JP2017137533A - Composite sintered compact and method for producing the same - Google Patents
Composite sintered compact and method for producing the same Download PDFInfo
- Publication number
- JP2017137533A JP2017137533A JP2016019711A JP2016019711A JP2017137533A JP 2017137533 A JP2017137533 A JP 2017137533A JP 2016019711 A JP2016019711 A JP 2016019711A JP 2016019711 A JP2016019711 A JP 2016019711A JP 2017137533 A JP2017137533 A JP 2017137533A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- compact
- green compact
- composite sintered
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、複数の焼結体を拡散接合してなる複合焼結体及びその製造方法に関する。 The present invention relates to a composite sintered body formed by diffusion bonding a plurality of sintered bodies and a method for producing the same.
粉末冶金製品の一種である焼結体は、金属粉末を含む混合粉末を圧縮して圧粉体を成形する圧粉工程と、圧粉体を所定の温度で加熱する焼結工程とを経て製造される。圧粉工程は一軸プレス機を用いて行われることが多いため、圧粉体がアンダーカット形状を有する場合は、圧粉体を金型から取り出すことができない。このため、製品の形状には制限があった。 A sintered compact, which is a kind of powder metallurgy product, is manufactured through a compacting process in which a powder mixture containing metal powder is compressed to form a compact and a sintering process in which the compact is heated at a predetermined temperature. Is done. Since the compacting process is often performed using a uniaxial press, if the compact has an undercut shape, the compact cannot be removed from the mold. For this reason, the shape of the product has been limited.
例えば、複数の焼結体を接合してなる複合焼結体であれば、アンダーカット形状を有するような複雑形状の製品を製造することが可能となる。このような複合焼結体を製造するにあたり、複数の焼結体を接合する方法として、複数の圧粉体の接合面に十分な圧力をかけた状態で加熱することにより、接合面を拡散接合する焼結拡散接合技術が知られている。 For example, in the case of a composite sintered body obtained by joining a plurality of sintered bodies, a product having a complicated shape having an undercut shape can be manufactured. In manufacturing such a composite sintered body, as a method of joining a plurality of sintered bodies, the joining surfaces are diffusion-bonded by heating in a state where sufficient pressure is applied to the joining surfaces of the plurality of green compacts. Sintering diffusion bonding techniques are known.
焼結拡散接合による接合力を高めるためには、複数の圧粉体の嵌合部の締め代を大きくして、嵌め合い応力を大きくすればよい。しかし、圧粉体は、粉の集合体であるという性質上非常に脆いため、過度に締め代を与えると破損する恐れがある。 In order to increase the bonding force by the sintered diffusion bonding, it is only necessary to increase the fitting stress by increasing the tightening margin of the fitting portions of the plurality of green compacts. However, since the green compact is very brittle due to the property of being an aggregate of powder, there is a risk that it will be damaged if excessively tightened.
例えば、下記の特許文献1には、鉄系の焼結体からなる内側部材と、鉄系の圧粉体からなる外側部材とを嵌め合わせて加熱する複合焼結機械部品の製造方法が示されている。この製造方法では、外側部材の原料粉を、750℃以上の高温域における熱膨張量が内側部材よりも小さくなるような組成としている。このように、外側部材の熱膨張量を内側部材の熱膨張量よりも小さくすることで、両部材の嵌め合い応力が大きくなり、両部材の接合強度が高められる。 For example, Patent Document 1 shown below discloses a method for manufacturing a composite sintered machine part in which an inner member made of an iron-based sintered body and an outer member made of an iron-based green compact are fitted and heated. ing. In this manufacturing method, the raw material powder of the outer member has a composition such that the amount of thermal expansion in a high temperature region of 750 ° C. or higher is smaller than that of the inner member. Thus, by making the amount of thermal expansion of the outer member smaller than the amount of thermal expansion of the inner member, the fitting stress of both members is increased, and the joint strength of both members is increased.
しかし、両部材の接合強度を十分に高めるためには、両部材の熱膨張量を大きく異ならせる必要があるため、用いる材料が大幅に制限される。実際には、両部材の材料は、要求される様々な特性を満たすように選定する必要があるため、上記のように両部材の材料の熱膨張量差を大きくすることは難しい。従って、熱膨張量差により両部材の接合強度を十分に高めることは難しい。 However, in order to sufficiently increase the joint strength between the two members, it is necessary to greatly vary the thermal expansion amounts of the two members, so that the materials used are greatly limited. Actually, since it is necessary to select materials for both members so as to satisfy various required characteristics, it is difficult to increase the difference in thermal expansion between the materials of both members as described above. Therefore, it is difficult to sufficiently increase the joint strength between both members due to the difference in thermal expansion.
また、通常、圧粉体の表面の空孔率は内部の空孔率よりも高い。これは、圧縮成形時に粉末と金型が接していることに起因する。すなわち、圧粉体は、金型内に充填した粉末に圧力をかけて成形するため、粉末同士および粉末と金型との間で大きな摩擦が生じ、特に粉末と金型間の摩擦は非常に大きくなる。例えば、粉末に固体潤滑剤を添加することで、摩擦力低減を図ることがあるが、それでも十分とは言えないことが多い。その結果、金型と接している粉末の移動量が、内部の粉末の移動量よりも少なくなり、圧粉体の表面の空孔が内部よりも多くなる。この場合、圧粉体と他部材(例えば他の圧粉体)との接触領域が少なくなり、複合焼結体の接合強度が不足する恐れがある。 Also, the porosity of the green compact surface is usually higher than the internal porosity. This is because the powder and the mold are in contact with each other during compression molding. In other words, since the green compact is molded by applying pressure to the powder filled in the mold, a large friction occurs between the powders and between the powder and the mold, and particularly the friction between the powder and the mold is very high. growing. For example, adding a solid lubricant to the powder may reduce the frictional force, but it is often not sufficient. As a result, the amount of movement of the powder in contact with the mold becomes smaller than the amount of movement of the internal powder, and the number of pores on the surface of the green compact becomes larger than that inside. In this case, the contact area between the green compact and other members (for example, other green compacts) is reduced, and the bonding strength of the composite sintered body may be insufficient.
