滑剤は、単独で使用し
得る他、2種以上を併用することも可能である。また原
料粉末の種類や成形時の加熱温度なども考慮して、最適
の潤滑剤を選択して使用するのがよい。
The type of the lubricant applied to the inner wall surface of the mold is not particularly limited. For example, metal salts of higher fatty acids such as metal stearate, waxes, molyaden disulfide, BN
Any lubricant known for powder metallurgy can be used, such as a system or a graphite system. The above lubricants can be used alone or in combination of two or more. Also, it is preferable to select and use an optimal lubricant in consideration of the type of the raw material powder, the heating temperature during molding, and the like.

【0027】潤滑剤を成形型の内壁面に塗布する方法と
しては、固体状態で付着させる方法、溶媒に溶解もしく
は分散させ刷毛塗りや噴霧付着させる方法、潤滑剤を加
熱溶融させて塗布する方法などを採用すればよい。
The method of applying the lubricant to the inner wall surface of the mold includes a method of attaching the lubricant in a solid state, a method of dissolving or dispersing in a solvent to apply a brush or spray, and a method of applying the lubricant by heating and melting the lubricant. Should be adopted.

【0028】また成形型の加熱法としては、外部からヒ
ーター加熱、通電によるジュール加熱、高周波加熱、赤
外線加熱など任意の方法を採用できる。なお、成形型に
充填された粉末が加熱された成形型によって温められる
までに多少の時間がかかるので、より短時間で圧縮成形
を完了させるには、成形型内へ充填する前に粉末を適当
な温度に予熱しておくことも有効である。但し、予熱温
度が高すぎると、鉄粉が酸化されたり焼結することがあ
るので、注意すべきである。
As a method for heating the mold, any method such as external heater heating, Joule heating by energization, high frequency heating, or infrared heating can be employed. In addition, since it takes some time for the powder filled in the mold to be warmed by the heated mold, in order to complete the compression molding in a shorter time, the powder must be appropriately filled before filling into the mold. Preheating to a suitable temperature is also effective. However, it should be noted that if the preheating temperature is too high, the iron powder may be oxidized or sintered.

【0029】圧縮成形時の好ましい圧力は5トン/cm
2 以上、15トン/cm2 以下範囲であり、成形圧力が
上記範囲未満では例えば鉄粉主体の原料粉末を使用した
ときに加圧による塑性変形が十分に進まず、圧密化不足
になる嫌いがあり、また上記上限圧力で高圧密化は飽和
するので、15トン/cm2 を超えて過度に成形圧を高
めることは経済的にも又設備面からも無駄である。
The preferred pressure during compression molding is 5 ton / cm
2 above, in the range 15 t / cm 2 or less, plastic deformation due to pressure when the molding pressure using a raw material powder of example iron powder mainly less than the above range does not proceed sufficiently, hate becomes insufficient compaction In addition, since the high pressure densification is saturated at the above upper limit pressure, excessively increasing the molding pressure exceeding 15 tons / cm 2 is wasteful from the viewpoint of economy and equipment.

【0030】[0030]

【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に適合し得る範囲で適当に変
更を加えて実施することも可能であり、それらはいずれ
も本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples. However, the following Examples are not intended to limit the present invention, and should be appropriately performed within a range that can conform to the purpose described above and below. Modifications can be made and implemented, all of which are included in the technical scope of the present invention.

