JP2019070183A - Sintered body, joined body including the sintered body, and production method of sintered body - Google Patents

Sintered body, joined body including the sintered body, and production method of sintered body Download PDF

Info

Publication number
JP2019070183A
JP2019070183A JP2017196890A JP2017196890A JP2019070183A JP 2019070183 A JP2019070183 A JP 2019070183A JP 2017196890 A JP2017196890 A JP 2017196890A JP 2017196890 A JP2017196890 A JP 2017196890A JP 2019070183 A JP2019070183 A JP 2019070183A
Authority
JP
Japan
Prior art keywords
powder
sintered body
copper powder
flat copper
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017196890A
Other languages
Japanese (ja)
Inventor
雄太 伊藤
Yuta Ito
雄太 伊藤
大平 晃也
Akinari Ohira
晃也 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2017196890A priority Critical patent/JP2019070183A/en
Publication of JP2019070183A publication Critical patent/JP2019070183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To produce, without cost increase, a sintered body capable of obtaining high bond strength with another member, while having high strength.SOLUTION: A sintered body 2 according to the present invention is formed by subjecting base powder containing metal powder having a higher melting point than copper as a main component to compression molding and sintering. The base powder contains flat copper powder 1 which has a flat shape, and the sintered body contains a solid solution 9 formed by solid-dissolving the flat copper powder 1 into the metal powder which is the main component at the time of sintering.SELECTED DRAWING: Figure 4

Description

本発明は、焼結体並びにこの焼結体を含む接合体、及び焼結体の製造方法に関する。   The present invention relates to a sintered body, a joined body containing the sintered body, and a method of manufacturing the sintered body.

従来、粉末冶金の分野においては、金属粉末を含む原料粉末を圧縮成形して得られた圧粉体を高温の炉中で焼結することにより高強度化した金属材(焼結体)の製造が行われている。この技術は、いわゆるニアネットシェイプでの大量生産を可能とするものであるから、例えば機械部品など多くの分野に適用されている。特に、自動車分野においては、優れた機械的性質(特に機械的強度)が必要となることから、自動車分野向けに高強度焼結体の採用が検討され、また実際に採用されている。   Conventionally, in the field of powder metallurgy, manufacture of a metal material (sintered body) strengthened by sintering a green compact obtained by compression molding of a raw material powder containing metal powder in a high temperature furnace Has been done. Since this technology enables mass production in the so-called near net shape, it is applied to many fields such as machine parts. In particular, in the automotive field, since excellent mechanical properties (especially mechanical strength) are required, adoption of a high-strength sintered body for the automotive field has been studied and actually adopted.

一方、近年では、自動車部品の軽量化が求められており、この実現のために、従来の焼結体と軽量体との複合化が検討されている。この複合化のための手法として、インサート成形や接着などが公知である。具体的に、例えば特許文献1には、焼結体の表面に存在する空孔に固化前の樹脂(溶融樹脂)が入り込んだ状態で樹脂が固化することで、上記空孔と入り込んだ樹脂とでアンカー効果を発現し得る、焼結体と樹脂体との複合体が提案されている。あるいは、特許文献2には、透過性を有する樹脂等の第一部材と、金属等の第二部材との間に接着シートを設けた状態で、第一部材側からレーザー光を照射することにより、接着シートを溶融させて、第一部材と第二部材とを接合する方法が提案されている。   On the other hand, in recent years, weight reduction of automobile parts is required, and in order to realize this, compounding of a conventional sintered body and a lightweight body is being studied. As a method for this compounding, insert molding, adhesion, etc. are known. Specifically, for example, Patent Document 1 discloses that the resin is solidified in a state in which the resin (molten resin) before solidification enters the pores existing on the surface of the sintered body, and the resin that has entered the pores and A composite of a sintered body and a resin body has been proposed which can exhibit an anchoring effect. Alternatively, in Patent Document 2, the laser light is irradiated from the first member side in a state where the adhesive sheet is provided between the first member such as resin having transparency and the second member such as metal. The method of fuse | melting an adhesive sheet and joining a 1st member and a 2nd member is proposed.

特開2003−239976号公報Unexamined-Japanese-Patent No. 2003-239976 特許第4771371号公報Patent No. 4771371 gazette

しかしながら、特許文献1に記載の技術は、いわゆる低密度焼結体(相対密度が80%未満の焼結体)には適用できるものの、中密度構造体(相対密度が80%以上)、あるいは高密度焼結体(相対密度が90%以上の焼結体)の場合には、表面の空孔数が相対的に少ないために、従来構造の焼結体だと、表面開孔を利用したアンカー効果があまり期待できない。また、特許文献2に記載された接合技術についても、第二部材としての金属体が高密度焼結体になると、当該焼結体と接着層との間の密着性が相対的に低下し、高い接合強度を得ることが難しい。例えば、焼結体の表面に所定の表面処理を施した後に接着すれば、高い接合強度を得ることはできるが、これだと工数の増加ひいてはコストアップを招くため、量産品の製造技術として適切とは言えない。   However, although the technology described in Patent Document 1 can be applied to so-called low density sintered bodies (sintered bodies having a relative density of less than 80%), medium density structures (relative density of 80% or more) or high In the case of a density sintered body (sintered body having a relative density of 90% or more), since the number of pores on the surface is relatively small, in the case of a sintered body having a conventional structure, an anchor utilizing surface open holes I can not expect much effect. Further, in the bonding technology described in Patent Document 2, when the metal body as the second member is a high density sintered body, the adhesion between the sintered body and the adhesive layer is relatively reduced, It is difficult to obtain high bonding strength. For example, high bonding strength can be obtained by bonding after performing a predetermined surface treatment on the surface of a sintered body, but this leads to an increase in the number of man-hours and hence an increase in cost, so it is suitable as a manufacturing technology for mass-produced products. It can not be said.

以上の実情に鑑み、本発明では、高強度でありながら他部材との間で高い接合強度を得ることのできる焼結体をコストアップなく製造することを、解決すべき技術課題とする。   In view of the above situation, the present invention is to solve the problem of manufacturing a sintered body capable of obtaining a high bonding strength with other members while having high strength without increasing the cost.

前記課題の解決は、本発明に係る焼結体によって達成される。すなわち、この焼結体は、銅よりも融点の高い金属粉末を主成分として含む原料粉末を圧縮成形し、焼結してなる焼結体であって、原料粉末には、扁平形状をなす扁平銅粉が含まれ、扁平銅粉が焼結時に金属粉末に固溶してなる固溶体が含まれている点をもって特徴付けられる。   The solution to the above problems is achieved by the sintered body according to the present invention. That is, this sintered body is a sintered body obtained by compression molding and sintering a raw material powder containing a metal powder having a melting point higher than that of copper as a main component, and the raw material powder has a flat shape. It is characterized in that it contains a copper powder and contains a solid solution in which the flat copper powder forms a solid solution in the metal powder during sintering.