例えば、圧粉体の圧縮率を高めて高密度化したり、圧縮成形時に圧粉体の表面をならしたりすれば、圧粉体の表面の空孔率を低減することができる。しかし、圧粉体の高密度化には限界があるため、複合焼結体の接合強度を十分に高めることは難しい。また、圧粉体の表面をならす工程を加えると、工数増により製造コスト高を招く。 For example, the porosity of the green compact surface can be reduced by increasing the compression ratio of the green compact to increase the density or smoothing the surface of the green compact during compression molding. However, since there is a limit to increasing the density of the green compact, it is difficult to sufficiently increase the joint strength of the composite sintered body. Further, if a step of leveling the surface of the green compact is added, the manufacturing cost increases due to an increase in the number of steps.
以上より、本発明が解決すべき技術的課題は、製造コスト高を招くことなく、複合焼結体の接合強度を十分に高めることにある。 As described above, the technical problem to be solved by the present invention is to sufficiently increase the bonding strength of the composite sintered body without incurring high manufacturing costs.
ところで、焼結体を製造するにあたり、原料粉末に燐を配合することがある。燐は、焼結を促進する効果があるため、燐を配合することにより、比較的低温でも十分に焼結が進行し、所望の強度の焼結体を得ることができる。焼結温度は、製造コストに大きく影響するため、燐を配合して焼結温度を低くすることで、製造コストを大幅に低減することができる。このように、焼結体の原料粉末に燐を配合する主な目的は、焼結温度を低くして製造コストを低減することにあった。 By the way, when manufacturing a sintered compact, phosphorus may be mix | blended with raw material powder. Phosphorus has an effect of promoting sintering. Therefore, by blending phosphorus, sintering proceeds sufficiently even at a relatively low temperature, and a sintered body having a desired strength can be obtained. Since the sintering temperature greatly affects the manufacturing cost, the manufacturing cost can be significantly reduced by lowering the sintering temperature by adding phosphorus. As described above, the main purpose of blending phosphorus into the raw material powder of the sintered body is to reduce the manufacturing cost by lowering the sintering temperature.
本発明者らが検討した結果、鉄を主成分とする圧粉体を他部材(例えば他の圧粉体)に圧接した状態で加熱して複合焼結体を製造するにあたり、圧粉体の原料粉末に燐を配合した上で、比較的高温(例えば1050℃以上)で加熱することで、複合焼結体の接合強度が高められることが明らかになった。これは、燐合金(例えば鉄−燐合金)が融解し、これが液相焼結を生じさせ、焼結体の空孔、特に、焼結体と他部材(例えば他の焼結体)との境界に存在する多数の空孔を埋めながら焼結が進行することで、焼結体と他部材との接触領域が増大し、これらの接合界面が強化されたためと考えられる。 As a result of the study by the present inventors, in producing a composite sintered body by heating a green compact mainly composed of iron in a state of being pressed against another member (for example, another green compact), It became clear that the bonding strength of the composite sintered body can be increased by adding phosphorus to the raw material powder and heating it at a relatively high temperature (for example, 1050 ° C. or higher). This is because the phosphorus alloy (for example, iron-phosphorus alloy) melts, which causes liquid phase sintering, and in particular, the pores of the sintered body, particularly between the sintered body and other members (for example, other sintered bodies). It is thought that the contact area between the sintered body and the other member increased due to the progress of the sintering while filling a large number of pores existing at the boundary, and the joining interface was strengthened.
以上の知見に基づいて、本発明は、鉄を主成分とする原料粉末を圧縮して第一圧粉体及び第二圧粉体を成形する圧粉工程と、前記第一圧粉体と前記第二圧粉体とを互いに圧接した状態で加熱することにより、第一焼結体及び第二焼結体を得ると共に、前記第一焼結体と前記第二焼結体とを拡散接合する焼結工程とを含む複合焼結体の製造方法であって、前記第一圧粉体の原料粉末が燐を含み、前記焼結工程における加熱温度(焼結温度)を1050℃以上とした複合焼結体の製造方法を提供する。 Based on the above findings, the present invention provides a compacting step of forming a first green compact and a second green compact by compressing a raw material powder containing iron as a main component, the first green compact, By heating the second green compact while being pressed against each other, the first sintered body and the second sintered body are obtained, and the first sintered body and the second sintered body are diffusion bonded. A method of manufacturing a composite sintered body including a sintering step, wherein the raw material powder of the first green compact contains phosphorus, and a heating temperature (sintering temperature) in the sintering step is 1050 ° C. or higher. A method for producing a sintered body is provided.
本発明は、圧粉体同士を圧接して加熱する場合に限らず、圧粉体と他部材(例えば焼結体や溶製材)を圧接して加熱する場合にも適用できる。すなわち、本発明は、鉄を主成分とする原料粉末を圧縮して圧粉体を成形する圧粉工程と、前記圧粉体と他部材とを互いに圧接した状態で加熱することにより、焼結体を得ると共に、前記焼結体と前記他部材とを拡散接合する焼結工程とを含む複合焼結体の製造方法であって、前記圧粉体の原料粉末が燐を含み、前記焼結工程における加熱温度(焼結温度)を1050℃以上とした複合焼結体の製造方法を提供する。 The present invention is not limited to the case where the green compacts are pressed and heated, but can also be applied to the case where the green compact and other members (for example, a sintered body or a melted material) are pressed and heated. That is, the present invention comprises a compacting process in which a raw material powder containing iron as a main component is compressed to form a green compact, and the green compact and another member are heated in a state of being pressed against each other, thereby sintering. And a sintering process for diffusion bonding the sintered body and the other member, wherein the green compact raw material powder contains phosphorus, and the sintered body is sintered. Provided is a method for producing a composite sintered body in which the heating temperature (sintering temperature) in the process is 1050 ° C. or higher.
また、上記のように、燐を含む圧粉体を比較的高温で加熱することで、焼結体の焼結が過剰に進行し、結晶粒成長により空孔数が少なくなり、例えば単位面積当たりの空孔数が5000個/mm2以下となる。従って、本発明は、鉄を主成分とする焼結体からなる第一部材と、前記焼結体に拡散接合された第二部材とを有する複合焼結体であって、前記焼結体が、燐を含み、単位面積当たりの空孔数が5000個/mm2以下である複合焼結体として特徴づけることができる。第二部材は、例えば鉄を主成分とする他の焼結体で構成することができる。この他の焼結体は、第一部材の焼結体と同じ組成としてもよい。 Further, as described above, by heating the green compact containing phosphorus at a relatively high temperature, sintering of the sintered body proceeds excessively, and the number of pores decreases due to crystal grain growth, for example, per unit area. The number of holes is 5000 / mm 2 or less. Accordingly, the present invention is a composite sintered body having a first member made of a sintered body containing iron as a main component and a second member diffusion-bonded to the sintered body, wherein the sintered body is , And can be characterized as a composite sintered body containing phosphorus and having 5,000 holes / mm 2 or less per unit area. The second member can be composed of, for example, another sintered body containing iron as a main component. Other sintered bodies may have the same composition as the sintered body of the first member.