【0031】実施例 V型混合器を用いて、表1に示す配合組成で原料粉末を
30分間混合する。得られた各混合粉末を約20gづつ
秤量し、所定の温度に加熱した金型(直径31.5mm
×深さ12.5mm)に充填し、表1,2に示す条件で
加圧成形した。得られた成形体について下記の方法で成
形体密度を測定し、表2に示す結果を得た。なお成形体
の密度は、成形体の体積と重量から算出した。
Example Using a V-type mixer, raw material powders are mixed for 30 minutes with the composition shown in Table 1. About 20 g of each obtained mixed powder was weighed and heated at a predetermined temperature in a mold (diameter 31.5 mm).
× 12.5 mm deep) and pressure molded under the conditions shown in Tables 1 and 2. The density of the obtained molded body was measured by the following method, and the results shown in Table 2 were obtained. The density of the compact was calculated from the volume and weight of the compact.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】表1,2より次の様に考えることができ
る。No.1〜8は、型内潤滑剤および粉末配合潤滑剤
のいずれにもステアリン酸Liを使用し、加圧成形時の
温度を種々変更した場合の成形体密度に与える影響を調
べたもので、成形温度を潤滑剤の融点よりも高くしたN
o.5〜8では、成形温度が潤滑剤の融点よりも低いN
o.1〜4に比べて高い成形体密度が得られている(図
1参照)。
From Tables 1 and 2, the following can be considered. No. Nos. 1 to 8 were obtained by using Li stearate as both a lubricant in the mold and a powdered lubricant, and examining the effect on the density of the compact when variously changing the temperature during press molding. N whose temperature is higher than the melting point of the lubricant
o. At 5 to 8, the molding temperature is lower than the melting point of the lubricant.
o. Higher compact densities are obtained as compared to Nos. 1 to 4 (see FIG. 1).

【0035】No.9〜16は、型内潤滑剤としてグラ
ファイト系潤滑剤、粉末配合潤滑剤としてステアリン酸
亜鉛を使用し、加圧成形時の温度を種々変更した場合の
成形体密度に与える影響を調べたもので、成形温度を粉
末配合潤滑剤の融点よりも高くしたNo.12〜16で
は、成形温度が潤滑剤の融点よりも低いNo.9〜11
に比べて高い成形体密度が得られている(図2参照)。
No. Nos. 9 to 16 were obtained by examining the effects on the compact density when various temperatures were changed during pressure molding using a graphite-based lubricant as a lubricant in the mold and zinc stearate as a powdered lubricant. No., in which the molding temperature was higher than the melting point of the powder-containing lubricant. In Nos. 12 to 16, the molding temperature is lower than the melting point of the lubricant. 9-11
A higher molded body density is obtained as compared to (see FIG. 2).

【0036】[0036]

【発明の効果】本発明は以上の様に構成されており、冶
金用粉末内に配合する潤滑剤の融点を基準にして、加圧
成形時の温度を該潤滑剤の融点以上に設定することによ
り、高密度の圧縮成形体を簡単且つ確実に得ることがで
きる。
According to the present invention, the temperature at the time of press molding is set to be equal to or higher than the melting point of the lubricant based on the melting point of the lubricant blended in the metallurgical powder. Thereby, a high-density compression-molded body can be easily and reliably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧縮成形時の温度と成形体密度の関係を示すグ
ラフである。
FIG. 1 is a graph showing the relationship between the temperature during compression molding and the density of a compact.

【図2】圧縮成形時の温度と成形体密度の関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between the temperature during compression molding and the density of a compact.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関 義和 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 佐藤 正昭 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 赤城 宣明 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 澤山 哲也 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 Fターム(参考) 4K018 CA02 CA16  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshikazu Seki 2-3-1, Shinhama, Araimachi, Takasago City, Hyogo Prefecture Inside Kobe Steel, Ltd. Takasago Works (72) Inventor Masaaki Sato 2-3-3, Araimachi Shinama, Takasago City, Hyogo Prefecture No. 1 Inside Kobe Steel, Ltd. Takasago Works (72) Inventor Noriaki Akagi 2-3-1, Shinama, Araimachi, Takasago City, Hyogo Prefecture Inside Kobe Steel Works, Takasago Works (72) Inventor Tetsuya Sawayama Araimachi, Takasago City, Hyogo Prefecture 2-3-1 Niihama Kobe Steel, Ltd. Takasago Works F-term (reference) 4K018 CA02 CA16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内壁面に潤滑剤が塗布された成形型内
に、潤滑剤が配合された粉末冶金用粉末を充填して圧縮
成形するに当たり、成形温度を、前記粉末に配合された
潤滑剤の融点以上とすることを特徴とする粉末冶金用粉
末の圧縮成形法。
In filling a powder metallurgy powder containing a lubricant into a molding die having a lubricant applied to an inner wall surface thereof and performing compression molding, the molding temperature is adjusted to the lubricant contained in the powder. Compression molding method for powder for powder metallurgy, wherein the melting point is not less than the melting point of the powder.
【請求項2】 成形温度を、上記粉末に配合された潤滑
剤の融点(Tm)以上で且つ[Tm×3]以下に制御す
る請求項1に記載の圧縮成形法。
2. The compression molding method according to claim 1, wherein the molding temperature is controlled to be not less than the melting point (Tm) of the lubricant compounded in the powder and not more than [Tm × 3].
【請求項3】 前記粉末に配合される潤滑剤の配合量を
0.01〜0.20重量%とする請求項1または2に記
載の圧縮成形法。
3. The compression molding method according to claim 1, wherein the compounding amount of the lubricant compounded in the powder is 0.01 to 0.20% by weight.
JP31503198A 1998-11-05 1998-11-05 Compression molding method of powder for powder metallurgy Withdrawn JP2000144206A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31503198A JP2000144206A (en) 1998-11-05 1998-11-05 Compression molding method of powder for powder metallurgy
CA002287783A CA2287783C (en) 1998-11-05 1999-10-29 Method for the compaction of powders for powder metallurgy
US09/433,071 US6344169B2 (en) 1998-11-05 1999-11-03 Method for compaction of powders for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31503198A JP2000144206A (en) 1998-11-05 1998-11-05 Compression molding method of powder for powder metallurgy