本発明者らは、焼結体を製造する上で汎用的に使用される銅粉末に着目し、この銅粉末の形状、及び焼結温度条件を制御することにより、焼結体の強度を低下させることなく銅粉末を一種の表面空孔形成剤として機能させ得ることを見出した。本発明はこの知見に基づきなされたもので、銅より融点の高い金属粉末を主成分として含む原料粉末を圧縮成形し、焼結してなる焼結体について、原料粉末に、扁平形状をなす扁平銅粉が含まれるようにし、焼結体に、扁平銅粉が焼結時に主成分の金属粉末に固溶してなる固溶体が含まれるようにした。このように焼結体を構成することによって、原料粉末の圧縮成形時(特に金型への充填時)に、原料粉末中の扁平銅粉が金型と原料粉末との境界近傍に移動し、これにより高い確率で圧粉体表面を扁平銅粉が覆った状態となる。言い換えると、圧粉体の中心部に比べて表層部(例えば圧粉体表面から深さ20〜150μmまでの領域)における扁平銅粉の割合が多い状態となる。そのため、この圧粉体の焼結時に銅が主成分の金属粉末に固溶して固溶体が形成されることで、中心部に比べて表層部に多く存在した銅が消失して焼結体の表面に空孔が生じる。従って、焼結体の相対密度が高い場合であっても、その表面に銅の固溶による空孔を内部に比べて多く形成することができ、これにより高強度でありながら優れたアンカー効果を発現させることが可能となる。また、この種の焼結体に汎用的に使用されている銅粉末を使用するだけで、表面に多くの空孔を形成することができるので、銅粉末に扁平銅粉を使用すること以外の点については、従来の手法をそのまま適用することができる。従って、大幅なコストアップを招くことなく優れたアンカー効果を発現し得る焼結体を量産することが可能となる。   The present inventors pay attention to the copper powder generally used in producing a sintered body, and reduce the strength of the sintered body by controlling the shape of the copper powder and the sintering temperature conditions. It has been found that copper powder can function as a kind of surface pore-forming agent without The present invention has been made based on this finding, and a flat powder is formed on a raw material powder of a sintered body obtained by compression molding and sintering a raw material powder containing a metal powder having a melting point higher than that of copper as a main component. It was made to contain copper powder, and it was made for the sintered compact to contain the solid solution which solid copper powder becomes a solid solution in the metal powder of the main ingredients at the time of sintering. By forming the sintered body in this way, the flat copper powder in the raw material powder moves to the vicinity of the boundary between the mold and the raw material powder during compression molding of the raw material powder (especially when filling the mold), As a result, flat copper powder covers the green compact surface with high probability. In other words, the ratio of the flat copper powder in the surface layer (for example, the region from the surface of the green compact to a depth of 20 to 150 μm) is higher than that of the center of the green compact. Therefore, copper is dissolved in the metal powder of the main component at the time of sintering of the green compact to form a solid solution, so copper existing in the surface layer portion as compared with the central portion disappears and the sintered body There are voids on the surface. Therefore, even when the relative density of the sintered body is high, it is possible to form more pores on the surface due to the solid solution of copper compared with the inside, thereby providing excellent anchor effect while having high strength. It becomes possible to make it express. In addition, since it is possible to form many pores on the surface only by using a copper powder generally used for this kind of sintered body, it is possible to use a flat copper powder other than copper powder. For points, the conventional method can be applied as it is. Therefore, it becomes possible to mass-produce the sintered compact which can express the outstanding anchor effect, without causing a significant cost up.

また、本発明に係る焼結体においては、扁平銅粉の最大長手寸法を扁平銅粉の最大厚み寸法で除した値である扁平銅粉のアスペクト比が、10以上でかつ200以下であってもよく、好ましくは13以上でかつ160以下であってもよい。なお、ここでいう最大長手寸法とは、それぞれ図1に符号Lとtで示すように、扁平銅粉の外接円直径を意味し、最大厚み寸法とは、扁平銅粉の厚み方向寸法の最大値を意味する。   In the sintered body according to the present invention, the aspect ratio of the flat copper powder, which is a value obtained by dividing the maximum longitudinal dimension of the flat copper powder by the maximum thickness dimension of the flat copper powder, is 10 or more and 200 or less. And preferably 13 or more and 160 or less. The maximum longitudinal dimension referred to here means the circumscribed circle diameter of the flat copper powder as shown by the symbols L and t in FIG. 1, respectively, and the maximum thickness dimension is the maximum in the thickness direction of the flat copper powder. Means a value.

このような形状(アスペクト比)の扁平銅粉を使用することにより、原料粉末の圧縮成形時に、原料粉末中の扁平銅粉が金型と原料粉末との境界近傍に移動し、より高い確率で圧粉体表面を扁平銅粉が覆った状態とすることができる。従って、焼結時の銅の固溶により焼結体の表面に数多くの空孔を形成することができ、より優れたアンカー効果を発現させることが可能となる。   By using flat copper powder having such a shape (aspect ratio), the flat copper powder in the raw material powder moves to the vicinity of the boundary between the mold and the raw material powder during compression molding of the raw material powder, with higher probability. The compacted powder surface can be covered with flat copper powder. Therefore, it is possible to form many pores on the surface of the sintered body by solid solution of copper at the time of sintering, and it is possible to express a more excellent anchor effect.

また、本発明に係る焼結体においては、扁平銅粉の見かけ密度が0.2g/cm3以上でかつ1.4g/cm3未満であってもよく、好ましくは0.5g/cm3以上でかつ1.0g/cm3以下であってもよい。 In the sintered body according to the present invention, the apparent density of the flat copper powder may be 0.2 g / cm 3 or more and less than 1.4 g / cm 3 , preferably 0.5 g / cm 3 or more. And 1.0 g / cm 3 or less.

このような見かけ密度を示す形態及びサイズの扁平銅粉を使用することにより、原料粉末の圧縮成形時に、原料粉末中の扁平銅粉が金型と原料粉末との境界近傍に移動し、より高い確率で圧粉体表面を扁平銅粉で覆った状態とすることができる。従って、焼結時の銅の固溶により焼結体の表面に数多くの空孔を形成することができ、より優れたアンカー効果を発現させることが可能となる。   By using flat copper powder having such an apparent density and shape, flat copper powder in the raw material powder moves to the vicinity of the boundary between the mold and the raw material powder during compression molding of the raw material powder, which is higher The powder compact surface can be covered with flat copper powder with probability. Therefore, it is possible to form many pores on the surface of the sintered body by solid solution of copper at the time of sintering, and it is possible to express a more excellent anchor effect.

また、本発明に係る焼結体においては、扁平銅粉の原料粉末に占める割合が0.5wt%以上でかつ10.0wt%未満であってもよい。   In the sintered body according to the present invention, the ratio of the flat copper powder to the raw material powder may be 0.5 wt% or more and less than 10.0 wt%.

扁平銅粉の配合比を0.5wt%以上にすることで、好ましくは1.0wt%以上にすることで、上述した圧粉体表面への析出作用及び焼結時の固溶による空孔形成作用を効果的に享受することができる。また、扁平銅粉の配合比を10wt%未満に抑えることで、焼結体表面への空孔の過剰な形成を抑止して、アンカー効果の発現のために適正な数及びサイズ(表面積、深さなど)の空孔を形成することが可能となる。   By setting the compounding ratio of the flat copper powder to 0.5 wt% or more, preferably 1.0 wt% or more, the above-described precipitation action on the surface of the green compact and the formation of pores due to solid solution at the time of sintering The effects can be enjoyed effectively. In addition, by suppressing the compounding ratio of the flat copper powder to less than 10 wt%, excessive formation of pores on the surface of the sintered body can be suppressed, and the number and size (surface area, depth) appropriate for expression of the anchor effect And so on) can be formed.

また、本発明に係る焼結体においては、相対密度が80%以上であってもよい。なお、ここでいう相対密度とは、JIS Z 2501:2000に準拠のアルキメデス法に則って測定される焼結体の密度を、焼結体の原料粉末の真密度で割ることにより得られる値(重量比)を指すものとする。   In the sintered body according to the present invention, the relative density may be 80% or more. The relative density here is a value obtained by dividing the density of a sintered body measured according to the Archimedes method according to JIS Z 2501: 2000 by the true density of the raw material powder of the sintered body ( It refers to the weight ratio).

このように焼結体の相対密度を80%以上にすることによって、焼結体が例えば機械部品として最低限有するべき機械的強度を確保することができる。また、本発明によれば、相対密度が80%以上の焼結体であっても、上述した理由により表面に数多くの空孔を形成することができる。従って、焼結体自体が優れた機械的強度を得るだけでなく、他部材との間で優れたアンカー効果を発現して、高い接合強度を得ることが可能となる。   By setting the relative density of the sintered body to 80% or more in this way, it is possible to ensure the mechanical strength that the sintered body should have as a machine component, for example. Further, according to the present invention, even in the case of a sintered body having a relative density of 80% or more, many pores can be formed on the surface for the reason described above. Therefore, the sintered body itself can not only obtain excellent mechanical strength, but can also exhibit excellent anchor effect with other members to obtain high bonding strength.