焼結体における燐の含有量が少なすぎると、接合強度を十分に高めることができない。一方、焼結体における燐の含有量が多すぎると、焼結体の結晶粒界への燐の偏析が顕著になり衝撃値が低下してしまう。従って、焼結体における燐の含有量、すなわち圧粉体の原料粉末における燐の含有量は所定の範囲内に設定することが好ましく、具体的には0.2質量%以上1.0質量%以下とすることが好ましい。 If the phosphorus content in the sintered body is too small, the bonding strength cannot be sufficiently increased. On the other hand, if the content of phosphorus in the sintered body is too large, the segregation of phosphorus to the crystal grain boundaries of the sintered body becomes significant and the impact value decreases. Accordingly, the phosphorus content in the sintered body, that is, the phosphorus content in the raw material powder of the green compact is preferably set within a predetermined range, specifically 0.2 mass% or more and 1.0 mass%. The following is preferable.
焼結があまりにも進行しすぎると、結晶粒及び内部空孔が大きくなりすぎ、複合焼結体の強度低下を招く恐れがある。このため、焼結温度は1200℃以下とすることが好ましい。また、焼結体の単位面積当たりの空孔数は1000個/mm2以上であることが好ましい。 If the sintering proceeds too much, the crystal grains and internal vacancies become too large, which may lead to a decrease in strength of the composite sintered body. For this reason, it is preferable that a sintering temperature shall be 1200 degrees C or less. The number of pores per unit area of the sintered body is preferably 1000 / mm 2 or more.
ところで、焼結体の密度は焼結の進行に伴って高くなるため、通常、焼結の進行度合いは焼結体の密度により判断することができる。しかし、焼結がある程度進行すると、それ以上焼結が進行しても焼結体の密度はほとんど変化しなくなり、その後は、焼結体の内部空孔同士が合体したり、内部空孔が球体化したりして、内部空孔の大きさ、分布、形状等に変化が生じる。従って、焼結の進行度合いを、密度が変化しなくなった更に先で判断する場合は、焼結体の内部空孔の形状等で判断することができる。 By the way, since the density of the sintered body increases with the progress of the sintering, the degree of progress of the sintering can usually be determined by the density of the sintered body. However, if the sintering proceeds to some extent, the density of the sintered body hardly changes even if the sintering proceeds further. Thereafter, the internal vacancies of the sintered body coalesce or the internal vacancies become spherical. Or changes in the size, distribution, shape, etc. of the internal holes. Therefore, when the progress of the sintering is determined further before the density has changed, it can be determined from the shape of the internal pores of the sintered body.
具体的に、焼結体の内部空孔のうち、80μm2以上の空孔の円形度の相加平均値が0.2より大きければ、焼結が十分に進行していると判断できる。一方、焼結があまりにも進行すると、結晶粒が大きくなりすぎ、両焼結体の接合強度の低下を招く恐れがあるため、上記空孔の円形度の相加平均値は0.5未満であることが好ましい。尚、円形度とは、空孔の面積Sを周囲長Lの二乗で除したものに4πを乗じた値である(円形度=4π・S/L2)。 Specifically, if the arithmetic average value of the circularity of the pores of 80 μm 2 or more among the internal pores of the sintered body is larger than 0.2, it can be determined that the sintering is sufficiently advanced. On the other hand, if the sintering progresses too much, the crystal grains become too large and the joint strength between the two sintered bodies may be reduced. Therefore, the arithmetic average value of the circularity of the pores is less than 0.5. Preferably there is. The circularity is a value obtained by dividing the hole area S by the square of the peripheral length L and multiplying by 4π (circularity = 4π · S / L 2 ).
あるいは、焼結体の内部空孔のうち、80μm2以上の空孔の針状比の相加平均値が1.9未満であれば、焼結が十分に進行していると判断できる。一方、焼結があまりにも進行すると、結晶粒が大きくなりすぎ、両焼結体の接合強度の低下を招く恐れがあるため、上記空孔の針状比の相加平均値は1.5より大きいことが好ましい。尚、針状比とは、空孔の絶対最大長を対角幅(空孔を挟む絶対最大長に平行な2本の直線間の最短距離)で除した値である(図3参照)。 Alternatively, if the arithmetic average value of the acicular ratio of the pores of 80 μm 2 or more among the internal pores of the sintered body is less than 1.9, it can be determined that the sintering is sufficiently advanced. On the other hand, if the sintering proceeds too much, the crystal grains become too large, which may lead to a decrease in the bonding strength of both sintered bodies. Therefore, the arithmetic average value of the needle-like ratio of the holes is from 1.5. Larger is preferred. The acicular ratio is a value obtained by dividing the absolute maximum length of a hole by a diagonal width (the shortest distance between two straight lines parallel to the absolute maximum length sandwiching the hole) (see FIG. 3).
上記のように、鉄を主成分とする圧粉体に燐を配合した上で、比較的高温で加熱して焼結を過剰に進行させることにより、工数増によるコスト高を招くことなく、焼結体と他部材との接合強度を高めることができる。 As described above, phosphor is added to a green compact containing iron as a main component, and then heated at a relatively high temperature so that sintering proceeds excessively. The bonding strength between the bonded body and the other member can be increased.
図1に、本発明の一実施形態に係る複合焼結体を示す。この複合焼結体は、第一部材1及び第二部材2からなる。図示例の第一部材1は、例えば外周に歯面を有するギヤであり、第二部材2は、例えば軸部を有するボスである。第一部材1の内周に、第二部材2に設けられた軸部が圧入され、第一部材1の内周面と第二部材2の軸部の外周面とが拡散接合されている。 FIG. 1 shows a composite sintered body according to an embodiment of the present invention. This composite sintered body includes a first member 1 and a second member 2. The first member 1 in the illustrated example is a gear having a tooth surface on the outer periphery, for example, and the second member 2 is a boss having a shaft portion, for example. A shaft portion provided in the second member 2 is press-fitted into the inner periphery of the first member 1, and the inner peripheral surface of the first member 1 and the outer peripheral surface of the shaft portion of the second member 2 are diffusion bonded.