Publications (1)

Publication Number Publication Date
JP2000144206A true JP2000144206A (en) 2000-05-26

Family

ID=18060601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31503198A Withdrawn JP2000144206A (en) 1998-11-05 1998-11-05 Compression molding method of powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP2000144206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489364A (en) * 2014-10-03 2016-04-13 丰田自动车株式会社 Method for manufacturing rare-earth magnets
CN106340380A (en) * 2015-07-10 2017-01-18 丰田自动车株式会社 Production method of compact

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489364A (en) * 2014-10-03 2016-04-13 丰田自动车株式会社 Method for manufacturing rare-earth magnets
JP2016076549A (en) * 2014-10-03 2016-05-12 トヨタ自動車株式会社 Method of manufacturing rare earth magnet
US10002695B2 (en) 2014-10-03 2018-06-19 Toyota Jidosha Kabushiki Kaisha Method for manufacturing rare-earth magnets
CN106340380A (en) * 2015-07-10 2017-01-18 丰田自动车株式会社 Production method of compact

Similar Documents

Publication Publication Date Title
JPH10501270A (en) Lubricant for metal powder composition, lubricant-containing metal powder composition, method for producing sintered product using lubricant and method of using the same
JP2010265454A (en) Lubricant combination and process for preparing the same
KR20080083275A (en) Lubricant for powder metallurgical compositions
EP1145788B1 (en) Lubricating agent for mold at elevated temperature and method for producing high density iron-based sintered compact
JPH01219101A (en) Iron powder for powder metallurgy and production thereof
JP2002504188A (en) Manufacturing method for high density high carbon sintered metal powder steel parts
TW513484B (en) Lubricant composite and process for the preparation thereof
JP4658602B2 (en) Mixture for producing compression molded products
JP5750076B2 (en) Powder for molding and method for producing the same
JP2000199002A (en) Compacting method of powder for powder metallurgical processing
JP4352559B2 (en) Method for producing metal powder compact
JP2003509582A (en) Amide wax lubricants for warm forming of iron-based powder compositions
JP2000144206A (en) Compression molding method of powder for powder metallurgy
JP5841089B2 (en) Molding powder, lubricant concentrated powder, and method for producing metal member
JP3822372B2 (en) Powder metallurgy powder compression molding method
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
JP2001181701A (en) Method for producing high strength/high density ferrous sintered body
JP2009263697A (en) Method for manufacturing sintered steel
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
CN108788163A (en) A kind of preparation method of high-wearing feature oiliness bearing
US5951737A (en) Lubricated aluminum powder compositions
JP2572053B2 (en) Manufacturing method of iron alloy moldings
JPH04191301A (en) Iron-based powder mixed material for powder meatallurgy
JP3931503B2 (en) Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body
JP2019070183A (en) Sintered body, joined body including the sintered body, and production method of sintered body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110