また、本発明に係る焼結体においては、主成分の金属粉末は鉄系粉末であってもよい。なお、ここでいう鉄系とは純鉄のみならず鉄をベースとする合金を含む意である。また、ここでいう純鉄は工業用純鉄であり、不可避不純物を含んでいてもよい。   In the sintered body according to the present invention, the metal powder of the main component may be iron-based powder. The term "iron-based" as used herein means not only pure iron but also iron-based alloys. Moreover, pure iron here is industrial pure iron, and may contain unavoidable impurities.

鉄の融点(1535℃)は、銅の融点(1084℃)より高いことから、鉄系粉末を主成分とする場合の取り得る焼結温度の範囲は銅の融点よりも高くなる(例えば1150〜1350℃となる)。一方で、銅の鉄に対する固溶可能な温度範囲は1200〜1400℃である。従って、原料粉末の主成分としての鉄系粉末と、扁平銅粉との組み合わせによれば、比較的容易に主成分である鉄を適度に焼結しつつ、銅を鉄に固溶可能とする焼結条件(特に焼結温度条件)を設定することができる。また、鉄系粉末も銅粉末(扁平銅粉)と同様、粉末冶金の分野では汎用的に使用される粉末であるから、従来通りの技術を適用してコストアップを招くことなく焼結体を量産することが可能となる。   Since the melting point of iron (1535 ° C.) is higher than the melting point of copper (1084 ° C.), the range of possible sintering temperatures in the case of using iron-based powder as the main component is higher than the melting point of copper (e.g. 1350 ° C.). On the other hand, the temperature range in which copper can form a solid solution with iron is 1200 to 1400 ° C. Therefore, according to the combination of the iron-based powder as the main component of the raw material powder and the flat copper powder, copper can be dissolved in iron relatively easily while appropriately sintering iron as the main component. Sintering conditions (in particular, sintering temperature conditions) can be set. Moreover, since iron-based powder is also a powder used widely in the field of powder metallurgy as copper powder (flat copper powder), a sintered body can be used without applying cost increase by applying conventional techniques. It becomes possible to mass-produce.

以上説明したように、本発明に係る焼結体は、他部材との間で優れたアンカー効果を発現するものであるから、例えばこの焼結体で形成される第一の部材と、焼結体の表面に形成された空孔に一部が入り込んだ状態で第一の部材に固定されている第二の部材とを備えた接合体として好適に提供することが可能である。   As described above, since the sintered body according to the present invention exhibits an excellent anchor effect with other members, for example, the first member formed of this sintered body, and the sintering It is possible to suitably provide as a joined body including a second member fixed to the first member in a state where a part of the hole is formed in the surface of the body.

あるいは、本発明に係る焼結体は、この焼結体で形成される第一の部材と、接着層を介して第一の部材に固定されている第二の部材とを備え、接着層は、その一部が焼結体の表面に形成された空孔に入り込んだ状態で第一の部材に第二の部材を接合している接合体として提供することも可能である。   Alternatively, the sintered body according to the present invention includes a first member formed of the sintered body, and a second member fixed to the first member via the adhesive layer, and the adhesive layer is It is also possible to provide as a joined body in which the second member is joined to the first member in a state in which a part thereof is in the pores formed in the surface of the sintered body.

また、前記課題の解決は、本発明に係る焼結体の製造方法によっても達成される。すなわち、この製造方法は、銅よりも高い融点の金属粉末を主成分として含む原料粉末を圧縮成形し、焼結してなる焼結体の製造方法であって、原料粉末には、扁平形状をなす扁平銅粉が含まれ、焼結時、扁平銅粉を主成分の金属粉末に固溶させる点をもって特徴付けられる。   Moreover, the solution of the above-mentioned subject is achieved also by the manufacturing method of the sintered compact concerning the present invention. That is, this manufacturing method is a method of manufacturing a sintered body obtained by compression molding and sintering a raw material powder containing a metal powder having a melting point higher than copper as a main component, and the raw material powder has a flat shape. It is characterized in that it contains flat copper powder and causes the flat copper powder to form a solid solution in the metal powder of the main component during sintering.

このように、本発明に係る焼結体の製造方法によれば、本発明に係る焼結体と同様、原料粉末の圧縮成形時に、原料粉末中の扁平銅粉が金型と原料粉末との境界近傍に移動し、圧粉体の中心部に比べて表層部における扁平銅粉の割合が多い状態となる。そのため、この圧粉体の焼結時に銅が主成分の金属粉末に固溶して固溶体を形成することで、表層部に多く存在した銅が消失して焼結体の表面に空孔が生じる。従って、焼結体の相対密度が高い場合であっても、その表面に銅の固溶による空孔を内部に比べて多く形成することができ、これにより高密度でありながら優れたアンカー効果を発現させることが可能となる。また、この種の焼結体に汎用的に使用されている銅粉末を使用するだけで、表面に多くの空孔を形成することができるので、銅粉末に扁平銅粉を使用すること以外の点については、従来の手法をそのまま適用することができる。従って、大幅なコストアップを招くことなく優れたアンカー効果を発現し得る焼結体を量産することが可能となる。   As described above, according to the method for producing a sintered body according to the present invention, the flat copper powder in the raw material powder is a mold and the raw material powder at the time of compression molding of the raw material powder as in the sintered body according to the present invention. It moves to the vicinity of the boundary, and the ratio of flat copper powder in the surface layer portion is higher than that of the center portion of the green compact. Therefore, copper forms a solid solution in the metal powder of the main component at the time of sintering of the green compact to form a solid solution, so copper which is present in the surface layer disappears and pores are generated on the surface of the sintered body. . Therefore, even when the relative density of the sintered body is high, it is possible to form more pores due to the solid solution of copper on the surface than in the inside, thereby achieving an excellent anchor effect while having a high density. It becomes possible to make it express. In addition, since it is possible to form many pores on the surface only by using a copper powder generally used for this kind of sintered body, it is possible to use a flat copper powder other than copper powder. For points, the conventional method can be applied as it is. Therefore, it becomes possible to mass-produce the sintered compact which can express the outstanding anchor effect, without causing a significant cost up.

以上より、本発明によれば、高強度でありながら他部材との間で高い接合強度を得ることのできる焼結体をコストアップなく製造することが可能となる。   As described above, according to the present invention, it is possible to manufacture a sintered body capable of obtaining high bonding strength with other members while having high strength without increasing the cost.

本発明に係る扁平銅粉の側面図(上側)と平面図(下側)である。They are a side view (upper side) and a top view (lower side) of flat copper powder concerning the present invention. 本実施形態に係る焼結体の表面を平面視した図である。It is the figure which planarly viewed the surface of the sintered compact concerning this embodiment. 図2に示す表面を含む焼結体の表層部の拡大断面図である。It is an expanded sectional view of the surface layer part of the sintered compact containing the surface shown in FIG. 本実施形態に係る焼結体と軽量体との接合体の側面図である。It is a side view of the zygote of a sintered compact and a lightweight object concerning this embodiment. 図4に示す接合体の要部拡大断面図である。It is a principal part expanded sectional view of the joined body shown in FIG. (a)比較例1に係る焼結体の表面画像と、(b)実施例1に係る焼結体の表面画像である。(A) The surface image of the sintered compact which concerns on the comparative example 1, (b) It is the surface image of the sintered compact which concerns on Example 1. FIG. (a)比較例2に係る焼結体の表面画像と、(b)実施例2に係る焼結体の表面画像である。(A) The surface image of the sintered compact which concerns on the comparative example 2, (b) It is the surface image of the sintered compact which concerns on Example 2. FIG. (a)比較例1に係る焼結体の断面画像と、(b)実施例1に係る焼結体の断面画像である。(A) It is a cross-sectional image of the sintered compact which concerns on the comparative example 1, (b) It is a cross-sectional image of the sintered compact which concerns on Example 1. FIG. (a)比較例2に係る焼結体の断面画像と、(b)実施例2に係る焼結体の断面画像である。(A) It is a cross-sectional image of the sintered compact which concerns on the comparative example 2, (b) It is a cross-sectional image of the sintered compact which concerns on Example 2. FIG.

以下、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described.