第一部材1は、鉄を主成分とする焼結体からなる。第二部材2は、例えば焼結体からなり、本実施形態では鉄を主成分とする焼結体、特に第一部材1の焼結体と同じ組成の焼結体からなる。尚、第二部材2は、上記の他、第一部材1の焼結体と異なる組成の焼結体や、溶製材からなる部材で構成してもよい。 The 1st member 1 consists of a sintered compact which has iron as a main component. The second member 2 is made of, for example, a sintered body. In the present embodiment, the second member 2 is made of a sintered body having iron as a main component, particularly a sintered body having the same composition as the sintered body of the first member 1. In addition, you may comprise the 2nd member 2 by the member which consists of a sintered compact of the composition different from the sintered compact of the 1st member 1 other than the above, or a melting material.
複合焼結体は、各種粉末を混合して原料粉末を作製する混合工程と、原料粉末を圧縮して圧粉体を成形する圧粉工程と、圧粉体を他部材(本実施形態では他の圧粉体)と圧接した状態で加熱して複合焼結体を得る焼結工程とを経て製作される。 The composite sintered body includes a mixing step in which various powders are mixed to produce a raw material powder, a compacting step in which the raw material powder is compressed to form a green compact, and the green compact is made up of other members (other members in this embodiment). And a sintering process in which a composite sintered body is obtained by heating in a state of pressure contact with the green compact).
原料粉末としては、機械部品の強度確保のため、鉄を主成分とした鉄基粉末が用いられ、具体的には、鉄粉を93.0質量%以上(好ましくは95.0質量%以上)含む鉄基粉末が用いられる。この鉄基粉末は、燐(例えば燐合金粉)を含む。本実施形態の鉄基粉末は、鉄粉、燐合金粉、銅粉及び黒鉛粉を含む。 As the raw material powder, an iron-based powder containing iron as a main component is used to ensure the strength of machine parts. Specifically, the iron powder is 93.0% by mass or more (preferably 95.0% by mass or more). An iron-based powder containing is used. This iron-based powder contains phosphorus (for example, phosphorus alloy powder). The iron-based powder of the present embodiment includes iron powder, phosphorus alloy powder, copper powder, and graphite powder.
鉄粉としては、還元鉄粉、水アトマイズ鉄粉等の公知の粉末が広く使用可能であるが、本実施形態では、鉄粉同士の絡み合いの増大による高強度化を図るため、多孔質で不規則形状を有する還元鉄粉を使用する。鉄粉として、焼入れ性向上元素等と合金化した合金鋼粉を使用することもできる。 As the iron powder, known powders such as reduced iron powder and water atomized iron powder can be widely used. Use reduced iron powder with regular shape. As the iron powder, alloy steel powder alloyed with a hardenability improving element or the like can also be used.
燐合金粉としては、例えば鉄−燐化合物、具体的にはFe3Pを含む合金粉が用いられる。燐は、焼結を促進する機能を果たすが、燐が少なすぎるとその効果が十分に得られず、燐が多すぎると、燐の結晶粒界への偏析が顕著になり衝撃値が低下する。このため、原料粉末に対して燐が所定の範囲内となるように、原料粉末中の燐合金粉の割合が設定される。具体的に、原料粉末に対する燐の割合は、0.2質量%以上、好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上とする。また、原料粉末に対する燐の割合は、1.0質量%以下、好ましくは0.8質量%以下、さらに好ましくは0.6質量%以下とする。 As the phosphorus alloy powder, for example, an iron-phosphorus compound, specifically, an alloy powder containing Fe 3 P is used. Phosphorus has a function of promoting sintering, but if the amount of phosphorus is too small, the effect cannot be sufficiently obtained. If the amount of phosphorus is too large, segregation of phosphorus to crystal grain boundaries becomes remarkable and the impact value decreases. . For this reason, the ratio of the phosphorus alloy powder in the raw material powder is set so that phosphorus is within a predetermined range with respect to the raw material powder. Specifically, the ratio of phosphorus to the raw material powder is 0.2% by mass or more, preferably 0.3% by mass or more, and more preferably 0.5% by mass or more. The ratio of phosphorus to the raw material powder is 1.0% by mass or less, preferably 0.8% by mass or less, and more preferably 0.6% by mass or less.
銅粉は、原料粉に対して1.0質量%〜5.0質量%の割合で配合される。銅粉の割合が少なすぎると焼結体の強度低下を招き、多すぎると炭素の拡散を阻害して焼結体の強度・硬さを低下させてしまうので上記の範囲とする。銅粉としては、電解銅粉やアトマイズ銅粉を使用することができる。粒子全体として樹枝形状をなす電解銅粉を使用すれば、圧紛体強度を高めることができ、かつ焼結時に銅粒子が鉄粒子に拡散し易くなるので、より好ましい。 Copper powder is mix | blended in the ratio of 1.0 mass%-5.0 mass% with respect to raw material powder. If the ratio of the copper powder is too small, the strength of the sintered body is reduced, and if it is too large, the diffusion of carbon is inhibited and the strength and hardness of the sintered body are reduced. As the copper powder, electrolytic copper powder or atomized copper powder can be used. If electrolytic copper powder having a dendritic shape as a whole particle is used, it is more preferable because the strength of the compact can be increased and the copper particles can easily diffuse into the iron particles during sintering.
黒鉛粉は、圧縮成形時に粉末同士の摩擦を低減する内部潤滑剤として機能すると共に、焼結時に鉄と炭素を反応して硬いパーライト相を形成する。黒鉛粉が少なすぎると、圧縮成形が困難になると共に焼結体の強度を確保できない。一方、黒鉛粉が多すぎると、鉄がセメンタイト組織になり、脆くなって強度低下を招く。このため、原料粉末における黒鉛粉の配合割合は0.2質量%〜1.0質量%とする。黒鉛粉としては、鱗片状の人造黒鉛粉を使用するのが好ましい。 Graphite powder functions as an internal lubricant that reduces friction between powders during compression molding and reacts with iron and carbon during sintering to form a hard pearlite phase. If the graphite powder is too small, compression molding becomes difficult and the strength of the sintered body cannot be ensured. On the other hand, when there is too much graphite powder, iron will become a cementite structure | tissue, it becomes weak and causes a strength fall. For this reason, the compounding ratio of the graphite powder in the raw material powder is 0.2 mass% to 1.0 mass%. As the graphite powder, scaly artificial graphite powder is preferably used.