本発明に係る焼結体は、所定の金属粉末を主成分として含むと共に、扁平形状をなす銅粉末、すなわち扁平銅粉を含む原料粉末を圧縮成形し、焼結してなるものである。以下、原料粉末の組成、混合、圧粉成形、焼結の順に詳細を説明する。   The sintered body according to the present invention comprises a predetermined metal powder as a main component, and is formed by compressing and sintering a flat-shaped copper powder, that is, a raw material powder containing flat copper powder. The details of the composition of the raw material powder, mixing, compacting and sintering will be described below in this order.

[原料粉末の組成]
原料粉末の主成分となる金属粉末としては、銅より融点の高い金属である限りにおいて、任意の金属粉末が使用可能である。さらにいえば、主成分の金属粉末同士の焼結が必須である場合、当該金属粉末を主成分として含む圧粉体を焼結可能な温度範囲が、焼結時に銅を固溶可能な温度範囲と重複する限りにおいて、任意の金属粉末が使用可能である。以上の条件を満たす金属粉末の一例として、鉄系粉末を挙げることができる。また、主成分の金属粉末の製造方法についても特に制限はなく、例えばガスアトマイズ法などのアトマイズ法をはじめとして、メカニカルアロイング法や還元法など公知の粉末製造技術を適用して得たものを使用することが可能である。
[Composition of raw material powder]
Any metal powder can be used as the metal powder that is the main component of the raw material powder, as long as it is a metal having a melting point higher than that of copper. Furthermore, when it is essential to sinter metal powders of the main component, the temperature range in which the green compact containing the metal powder as a main component can be sintered is a temperature range in which copper can be dissolved during sintering. Any metal powder can be used as long as it overlaps with. Iron-based powder can be mentioned as an example of the metal powder which satisfies the above conditions. In addition, there is no particular limitation on the method of producing the metal powder of the main component, for example, one obtained by applying known powder production technology such as mechanical alloying method or reduction method including atomizing method such as gas atomizing method It is possible.

また、主成分の金属粉末の粒度分布は特に限定されるものではなく、およそ機械部品として使用可能な機械的強度を示し得る程度の相対密度(例えば重量比で80%以上)にできればよい。この場合の粒度分布を平均粒径で表すと50〜200μmである。   Further, the particle size distribution of the metal powder of the main component is not particularly limited, as long as the relative density (for example, 80% or more by weight ratio) can be obtained so as to show mechanical strength usable as a mechanical part. The particle size distribution in this case is 50 to 200 μm in terms of an average particle size.

また、原料粉末の主成分となる金属粉末は何も一種類に限られるわけではなく、例えば純鉄粉末とステンレス粉末(第一鉄系粉末と第二鉄系粉末)、あるいは純鉄粉末と後述する扁平銅粉よりも扁平度合いの小さい汎用形状の純銅粉末(鉄系粉末と扁平銅粉ではない銅系粉末)など、二種類以上の金属粉末を主成分として使用することも可能である。この場合、双方の種類の金属粉末が同量ずつ含まれる場合や、何れか一方の種類の金属粉末が最も多く含まれ、他方の種類の金属粉末が二番目に多く含まれる場合などが考えられる。   Further, the metal powder which is the main component of the raw material powder is not limited to only one type, for example, pure iron powder and stainless steel powder (ferrous powder and ferric powder), or pure iron powder and It is also possible to use two or more types of metal powder as a main component, such as pure copper powder (iron-based powder and copper-based powder which is not flat copper powder) having a smaller degree of flatness than flat copper powder. In this case, it may be considered that the same amount of both types of metal powder is contained, or the most amount of either type of metal powder is contained and the other type of metal powder is secondly contained, etc. .

原料粉末に含まれる扁平銅粉としては、少なくとも原料粉末に含まれる当該銅粉の一部が圧粉成形時に金型と原料粉末との境界付近、言い換えると金型の成形面上に移動し得る限りにおいて、そのサイズないし扁平の度合いは任意である。一例として、扁平銅粉1が図1に示すような形状をなすものである場合、最大長手寸法Lが10μm以上でかつ100μm以下のもの、好ましくは20μm以上でかつ80μm以下のものが使用可能である。また、扁平銅粉1の最大厚み寸法tが0.25μm以上でかつ5.0μm以下のもの、好ましくは0.5μm以上でかつ3.0μm以下のものが使用可能である。ただし、最大長手寸法Lを最大厚み寸法tで除した値である扁平銅粉1のアスペクト比は主成分の金属粉末のそれ(アスペクト比)より大きいことが肝要であり、具体的には10以上でかつ200以下、さらにいえば13以上でかつ160以下であることが望ましい。   As flat copper powder contained in the raw material powder, at least a part of the copper powder contained in the raw material powder may move to the vicinity of the boundary between the mold and the raw material powder during compacting, in other words, onto the molding surface of the mold. Insofar, the size or degree of flatness is arbitrary. As an example, when flat copper powder 1 has a shape as shown in FIG. 1, one having a maximum longitudinal dimension L of 10 μm or more and 100 μm or less, preferably 20 μm or more and 80 μm or less can be used is there. Further, flat copper powder 1 having a maximum thickness dimension t of 0.25 μm or more and 5.0 μm or less, preferably 0.5 μm or more and 3.0 μm or less can be used. However, it is important that the aspect ratio of flat copper powder 1, which is a value obtained by dividing the maximum longitudinal dimension L by the maximum thickness dimension t, is larger than that of the metal powder of the main component (aspect ratio). And 200 or less, more preferably 13 or more and 160 or less.

また、扁平銅粉の見かけ密度については、0.2g/cm3以上でかつ1.4g/cm3未満のものが使用可能であり、好ましくは0.5g/cm3以上でかつ1.0g/cm3以下のものが使用可能である。なお、見かけ密度の定義は、JIS Z 8901の規定に準じる。 Also, the apparent density of the flat copper powder, and a 0.2 g / cm 3 or more but less than 1.4 g / cm 3 can be used, preferably at 0.5 g / cm 3 or more and 1.0 g / The thing of cm 3 or less is usable. The definition of the apparent density conforms to the definition of JIS Z 8901.

扁平銅粉の製造方法は任意であり、例えばアトマイズ法により製造された純銅粉を搗砕(Stamping)することで扁平化したものを使用してもよい。   The method for producing flat copper powder is optional, and for example, a flat copper powder produced by atomization may be flattened by crushing.

上記特徴を有する扁平銅粉の原料粉末に占める割合(配合比)は、例えば0.5wt%以上でかつ10.0wt%未満に設定される。このうち下限値について1.0wt%以上がより好ましく、上限値については8.0wt%以下がより好ましい。   The ratio (blending ratio) of the flat copper powder having the above characteristics to the raw material powder is set to, for example, 0.5 wt% or more and less than 10.0 wt%. Among these, 1.0 wt% or more is more preferable about a lower limit, and 8.0 wt% or less is more preferable about an upper limit.

また、原料粉末には、主成分の金属粉末と扁平銅粉以外の物質を添加してもよい。例えば圧粉成形時の金型との摺動抵抗を軽減する目的で、黒鉛や二硫化モリブデンなどの固体潤滑剤を一種類又は二種類以上添加してもよい。   Moreover, you may add substances other than the metal powder and flat copper powder of a main component to raw material powder. For example, one or two or more solid lubricants such as graphite and molybdenum disulfide may be added in order to reduce the sliding resistance with the mold at the time of compacting.

上記組成の原料粉末は、例えばV型混合器など公知の混合器に主成分の金属粉末と扁平銅粉、及び必要に応じて上述した添加剤を投入し、混合することによって各粉末が極力均一に分散した状態を作り出すことができる。   The raw material powder of the above composition is as uniform as possible by, for example, adding the metal powder and flat copper powder as main components and the above-mentioned additives as necessary to a known mixer such as a V-type mixer and mixing them. It can create a dispersed state.

[圧粉成形]
こうして均一な分散状態の原料粉末を取得した後、原料粉末を成形金型の所定領域(キャビティ)内に充填する。然る後、所定の条件下で例えば一軸加圧方式で冷間プレスを行うことにより、原料粉末が圧縮され、所定の形状をなす圧粉体に成形される。この際、最終的に得られる焼結体の相対密度が80%以上になるように、圧縮成形条件(例えば原料粉末の充填量や上パンチの下死点位置など)を適宜設定するのがよい。
Compacting
After obtaining the uniformly dispersed raw material powder in this way, the raw material powder is filled in a predetermined area (cavity) of the molding die. Thereafter, the raw material powder is compressed by performing cold pressing under a predetermined condition, for example, by a uniaxial pressing method, and is formed into a green compact having a predetermined shape. At this time, it is preferable to appropriately set compression molding conditions (for example, the filling amount of the raw material powder, the upper dead point position of the upper punch, etc.) so that the relative density of the finally obtained sintered body is 80% or more. .

なお、この圧粉成形時、原料粉末に含まれる扁平銅粉は主成分となる金属粉末よりも見かけ密度が小さく(平均粒径が小さく)、かつ相対的に扁平度合いが高い形状をなしているが故に、例えばキャビティへの充填時に扁平銅粉が成形面近傍に析出(移動)し易い。また、扁平銅粉が成形面に付着し易い。これにより、圧縮成形して得た圧粉体の表面もしくはその近傍(表層部)では、相対的に扁平銅粉の割合が高く、中心部では低い状態となる。   In this compacting process, the flat copper powder contained in the raw material powder has a smaller apparent density (smaller average particle diameter) and a relatively higher degree of flatness than the metal powder as the main component. Therefore, flat copper powder is likely to precipitate (move) in the vicinity of the molding surface, for example, when filling the cavity. In addition, flat copper powder easily adheres to the molding surface. As a result, the proportion of flat copper powder is relatively high at the surface of the green compact obtained by compression molding or in the vicinity thereof (surface layer portion), and is low at the central portion.

なお、圧粉成形の手法は任意であり、上述した一軸加圧成形以外の成形手法を適用することも可能である。具体的には、多軸CNCプレスによる成形手法や、冷間静水圧加圧(CIP)による成形手法などを適用することも可能である。また、冷間プレス成形に限らず、金型と原料粉末を加熱した状態で圧粉成形を行う温間プレス成形や、金型の表面に潤滑剤を保持した状態でプレス成形を行う金型潤滑成形を適用してもよい。また、成形金型の材質は特に問わない。成形金型の成形面に、ダイヤモンドライクカーボン(DLC)やCrN、TiN、TiAlNなどの各種窒化膜を含む硬質膜をコーティングしたものを使用してもよい。   In addition, the method of compacting is arbitrary, and it is also possible to apply shaping | molding methods other than the uniaxial pressing mentioned above. Specifically, it is also possible to apply a forming method using a multi-axis CNC press or a forming method using cold isostatic pressing (CIP). Also, not limited to cold press molding, warm press molding in which powder compacting is performed in a state where a mold and a raw material powder are heated, and mold lubrication in which press molding is performed in a state where a lubricant is held on the surface of the mold. Molding may be applied. Further, the material of the molding die is not particularly limited. The molding surface of the molding die may be coated with a hard film containing various nitride films such as diamond like carbon (DLC), CrN, TiN, TiAlN and the like.

[焼結]
圧粉体は、例えば炉などの加熱装置により所定の熱処理を施すことにより焼結される。ここで、焼結時の最高温度(いわゆる焼結温度)は、主成分の金属粉末の融点に基づいて設定される。一方、本発明では、主成分の金属粉末と共に圧粉体を構成している扁平銅粉が上記金属粉末に固溶可能な温度範囲で加熱時の最高温度を設定する。すなわち、主成分の金属粉末同士が焼結により結合すると共に、扁平銅粉が主成分の金属粉末に固溶するように焼結時の最高温度が設定される。本実施形態では、焼結時の最高温度を1200〜1300℃(主成分の金属粉末の[融点×80〜85%]℃)に設定している。これにより主成分の金属粉末同士が結合し、焼結体が形成されると共に、圧粉体中の扁平銅粉が主成分の金属粉末に固溶し、固溶体が形成される。銅組織からなる扁平銅粉は主に圧粉体の表面及びその近傍(表層部)に分散しているため、上述のように固溶が生じると、表層部の銅組織が消失し、代わりに空孔が生じる。よって、図2に示すように、焼結体2の表面3には、圧粉体の段階で既に開口していた空孔4と、銅の固溶により焼結後に新たに生じた空孔5とが混在した状態となる。この場合、焼結体2は、例えば図3に示すように主成分の金属組織7や、扁平形状をなす銅組織8を有すると共に、特に表層部6では、主成分の金属組織7に銅が固溶してなる固溶体9を有する。この場合、銅の固溶により焼結時に生じた空孔5が固溶体9に隣接して存在していることが多い。なお、本実施形態では、焼結により最終製品としての焼結体が完成するが、もちろん必要に応じて焼結後に他の熱処理を施してもよい。あるいは熱処理以外の加工(サイジング等の寸法矯正加工など)、洗浄などの後処理を施してもよい。
[Sintering]
The green compact is sintered by applying a predetermined heat treatment using a heating device such as a furnace. Here, the maximum temperature during sintering (so-called sintering temperature) is set based on the melting point of the main component metal powder. On the other hand, in the present invention, the maximum temperature at the time of heating is set within a temperature range in which the flat copper powder constituting the green compact together with the metal powder of the main component can form a solid solution in the metal powder. That is, while the metal powders of the main component are joined by sintering, the maximum temperature at the time of sintering is set so that the flat copper powder forms a solid solution in the metal powder of the main component. In the present embodiment, the maximum temperature during sintering is set to 1200 to 1300 ° C. ([melting point × 80 to 85%] ° C. of the metal powder of the main component). As a result, the metal powders of the main component are bonded together to form a sintered body, and the flat copper powder in the green compact is solid-solved in the metal powder of the main component to form a solid solution. Since the flat copper powder consisting of a copper structure is mainly dispersed on the surface of the green compact and in the vicinity thereof (surface layer portion), when solid solution occurs as described above, the copper structure of the surface layer disappears, and instead A void is created. Therefore, as shown in FIG. 2, on the surface 3 of the sintered body 2, the pores 4 already opened at the stage of the green compact and the pores 5 newly formed after sintering due to the solid solution of copper. And are mixed. In this case, for example, as shown in FIG. 3, the sintered body 2 has the metal structure 7 of the main component and the copper structure 8 having a flat shape, and particularly in the surface layer portion 6, the metal structure 7 of the main component is copper. It has a solid solution 9 formed as a solid solution. In this case, the pores 5 generated at the time of sintering due to the solid solution of copper often exist adjacent to the solid solution 9. In the present embodiment, although a sintered body as a final product is completed by sintering, it is needless to say that another heat treatment may be performed after sintering if necessary. Alternatively, processing other than heat treatment (such as dimension correction processing such as sizing) or post-processing such as washing may be performed.