以上に述べた各粉末に、必要に応じて各種成形助剤、例えば離型性向上のための潤滑剤を添加した上で混合することで、原料粉末が作製される(混合工程)。この時の各粉末の配合割合は、上記のとおり燐(鉄−燐合金粉中の燐成分):0.2質量%〜1.0質量%、銅粉:1.0質量%〜5.0質量%、黒鉛粉:0.2質量%〜1.0質量%、その他:0〜1.0質量%であり、残部が鉄(鉄粉、及び鉄−燐合金粉中の鉄成分)である。この原料粉末を成形機の金型に供給し、圧縮することで、第一部材1及び第二部材2と略同形状の第一圧粉体及び第二圧粉体が成形される(圧粉工程)。本実施形態では、圧粉工程を室温で行う。また、第一部材1及び第二部材2を構成する焼結体の密度が6.6〜7.0g/cm3となるように、圧縮成形条件が設定される。 A raw material powder is produced by adding various molding aids, for example, a lubricant for improving releasability, to the powders described above and mixing them (mixing step). The blending ratio of each powder at this time is phosphorus (phosphorus component in iron-phosphorus alloy powder): 0.2% by mass to 1.0% by mass, copper powder: 1.0% by mass to 5.0% as described above. % By mass, graphite powder: 0.2% by mass to 1.0% by mass, other: 0% by mass to 1.0% by mass, the balance being iron (iron powder and iron component in iron-phosphorus alloy powder) . By supplying this raw material powder to the mold of the molding machine and compressing it, the first green compact and the second green compact having substantially the same shape as the first member 1 and the second member 2 are formed (green compact). Process). In this embodiment, the compacting process is performed at room temperature. Moreover, compression molding conditions are set so that the density of the sintered compact which comprises the 1st member 1 and the 2nd member 2 will be 6.6-7.0 g / cm < 3 >.
その後、第一圧粉体の内周に第二圧粉体の軸部を圧入し、これらを締め代をもって嵌合させて一体化する。そして、この一体品を加熱することにより、焼結体からなる第一部材1及び第二部材2を形成すると共に、両部材1,2の接合面間に生じる原子の拡散を利用してこれらを接合する(焼結拡散接合)。 Thereafter, the shaft portion of the second green compact is press-fitted into the inner periphery of the first green compact, and these are fitted and integrated with a tightening margin. And by heating this integral product, while forming the 1st member 1 and the 2nd member 2 which consist of a sintered compact, these are utilized using the spreading | diffusion of the atom produced between the joining surfaces of both the members 1 and 2. Join (sinter diffusion bonding).
図2は、燐を含まない複合焼結体(左図)と、燐を含む複合焼結体(右図)とを比較して示す断面写真である。具体的に、左図の複合焼結体は、銅を3.0質量%、黒鉛を0.9質量%含み、残部を鉄とするものであり、右図の複合焼結体は、銅を3.0質量%、黒鉛を0.9質量%、燐を0.6質量%含み、残部を鉄とするものである。焼結温度は何れも1200℃である。燐を含まない左図の複合焼結体は、微細な空孔が分散し(すなわち結晶粒が比較的小さく)、X−X線で示す焼結体同士の接合面が、断面組織を見て確認できる程度に残存している。具体的に、この複合焼結体の単位面積当たりの空孔数は、5000個/mm2を超えている。一方、燐を含む右図の複合焼結体は、比較的粗大な空孔が分散し(すなわち結晶粒が比較的粗大であり)、Y−Y線で示す焼結体同士の接合面は、断面組織から確認できない程度まで消失している。これは、燐を含む圧粉体を比較的高温で加熱することで、燐合金粉(例えばFe3P)が溶融して液相焼結を生じさせ、多数の表面空孔を埋めながら焼結が進行したためと考えられる。具体的に、この複合焼結体の単位面積当たりの空孔数は、1000個/mm2以上、5000個/mm2以下である。 FIG. 2 is a cross-sectional photograph showing a comparison between a composite sintered body not containing phosphorus (left figure) and a composite sintered body containing phosphorus (right figure). Specifically, the composite sintered body in the left figure contains 3.0% by mass of copper and 0.9% by mass of graphite, and the balance is iron. The composite sintered body in the right figure contains copper. It contains 3.0% by mass, 0.9% by mass of graphite, 0.6% by mass of phosphorus, and the balance being iron. The sintering temperature is 1200 ° C. for all. In the composite sintered body in the left figure, which does not contain phosphorus, fine pores are dispersed (that is, crystal grains are relatively small), and the joint surface of the sintered bodies indicated by the XX line shows a cross-sectional structure. It remains to the extent that it can be confirmed. Specifically, the number of pores per unit area of this composite sintered body exceeds 5000 / mm 2 . On the other hand, in the composite sintered body of the right figure containing phosphorus, relatively coarse pores are dispersed (that is, the crystal grains are relatively coarse), and the joint surface between the sintered bodies indicated by the Y-Y line is: It disappears to the extent that it cannot be confirmed from the cross-sectional structure. This is because the green compact containing phosphorus is heated at a relatively high temperature, and the phosphor alloy powder (for example, Fe 3 P) is melted to cause liquid phase sintering, and sintering while filling a large number of surface vacancies. This is thought to be because of progress. Specifically, the number of pores per unit area of the composite sintered body is 1000 / mm 2 or more and 5000 / mm 2 or less.