このように、本発明に係る焼結体2によれば、原料粉末の圧縮成形時に、原料粉末中の扁平銅粉1が金型と原料粉末との境界近傍に移動し、圧粉体の中心部に比べて表層部における扁平銅粉1の割合が多い状態となる。そのため、この圧粉体の焼結時に銅が主成分の金属粉末に固溶して固溶体9を形成することで、表層部6に多く存在した銅が消失して焼結体2の表面3に空孔5が生じる。従って、焼結体2の相対密度が高い場合(80%以上)であっても、その表面3に銅の固溶による空孔5を内部に比べて多く形成することができる。そのため、例えば図4に示すように、この焼結体2とアルミニウムなどの軽金属で形成された軽量体10とを接着層11を介して接合してなる接合体12を製造することを考えた場合、接着層11の一部11aが例えば加熱により焼結体2の表面3に形成された空孔4,5に入り込んだ状態となる(図5を参照)。よって、この状態で一部11aを含む接着層11を固化することで、接着層11の一部11aと空孔4,5とが係合し、アンカー効果を発現し得る状態となる。これにより、高密度でありながら焼結体2と接着層11との間で高い接合強度を得ることができ、ひいては焼結体2と軽量体10との接合強度を高めることが可能となる。また、焼結体2に汎用的に使用されている銅粉末(扁平銅粉1)を使用するだけで、表面3に多くの空孔5を形成することができるので、銅粉末に扁平銅粉1を使用すること以外の点については、従来の手法をそのまま適用することができる。従って、大幅なコストアップを招くことなく優れたアンカー効果を発現し得る焼結体2を量産することが可能となる。ひいては、高い接合強度を有する焼結体2と軽量体10との接合体12を製造することが可能となる。   Thus, according to the sintered body 2 of the present invention, the flat copper powder 1 in the raw material powder moves to the vicinity of the boundary between the mold and the raw material powder during compression molding of the raw material powder, and the center of the green compact is obtained. The proportion of the flat copper powder 1 in the surface layer portion is higher than that of the portion. Therefore, copper forms a solid solution in the metal powder of the main component at the time of sintering of the green compact to form a solid solution 9, so that a large amount of copper in the surface layer portion 6 disappears and the surface 3 of the sintered body 2 is Holes 5 are generated. Therefore, even when the relative density of the sintered body 2 is high (80% or more), many pores 5 can be formed on the surface 3 due to the solid solution of copper compared with the inside. Therefore, for example, as shown in FIG. 4, it is considered to manufacture a joined body 12 formed by joining the sintered body 2 and the lightweight body 10 formed of a light metal such as aluminum via the adhesive layer 11. The part 11a of the adhesive layer 11 enters the holes 4 and 5 formed on the surface 3 of the sintered body 2 by heating, for example (see FIG. 5). Therefore, by solidifying the adhesive layer 11 including the part 11a in this state, the part 11a of the adhesive layer 11 and the holes 4 and 5 are engaged, and the anchor effect can be exhibited. As a result, it is possible to obtain high bonding strength between the sintered body 2 and the adhesive layer 11 while having high density, and it is possible to increase the bonding strength between the sintered body 2 and the lightweight body 10. Moreover, since it is possible to form many pores 5 on the surface 3 only by using copper powder (flat copper powder 1) used widely for sintered body 2, flat copper powder can be formed into copper powder. The conventional method can be applied as it is, except that 1 is used. Therefore, it becomes possible to mass-produce the sintered compact 2 which can express the outstanding anchor effect, without causing a significant cost up. As a result, it is possible to manufacture a joined body 12 of the sintered body 2 and the lightweight body 10 having high bonding strength.

以上、本発明の一実施形態を説明したが、本発明に係る焼結体並びにこの焼結体を含む接合体、及び焼結体の製造方法は上記例示の形態に限定されることなく、本発明の範囲内において任意の形態を採り得ることはもちろんである。   As mentioned above, although one Embodiment of this invention was described, the manufacturing method of the sintered compact concerning this invention, the joined body containing this sintered body, and a sintered compact is not limited to the form of the said illustration, This invention Of course, any form can be taken within the scope of the invention.

例えば、上記実施形態では、焼結体と軽量体との接合体として、焼結体と軽金属体との間に接着層を介して一体化したものを例示したが、もちろん本発明に係る接合体はこれには限定されない。例えば焼結体をインサートとする樹脂材のインサート成形で焼結体と樹脂材を一体化してもよい。この場合、焼結金属材の表面に形成された空孔に樹脂材の一部が入り込んだ状態で一体化される。要は、焼結金属材の接合対象となる異種材の一部が焼結金属材の表面に設けられた空孔に入り込んだ状態で焼結金属材と異種材とが一体化される。   For example, in the above embodiment, as a joined body of a sintered body and a lightweight body, one integrated between a sintered body and a light metal body via an adhesive layer is exemplified, but of course the joined body according to the present invention Is not limited to this. For example, the sintered body and the resin material may be integrated by insert molding of a resin material having the sintered body as an insert. In this case, the resin material is integrated in a state in which a part of the resin material is intruded into the pores formed on the surface of the sintered metal material. The point is that the sintered metal material and the dissimilar material are integrated in a state in which a part of the dissimilar material to be joined of the sintered metal material enters the pores provided on the surface of the sintered metal material.

もちろん、以上の説明に係る焼結体は、必ずしも異種材との接合用途に限定されるものではなく、同種材との接合に用いることも可能である。また、焼結体単体もしくは接合体として種々の用途の機械部品に広範に適用可能である。また、焼結体単体もしくは接合体の形状についても特に限定されない。そのため、矩形板状、円板状、円筒状など、種々の形状を有する機械部品全般に適用することはもちろんである。   Of course, the sintered body according to the above description is not necessarily limited to the use for bonding with different materials, and can also be used for bonding with the same materials. Moreover, it is widely applicable to the machine component of various uses as a sintered compact single body or a joined body. Further, the shape of the sintered body alone or the bonded body is not particularly limited. Therefore, of course, the present invention is applied to all mechanical parts having various shapes such as a rectangular plate shape, a disk shape, and a cylindrical shape.

以下、本発明の有用性を立証するための実施例について説明する。   Hereinafter, examples for demonstrating the utility of the present invention will be described.

(一次試験片の作製)
まず原料粉末の主成分となる金属粉末として純鉄粉末を用いると共に、銅粉末を用い、かつ黒鉛と、固体潤滑剤としてWAX系潤滑剤を用いて、実施例1〜3、並びに比較例1〜3に係る一次試験片(何れも焼結体)を作製した。この際、銅粉末として、比較例1〜3では、福田金属箔粉工業(株)の電解銅粉CE−15(見かけ密度:1.4〜1.6g/cm3)を使用し、実施例1〜3では、同社製の扁平銅粉MS−800(見かけ密度:0.5〜1.0g/cm3)を使用した。ここで用いた扁平銅粉の最大長手寸法Lは20〜80μm、最大厚み寸法tは0.5〜3.0μm(アスペクト比L/t=13.3〜160)である。各銅粉末の添加量は、1.0wt%(比較例1、実施例1)、5.0wt%(比較例2、実施例2)、8.0wt%(実施例3)、10.0wt%(比較例3)の4水準とした。何れの比較例、実施例についても、筒井理化学器械株式会社製のV型混合器で上記純鉄粉末と銅粉末、黒鉛、及び固体潤滑剤を40分間混合して原料粉末を得た。然る後、合金工具鋼SKD11製の成形金型を使用し、フローティングダイ方式による一軸加圧成形によって、所定形状、ここでは板状の圧粉体を成形した。成形条件は980MPaで室温とした。なお、この際、得られる圧粉体の長手方向寸法は60mm、幅方向寸法は12mm、厚み方向寸法は2mmとした。
(Preparation of primary test piece)
First, while using pure iron powder as metal powder which is a main component of raw material powder, using copper powder and using graphite and a wax lubricant as a solid lubricant, Examples 1 to 3 and Comparative Examples 1 to 1 The primary test pieces (all were sintered bodies) according to No. 3 were produced. At this time, electrolytic copper powder CE-15 (apparent density: 1.4 to 1.6 g / cm 3 ) manufactured by Fukuda Metal Foil & Powder Industry Co., Ltd. is used as a copper powder in Comparative Examples 1 to 3 as an example. In 1-3, flat copper powder MS-800 (apparent density: 0.5 to 1.0 g / cm 3 ) manufactured by the same company was used. The maximum longitudinal dimension L of the flat copper powder used here is 20 to 80 μm, and the maximum thickness dimension t is 0.5 to 3.0 μm (aspect ratio L / t = 13.3 to 160). The addition amount of each copper powder is 1.0 wt% (Comparative Example 1, Example 1), 5.0 wt% (Comparative Example 2, Example 2), 8.0 wt% (Example 3), 10.0 wt% It was made into four levels of (comparative example 3). The pure iron powder, the copper powder, the graphite, and the solid lubricant were mixed for 40 minutes in a V-type mixer manufactured by Tsurui Rikakai Kikai Co., Ltd. for any of the comparative examples and the examples to obtain a raw material powder. Thereafter, a molding die made of alloy tool steel SKD11 was used to form a green compact having a predetermined shape, here, a plate-like shape, by uniaxial pressing using a floating die method. The molding conditions were room temperature at 980 MPa. At this time, the dimension of the green compact obtained in the longitudinal direction was 60 mm, the dimension in the width direction was 12 mm, and the dimension in the thickness direction was 2 mm.

上述のようにして得られた圧粉体をプッシャー炉にて1250℃にまで加熱し90分保持した。これにより圧粉体を焼結し、一次試験片(焼結体)を作製した。各一次試験片の焼結密度を表1に示す。なお、ここでいう焼結密度は、アルキメデス法により測定した焼結体の密度である。
The green compact obtained as described above was heated to 1250 ° C. in a pusher furnace and held for 90 minutes. Thereby, the green compact was sintered to prepare a primary test piece (sintered body). The sintered density of each primary test piece is shown in Table 1. Here, the sintering density is the density of the sintered body measured by the Archimedes method.

(表面の観察)
また、各一次試験片の表面並びに断面をキーエンス(株)製のデジタルマイクロスコープVHX−5000で観察し、撮影により表面画像並びに断面画像を取得した。代表例として、比較例1に係る一次試験片の表面画像を図6(a)に、実施例1に係る一次試験片の表面画像を図6(b)にそれぞれ示すと共に、比較例2に係る一次試験片の表面画像を図7(a)に、実施例2に係る一次試験片の表面画像を図7(b)にそれぞれ示す。また、比較例1に係る一次試験片の断面画像を図8(a)に、実施例1に係る一次試験片の断面画像を図8(b)にそれぞれ示すと共に、比較例2に係る一次試験片の断面画像を図9(a)に、実施例2に係る一次試験片の断面画像を図9(b)にそれぞれ示す。
(Observation of the surface)
In addition, the surface and cross section of each primary test piece were observed with a digital microscope VHX-5000 manufactured by Keyence Corporation, and a surface image and a cross-sectional image were obtained by photographing. As a representative example, the surface image of the primary test piece according to Comparative Example 1 is shown in FIG. 6 (a), and the surface image of the primary test piece according to Example 1 is shown in FIG. 6 (b). The surface image of the primary test piece is shown in FIG. 7 (a), and the surface image of the primary test piece according to the second embodiment is shown in FIG. 7 (b). Further, FIG. 8A shows a cross-sectional image of the primary test piece according to Comparative Example 1, and FIG. 8B shows a cross-sectional image of the primary test piece according to Example 1. The cross-sectional image of the piece is shown in FIG. 9 (a), and the cross-sectional image of the primary test piece according to the second embodiment is shown in FIG. 9 (b).

(表面空孔率の測定)
また、取得した各表面画像につき三谷商事(株)のwinROOFで所定の画像処理を施すことにより、各一次試験片の表面空孔率を測定した。各一次試験片の表面空孔率を表1に示す。
(Measurement of surface porosity)
Moreover, the surface porosity of each primary test piece was measured by performing predetermined | prescribed image processing with winROOF of Mitani Corporation about each acquired surface image. The surface porosity of each primary test piece is shown in Table 1.

(母材強度の評価)
また、実施例1〜3、比較例1〜3と同一の組成及び条件で円筒状の焼結金属材を作製し、これら円筒状焼結金属材の強度(母材強度)を、JIS Z 2507に準拠して実施した圧環強さの測定結果に基づき評価した。この試験は、万能試験機を用いて、ストローク制御で行った。試験時のストローク速度を0.1mm/minとした。ここで圧環強さとは、圧環荷重から一定の方法で求められる円筒状焼結金属材の強度をいい、圧環荷重とは、円筒状焼結金属材を軸に平行な二面で圧縮して割れが生じ始めたときの荷重をいう。各一次試験片の母材強度を表1に示す。
(Evaluation of base material strength)
In addition, cylindrical sintered metal materials are produced under the same composition and conditions as in Examples 1 to 3 and Comparative Examples 1 to 3, and the strength (base material strength) of these cylindrical sintered metal materials is measured according to JIS Z 2507. It evaluated based on the measurement result of the crushing strength implemented based on the above. This test was conducted under stroke control using a universal testing machine. The stroke speed at the time of the test was 0.1 mm / min. Here, the radial crushing strength means the strength of the cylindrical sintered metal material determined by a constant method from the radial crushing load, and the radial crushing load compresses the cylindrical sintered metal material in two planes parallel to the axis and causes cracking. Refers to the load at which The base material strength of each primary test piece is shown in Table 1.

(試験片の作製)
次に、上述の如く得られた一次試験片に異種材としての軽量体試験片(二次試験片)を接合することにより試験片(接合体)を作製した。具体的には、共に板状をなす一次試験片と二次試験片(ここではアルミニウム材としてのA5052)を用意し、一次試験片の長手方向一端部と二次試験片の長手方向一端部を重ね合せて、重ね合せた部分に厚み80μmの熱接着フィルムを介在させた状態で、ホットプレスにより150℃に加熱した。これにより、熱接着フィルムを介して一次試験片と二次試験片とを相互に固定し、試験片(接合体)を作製した。なお、この際の接着面積は50mm2とした。
(Preparation of test piece)
Next, a test piece (joined body) was produced by joining a lightweight body test piece (secondary test piece) as a dissimilar material to the primary test piece obtained as described above. Specifically, a primary test piece and a secondary test piece (here, A5052 as an aluminum material) both having a plate shape are prepared, and one longitudinal end of the primary test piece and one longitudinal end of the secondary test strip are It piled up and heated to 150 degreeC by the hot press in the state which interposed the 80-micrometer-thick heat adhesive film in the piled part. Thereby, a primary test piece and a secondary test piece were mutually fixed via the heat bond film, and the test piece (joined body) was produced. The adhesion area at this time was 50 mm 2 .

(接合強度の評価)
また、実施例1〜3、比較例1〜3に係る試験片の接合強度を、ISO19095−3に準じたせん断引っ張り試験により測定し、評価した。この試験は、万能試験機を用いて、ストローク制御で行った。試験時のストローク速度を10mm/minとした。各試験片の接合強度を表1に示す。
(Evaluation of bonding strength)
Moreover, the joint strength of the test piece which concerns on Examples 1-3 and Comparative Examples 1-3 was measured by the shear tension test according to ISO19095-3, and was evaluated. This test was conducted under stroke control using a universal testing machine. The stroke speed at the time of the test was 10 mm / min. The bonding strength of each test piece is shown in Table 1.

次に、評価結果について説明する。   Next, evaluation results will be described.

(銅粉末の形状が接合強度に及ぼす影響)
表1から分かるように、銅粉末の形状が汎用の形状、すなわち球状ないし球状に近い形状の場合(比較例1〜3の場合)、銅粉末の添加量の多寡に関係なく、全体的に接合強度は低い値を示した。これに対して、銅粉末の形状が扁平形状をなす場合(実施例1〜3の場合)、銅粉末が汎用の球形状をなす場合と比べて、全体的に接合強度は高い値を示した。同一の配合量では、常に扁平銅粉を用いた場合のほうが、汎用の球状銅粉を用いた場合よりも表面空孔率が高い、との結果(表1)も、扁平銅粉を用いたほうが高い接合強度を示すことを裏付けている。以上の結果より、所定の形状(扁平形状)をなす銅粉末を焼結体表面の空孔形成剤として使用することにより、高密度でありながら他部材との間で高い接合強度を得ることのできる焼結体を製造できることが分かった。
(Effect of shape of copper powder on bonding strength)
As can be seen from Table 1, when the shape of the copper powder is a general-purpose shape, that is, a spherical or nearly spherical shape (in the case of Comparative Examples 1 to 3), overall bonding is performed regardless of the amount of copper powder added. The intensity showed a low value. On the other hand, when the shape of the copper powder has a flat shape (in the case of Examples 1 to 3), the bonding strength as a whole shows a higher value than in the case where the copper powder has a general spherical shape. . The results (Table 1) also show that flat copper powder was used in the same compounding amount, in which the surface porosity was higher in the case of always using flat copper powder than in the case of using general-purpose spherical copper powder (Table 1). It confirms that it shows higher bond strength. From the above results, by using a copper powder having a predetermined shape (flat shape) as a pore forming agent on the surface of a sintered body, it is possible to obtain high bonding strength with other members while having high density. It turned out that a sinter which can be produced can be manufactured.