焼結温度が1050℃未満の場合、原料粉末中のFe3Pが溶解しないため、液晶焼結が生じず、焼結体同士の接合界面の強化が図られない。また、焼結温度が1050℃〜1150℃の場合、Fe3Pによる液相焼結は生じるが、焼結の進行が遅いため、焼結体同士の接合界面に存在する空孔が十分に消失しない。このため、焼結温度は1050℃以上、好ましくは1150℃以上とする。本実施形態では、銅を溶融させて鉄表面に拡散させるため、焼結温度は銅の融点(1083℃)以上とする。一方、焼結温度が1200℃を超えると、Fe3Pの液相焼結により焼結体同士の接合界面の空孔がほぼ消失するが、焼結が過剰に進行することにより焼結体の内部空孔及び結晶粒が粗大化し、強度低下を招く。このため、焼結温度は1200℃以下とすることが好ましい。 When the sintering temperature is lower than 1050 ° C., Fe 3 P in the raw material powder does not dissolve, so liquid crystal sintering does not occur, and the bonding interface between the sintered bodies cannot be strengthened. In addition, when the sintering temperature is 1050 ° C. to 1150 ° C., liquid phase sintering with Fe 3 P occurs, but since the progress of the sintering is slow, the pores present at the bonding interface between the sintered bodies are sufficiently lost. do not do. For this reason, sintering temperature shall be 1050 degreeC or more, Preferably it shall be 1150 degreeC or more. In the present embodiment, since the copper is melted and diffused on the iron surface, the sintering temperature is set to be equal to or higher than the melting point of copper (1083 ° C.). On the other hand, when the sintering temperature exceeds 1200 ° C., the voids at the bonding interface between the sintered bodies are almost disappeared by the liquid phase sintering of Fe 3 P, but the sintering proceeds excessively. Internal vacancies and crystal grains become coarse, leading to a decrease in strength. For this reason, it is preferable that a sintering temperature shall be 1200 degrees C or less.
燐を含む鉄系焼結体の焼結温度は、コスト低減を図るために、比較的低温(1000℃以下)とすることが一般的である。しかし、本発明では、燐を含む鉄系圧粉体の焼結温度を、燐を含まない通常の鉄系焼結体の焼結温度と同程度とした。これにより、圧粉体の表面をならす等の別工程を要することなく、焼結体同士の接合強度が向上し、複合焼結体全体の強度が高められる。尚、焼結によって、銅及び炭素(黒鉛)は鉄に固溶し、潤滑剤は消失する。 The sintering temperature of the iron-based sintered body containing phosphorus is generally set to a relatively low temperature (1000 ° C. or lower) in order to reduce costs. However, in the present invention, the sintering temperature of the iron-based green compact containing phosphorus is set to the same level as the sintering temperature of a normal iron-based sintered body not containing phosphorus. Thereby, the joining strength between the sintered bodies is improved without requiring a separate process such as leveling the surface of the green compact, and the overall strength of the composite sintered body is increased. By sintering, copper and carbon (graphite) dissolve in iron and the lubricant disappears.
なお、以上の説明では、第一圧紛体と第二圧粉体とを組み合わせた状態で加熱する場合を例示したが、複合焼結体の製造方法はこれには限定されない。例えば上記の手順で得られた圧紛体を、予め別工程で製造した焼結体あるいは溶製材からなる他部材と互いに圧接した状態で加熱してもよい。これにより、上記の圧粉体を焼結して得られた焼結体と上記の他部材とが拡散接合され、複合焼結体が形成される。 In the above description, the case where heating is performed in a state where the first powder compact and the second powder compact are combined is exemplified, but the method for manufacturing the composite sintered compact is not limited to this. For example, you may heat the compact obtained by said procedure in the state mutually press-contacted with the other member which consists of a sintered compact or melted material previously manufactured at another process. As a result, the sintered body obtained by sintering the green compact and the other member are diffusion bonded to form a composite sintered body.
本発明の作用効果を確認するために、以下の実験を行った。 In order to confirm the effect of the present invention, the following experiment was conducted.
この実験には、下記の表1に示す材料を用いた。原料粉末としては、燐0.6質量%相当のFe3Pを含む鉄−燐合金粉と、3.0質量%の銅粉と、0.9質量%の黒鉛と、1.0質量%の潤滑剤とを含み、残りを鉄粉とした。各粉末を混合して得られた原料粉末を圧縮し、外径23.2mm×内径16.4mm×厚さ7mmの円筒圧粉体、及び、φ16.4mm×厚さ9mmの円柱圧粉体を成形した。圧縮成形条件は、室温で、焼結密度が6.75〜6.85g/cm3となるように制御した。成形後、円筒圧粉体に円柱圧粉体を圧入し、複合圧粉体を作製した。両圧粉体の締め代は40μmとした。この複合圧粉体を加熱して複合焼結体を作製した。 In this experiment, the materials shown in Table 1 below were used. As the raw material powder, iron-phosphorus alloy powder containing Fe 3 P equivalent to 0.6% by mass of phosphorus, 3.0% by mass of copper powder, 0.9% by mass of graphite, 1.0% by mass of A lubricant was included, and the remainder was iron powder. The raw material powder obtained by mixing each powder is compressed into a cylindrical green compact with an outer diameter of 23.2 mm, an inner diameter of 16.4 mm and a thickness of 7 mm, and a cylindrical green compact with a diameter of φ16.4 mm and a thickness of 9 mm. Molded. The compression molding conditions were controlled so that the sintered density was 6.75 to 6.85 g / cm 3 at room temperature. After molding, a cylindrical green compact was pressed into a cylindrical green compact to produce a composite green compact. The clamping allowance for both compacts was 40 μm. This composite green compact was heated to produce a composite sintered body.
複合焼結体の評価のために圧環強さおよび接合強さを測定した。圧環強さの測定は、円筒圧粉体のみを加熱した円筒焼結体を用いて、JIS Z 2507に則って実施した。接合強さは、円筒焼結体の軸方向一方の端面を治具で支持した状態で、円柱焼結体を軸方向他方側から押し込んで荷重をかけて、複合焼結体を接合面で破断させた。接合強さは、破断に至ったときの最大荷重を、両焼結体の接合面の側面積で除した値とした。 For evaluating the composite sintered body, the crushing strength and bonding strength were measured. The crushing strength was measured in accordance with JIS Z 2507 using a cylindrical sintered body obtained by heating only a cylindrical green compact. Bonding strength is the state in which one end surface of the cylindrical sintered body in the axial direction is supported by a jig, the cylindrical sintered body is pushed in from the other axial direction, a load is applied, and the composite sintered body is broken at the joint surface. I let you. The bonding strength was a value obtained by dividing the maximum load at the time of rupture by the side area of the bonding surface of both sintered bodies.
また、複合焼結体の焼結の進行度合いを確認するため、市販の画像解析ソフト(例えば三谷商事株式会社製のWinROOF)を用いて単位面積あたりの空孔数を測定した。具体的には、所定の観察範囲(例えば、両焼結体の接合界面を含む焼結体中心部の0.6×0.4mmの領域)を顕微鏡で撮影し、この撮影画像における空孔を判別分析法で抽出し、その個数を計測した。こうして計測した空孔数を、1mm2あたりの空孔数に換算した。 Moreover, in order to confirm the progress of the sintering of the composite sintered body, the number of pores per unit area was measured using commercially available image analysis software (for example, WinROOF manufactured by Mitani Corporation). Specifically, a predetermined observation range (for example, an area of 0.6 × 0.4 mm in the center of the sintered body including the joint interface between both sintered bodies) was photographed with a microscope, and voids in this photographed image were observed. The number was extracted by discriminant analysis and the number was counted. The number of holes thus measured was converted to the number of holes per 1 mm 2 .
また、複合焼結体内部の空孔の状態を確認するため、画像解析ソフトを用いた断面空孔観察を行った。断面空孔観察では、所定の観察範囲(例えば、両焼結体の接合界面を含む焼結体中心部の0.5×0.5mmの領域)内において面積が80μm2以上の空孔を抽出し、これらの円形度および針状比を計測し、それぞれの相加平均値を算出した。 Moreover, in order to confirm the state of the vacancies inside the composite sintered body, cross-sectional vacancies were observed using image analysis software. In cross-sectional hole observation, holes with an area of 80 μm 2 or more are extracted within a predetermined observation range (for example, a 0.5 × 0.5 mm region in the center of the sintered body including the joint interface between both sintered bodies). Then, the circularity and needle ratio were measured, and the respective arithmetic mean values were calculated.
まず、複合焼結体の燐の添加量の最適値を求めた。表1に示す割合の燐に相当する鉄−燐合金粉添加した複数種の複合焼結体を作製し、それぞれの圧環強さおよび接合強さを測定した。焼結条件は最高温度1200℃、最高温度保持時間30分とし、Ar雰囲気で行った。 First, the optimum value of the amount of phosphorus added to the composite sintered body was determined. A plurality of types of composite sintered bodies added with iron-phosphorus alloy powder corresponding to the proportion of phosphorus shown in Table 1 were prepared, and the crushing strength and bonding strength were measured. The sintering conditions were a maximum temperature of 1200 ° C. and a maximum temperature holding time of 30 minutes, and were performed in an Ar atmosphere.
その結果、燐を添加した実施例1〜4は、燐を含まない比較例1よりも圧環強さ及び接合強さが高く、特に、燐の添加量が多い程、圧環強さ及び接合強さが向上した。具体的に、実施例1〜4は、圧環強さ1000MPa以上、接合強さ300 MPa以上と非常に高い値を示した。この結果から、複合焼結体における燐の添加量は、0.2質量%以上、好ましくは0.3質量%以上とすることが望ましいことが明らかになった。また、実施例1〜4の単位面積当たりの空孔数は、5000個/mm2以下、1000個/mm2以上であった。 As a result, Examples 1 to 4 to which phosphorus was added had higher crushing strength and bonding strength than Comparative Example 1 that did not contain phosphorus, and in particular, as the amount of phosphorus added increased, crushing strength and bonding strength were increased. Improved. Specifically, Examples 1 to 4 showed very high values such as a crushing strength of 1000 MPa or more and a bonding strength of 300 MPa or more. From this result, it became clear that the addition amount of phosphorus in the composite sintered body is desirably 0.2% by mass or more, preferably 0.3% by mass or more. Moreover, the number of holes per unit area in Examples 1 to 4 was 5000 / mm 2 or less and 1000 / mm 2 or more.
次に、複合焼結体の焼結条件の最適値を求めた。燐の添加量は0.6質量%とした。焼結条件は、最高温度を1100℃(比較例2)、1150℃(実施例5)、1175℃(実施例6)、1200℃(実施例4)、1250℃(比較例3)とし、最高温度保持時間を30分とした。その後、各試験片の圧環強さおよび接合強さを測定した。各焼結条件における試験結果を下記の表2に示す。 Next, the optimum value of the sintering conditions for the composite sintered body was determined. The amount of phosphorus added was 0.6% by mass. As for the sintering conditions, the maximum temperature was 1100 ° C. (Comparative Example 2), 1150 ° C. (Example 5), 1175 ° C. (Example 6), 1200 ° C. (Example 4), and 1250 ° C. (Comparative Example 3). The temperature holding time was 30 minutes. Thereafter, the crushing strength and bonding strength of each test piece were measured. The test results under each sintering condition are shown in Table 2 below.
その結果、実施例4〜6は、圧環強さ1100MPa以上、接合強さ300MPa以上の高い値を示した。特に、焼結温度1175℃の実施例6は、圧環強さ及び接合強さにおいて最も高い値を示した。 As a result, Examples 4 to 6 showed high values such as a crushing strength of 1100 MPa or more and a bonding strength of 300 MPa or more. In particular, Example 6 having a sintering temperature of 1175 ° C. showed the highest value in crushing strength and bonding strength.
そして、各試験片の単位面積当たりの空孔数は、焼結温度が上昇するにつれて少なくなった。一方、これらの試験片の密度は、6.75〜6.85g/cm3の範囲で大きな変化は見られなかった。このことから、単位面積当たりの空孔数が5000個/mm2以下、好ましくは4000個/mm2以下、より好ましくは3000個/mm2以下であれば、焼結が十分に進行しており、優れた圧環強さ及び接合強さを有することが確認された。また、単位面積当たりの空孔数が1000個/mm2以上であれば、焼結の極端な進行が回避され、優れた圧環強さ及び接合強さを有することが確認された。 The number of holes per unit area of each test piece decreased as the sintering temperature increased. On the other hand, the density of these test pieces did not change greatly in the range of 6.75 to 6.85 g / cm 3 . Therefore, if the number of pores per unit area is 5000 / mm 2 or less, preferably 4000 / mm 2 or less, more preferably 3000 / mm 2 or less, the sintering is sufficiently advanced. It was confirmed to have excellent crushing strength and bonding strength. In addition, when the number of holes per unit area was 1000 / mm 2 or more, it was confirmed that the extreme progress of sintering was avoided, and excellent crushing strength and bonding strength were obtained.