(扁平銅粉の配合量が接合強度に及ぼす影響)
また、表1から分かるように、汎用の球状銅粉を用いた場合(比較例1〜3)、当該銅粉の配合量を増やすにつれて、焼結密度が低下した。また、配合量が増えても接合強度は全体的に低いままであった。これに対して、扁平銅粉を用いた場合(実施例1〜3)、当該銅粉の配合量が増えても、焼結密度の低下はほとんど見られなかった。また、配合量をある程度まで増やしたほうが(本実施例の組成だと、配合量を8.0wt%程度まで増やしたほうが)高い接合強度を得られることが分かった。
(Effect of blending amount of flat copper powder on bonding strength)
In addition, as can be seen from Table 1, when general-purpose spherical copper powder was used (Comparative Examples 1 to 3), the sintering density decreased as the compounding amount of the copper powder was increased. Moreover, even if the compounding amount increased, the bonding strength remained generally low. On the other hand, when flat copper powder was used (Examples 1-3), even if the compounding quantity of the said copper powder increased, the fall of sintering density was hardly seen. Also, it was found that higher bonding strength can be obtained by increasing the compounding amount to a certain extent (when the composition is increased to about 8.0 wt% in the composition of this example).

1 扁平銅粉
2 焼結体
3 表面
4 空孔(圧粉体の時点で存在)
5 空孔(焼結時の固溶で形成)
6 表層部
7 金属組織
8 銅組織
9 固溶体
10 軽量体
11 接着層
11a 一部
12 接合体
1 Flat copper powder 2 Sintered body 3 Surface 4 hole (present at the time of green compact)
5 Holes (formed by solid solution during sintering)
6 surface portion 7 metal structure 8 copper structure 9 solid solution 10 light weight body 11 adhesive layer 11 a part 12 joined body

Claims (9)

銅よりも融点の高い金属粉末を主成分として含む原料粉末を圧縮成形し、焼結してなる焼結体であって、
前記原料粉末には、扁平形状をなす扁平銅粉が含まれ、
前記扁平銅粉が焼結時に前記主成分の金属粉末に固溶してなる固溶体が含まれている焼結体。
A sintered body obtained by compression molding and sintering a raw material powder containing a metal powder having a melting point higher than that of copper as a main component,
The raw material powder contains flat copper powder having a flat shape,
A sintered body containing a solid solution in which the flat copper powder forms a solid solution in the metal powder of the main component at the time of sintering.
前記扁平銅粉の長手方向寸法を前記扁平銅粉の厚み方向寸法で除した値である前記扁平銅粉のアスペクト比が、10以上でかつ200以下である請求項1に記載の焼結体。   The sintered body according to claim 1, wherein the aspect ratio of the flat copper powder, which is a value obtained by dividing the longitudinal direction dimension of the flat copper powder by the thickness direction dimension of the flat copper powder, is 10 or more and 200 or less. 前記扁平銅粉の見かけ密度が0.2g/cm2以上でかつ1.4g/cm2未満である請求項1又は2に記載の焼結体。 The sintered compact according to claim 1 or 2 whose apparent density of said flat copper powder is 0.2 g / cm 2 or more and less than 1.4 g / cm 2 . 前記扁平銅粉の前記原料粉末に占める割合が0.5wt%以上でかつ10.0wt%未満である請求項1〜3の何れか一項に記載の焼結体。   The sintered compact according to any one of claims 1 to 3, wherein a proportion of the flat copper powder in the raw material powder is 0.5 wt% or more and less than 10.0 wt%. 相対密度が80%以上である請求項1〜4の何れか一項に記載の焼結体。   The sintered body according to any one of claims 1 to 4, which has a relative density of 80% or more. 前記主成分の金属粉末は鉄系粉末である請求項1〜5の何れか一項に記載の焼結体。   The sintered compact according to any one of claims 1 to 5, wherein the metal powder of the main component is an iron-based powder. 請求項1〜6の何れか一項に記載の焼結体で形成される第一の部材と、前記焼結体の表面に形成された空孔に一部が入り込んだ状態で前記第一の部材に固定されている第二の部材とを備えた連結体。   The first member formed of the sintered body according to any one of claims 1 to 6, and the first member in a state in which a part of the first member is intruded into the pores formed on the surface of the sintered body. And a second member fixed to the member. 請求項1〜6の何れか一項に記載の焼結体で形成される第一の部材と、接着層を介して前記第一の部材に固定されている第二の部材とを備え、前記接着層は、その一部が前記焼結体の表面に形成された空孔に入り込んだ状態で前記第一の部材に前記第二の部材を接合している連結体。   A first member formed of the sintered body according to any one of claims 1 to 6, and a second member fixed to the first member via an adhesive layer, A bonding body in which the bonding layer bonds the second member to the first member in a state where a part of the bonding layer is in a void formed in the surface of the sintered body. 銅よりも高い融点の金属粉末を主成分として含む原料粉末を圧縮成形し、焼結してなる焼結体の製造方法であって、
前記原料粉末には、扁平形状をなす扁平銅粉が含まれ、
前記焼結時、前記扁平銅粉を前記主成分の金属粉末に固溶させる焼結体の製造方法。
A method for producing a sintered body, comprising compression molding a raw material powder containing a metal powder having a melting point higher than that of copper as a main component, and sintering the raw material powder,
The raw material powder contains flat copper powder having a flat shape,
The manufacturing method of the sintered compact which makes the said flat copper powder the solid solution in the metal powder of the said main component at the time of the said sintering.
JP2017196890A 2017-10-10 2017-10-10 Sintered body, joined body including the sintered body, and production method of sintered body Pending JP2019070183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017196890A JP2019070183A (en) 2017-10-10 2017-10-10 Sintered body, joined body including the sintered body, and production method of sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017196890A JP2019070183A (en) 2017-10-10 2017-10-10 Sintered body, joined body including the sintered body, and production method of sintered body

Publications (1)

Publication Number Publication Date
JP2019070183A true JP2019070183A (en) 2019-05-09

Family

ID=66441048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196890A Pending JP2019070183A (en) 2017-10-10 2017-10-10 Sintered body, joined body including the sintered body, and production method of sintered body

Country Status (1)

Country Link
JP (1) JP2019070183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157386A1 (en) * 2022-02-18 2023-08-24 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy, and iron-based sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157386A1 (en) * 2022-02-18 2023-08-24 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy, and iron-based sintered body

Similar Documents

Publication Publication Date Title
KR100187616B1 (en) Sintered friction material composite copper alloy powder used therefor and manufacturing method thereof
KR101321110B1 (en) Metallurgical composition of particulate materials, self-lubricating sintered product and process for obtaining self-lubricating sintered products
JP2017514697A (en) Method for the manufacture of parts made from metal or metal matrix composites and results from processes comprising additive manufacturing and subsequent forging of said parts
KR101673821B1 (en) Wax-based organic binder composition for powder forming and feedstock using the same
JP5750076B2 (en) Powder for molding and method for producing the same
JP2019070183A (en) Sintered body, joined body including the sintered body, and production method of sintered body
JP4658602B2 (en) Mixture for producing compression molded products
JP6461626B2 (en) Manufacturing method of sliding member
JP5841089B2 (en) Molding powder, lubricant concentrated powder, and method for producing metal member
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
JP6793730B2 (en) Material obtained by compressing metallic powder to increase the density
JP3110637B2 (en) Closed powder forging method
JP2013194254A (en) Iron-based powder, powder for molding and sintered compact
JP5786755B2 (en) Method for producing ferrous sintered material
JPH0456702A (en) Raw material powder for powder metallurgy and manufacture thereof
JPS5881946A (en) Al type sintered bearing alloy and preparation thereof
KR101856387B1 (en) High density molding method mixed powder
JP2010133029A (en) Metal composite material and method for producing the same
JP2017137533A (en) Composite sintered compact and method for producing the same
JP2018184632A (en) Sintered metallic material, sintered metallic composite material containing the sintered metallic material, and method for producing the sintered metallic material
EP2343142A2 (en) Powder metallurgical composition and process for manufacturing nanofiber reinforced powder metallurgy product from the same
JP2018168403A (en) Sintered aluminum alloy material and manufacturing method therefor
JP2000144208A (en) Compression molding method of powder for powder metallurgy
JP6450213B2 (en) Warm forming method
JPH0533013A (en) Production of highly accurate aluminum alloy sliding parts