また、各試験片の断面内部空孔の円形度の相加平均値は、焼結温度が上昇するにつれて大きくなり、各試験片の断面内部空孔の針状比の相加平均値は、焼結温度が上昇するにつれて小さくなった。一方、これらの試験片の密度は、6.75〜6.85g/cm3の範囲で大きな変化は見られなかった。このことから、内部空孔の円形度の相加平均値が0.2より大きく、あるいは、内部空孔の針状比の相加平均値が1.9未満であることで、焼結が十分に進行しており、優れた圧環強さ及び接合強さを有することが確認された。また、内部空孔の円形度の相加平均値が0.5未満、あるいは、内部空孔の針状比の相加平均値が1.5より大きいことで、焼結が極端な進行が回避され、優れた圧環強さ及び接合強さを有することが確認された。 In addition, the arithmetic average value of the circularity of the internal vacancies of each test piece increases as the sintering temperature rises, and the arithmetic average value of the acicular ratio of the internal vacancies of the cross section of each test specimen is It became smaller as the setting temperature increased. On the other hand, the density of these test pieces did not change greatly in the range of 6.75 to 6.85 g / cm 3 . From this, sintering is sufficient because the arithmetic average value of the circularity of the internal vacancies is greater than 0.2, or the arithmetic average value of the acicular ratio of the internal vacancies is less than 1.9. It was confirmed that it had excellent crushing strength and bonding strength. In addition, since the arithmetic average value of the circularity of the internal vacancies is less than 0.5, or the arithmetic average value of the acicular ratio of the internal vacancies is larger than 1.5, extreme progress of sintering is avoided. It was confirmed that it has excellent crushing strength and bonding strength.
1 第一部材
2 第二部材
1 1st member 2 2nd member
Claims (15)
前記焼結体が、燐を含み、単位面積当たりの空孔数が5000個/mm2以下である複合焼結体。 A composite sintered body having a first member made of a sintered body containing iron as a main component and a second member diffusion-bonded to the sintered body,
The composite sintered body, wherein the sintered body contains phosphorus and the number of pores per unit area is 5000 / mm 2 or less.
前記第一圧粉体と前記第二圧粉体とを互いに圧接した状態で加熱することにより、第一焼結体及び第二焼結体を得ると共に、前記第一焼結体と前記第二焼結体とを拡散接合する焼結工程とを含む複合焼結体の製造方法であって、
前記第一圧粉体の原料粉末が燐を含み、
前記焼結工程における加熱温度を1050℃以上とした複合焼結体の製造方法。 A compacting step of compressing a raw material powder containing iron as a main component to form a first compact and a second compact;
By heating the first green compact and the second green compact while being pressed against each other, a first sintered body and a second sintered body are obtained, and the first sintered body and the second sintered body are obtained. A method of manufacturing a composite sintered body including a sintering step of diffusion bonding the sintered body,
The raw powder of the first green compact contains phosphorus,
The manufacturing method of the composite sintered compact which made the heating temperature in the said sintering process 1050 degreeC or more.
前記圧粉体と他部材とを互いに圧接した状態で加熱することにより、焼結体を得ると共に、前記焼結体と前記他部材とを拡散接合する焼結工程とを含む複合焼結体の製造方法であって、
前記圧粉体の原料粉末が燐を含み、
前記焼結工程における加熱温度を1050℃以上とした複合焼結体の製造方法。 A compacting process in which a raw powder mainly composed of iron is compressed to form a compact;
The sintered compact is obtained by heating the green compact and the other member in a state where they are pressed against each other, and includes a sintering step of diffusion bonding the sintered body and the other member. A manufacturing method comprising:
The raw powder of the green compact contains phosphorus,
The manufacturing method of the composite sintered compact which made the heating temperature in the said sintering process 1050 degreeC or more.
The method for producing a composite sintered body according to any one of claims 8 to 14, wherein a heating temperature in the sintering step is 1200 ° C or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016019711A JP2017137533A (en) | 2016-02-04 | 2016-02-04 | Composite sintered compact and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016019711A JP2017137533A (en) | 2016-02-04 | 2016-02-04 | Composite sintered compact and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017137533A true JP2017137533A (en) | 2017-08-10 |
Family
ID=59565612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016019711A Pending JP2017137533A (en) | 2016-02-04 | 2016-02-04 | Composite sintered compact and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017137533A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019065729A (en) * | 2017-09-29 | 2019-04-25 | 日立化成株式会社 | Sintered component, manufacturing method thereof and nozzle ring |
-
2016
- 2016-02-04 JP JP2016019711A patent/JP2017137533A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019065729A (en) * | 2017-09-29 | 2019-04-25 | 日立化成株式会社 | Sintered component, manufacturing method thereof and nozzle ring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5247329B2 (en) | Iron-based sintered bearing and manufacturing method thereof | |
JPH01283479A (en) | Mechanical seal using pore dispersant and pore dispersed cemented carbide and manufacture thereof | |
KR20060050208A (en) | Sintered valve guide and manufacturing method thereof | |
CN104204247B (en) | Sintered bearing and its manufacture method | |
JP2010111937A (en) | High-strength composition iron powder and sintered component using the same | |
JP2010215951A (en) | Sintered composite sliding component and manufacturing method therefor | |
JP2017066491A (en) | Powder for powder metallurgy, green compact and method for producing sintered component | |
JP5972588B2 (en) | Manufacturing method of sintered bearing | |
JP2011084410A (en) | Carbon material and method for producing the same | |
US20110064600A1 (en) | Co-sintered multi-system tungsten alloy composite | |
JP2012092440A (en) | Sintered valve guide material and its manufacturing method | |
JP6149718B2 (en) | Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder | |
WO2016098525A1 (en) | Green compact and method for producing same | |
JP2017137533A (en) | Composite sintered compact and method for producing the same | |
JP4779997B2 (en) | Method for manufacturing sintered body | |
JP2004323939A (en) | Method for manufacturing sintered part | |
JP2013194255A (en) | Powder for molding and method for producing the same | |
US10941465B2 (en) | Cu-based sintered sliding material, and production method therefor | |
JP2014177664A (en) | Powder for molding, lubricant concentrated powder and method of producing metal member | |
JP2001294905A (en) | Method for producing micromodule gear | |
JP2004211185A (en) | Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method | |
JP2013194254A (en) | Iron-based powder, powder for molding and sintered compact | |
WO2018181107A1 (en) | Sintered aluminum alloy material and method for producing same | |
JP2019070183A (en) | Sintered body, joined body including the sintered body, and production method of sintered body | |
JP2007023318A (en) | High strength member having excellent self-consistency after breakage division, and powdery mixture for obtaining the high strength member |