JP2000144208A - Compression molding method of powder for powder metallurgy - Google Patents

Compression molding method of powder for powder metallurgy

Info

Publication number
JP2000144208A
JP2000144208A JP10315030A JP31503098A JP2000144208A JP 2000144208 A JP2000144208 A JP 2000144208A JP 10315030 A JP10315030 A JP 10315030A JP 31503098 A JP31503098 A JP 31503098A JP 2000144208 A JP2000144208 A JP 2000144208A
Authority
JP
Japan
Prior art keywords
powder
lubricant
molding
density
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10315030A
Other languages
Japanese (ja)
Other versions
JP3822372B2 (en
Inventor
Takehiro Tsuchida
武広 土田
Hiroshi Kako
浩 家口
Yoshikazu Seki
義和 関
Masaaki Sato
正昭 佐藤
Nobuaki Akagi
宣明 赤城
Tetsuya Sawayama
哲也 澤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31503098A priority Critical patent/JP3822372B2/en
Priority to CA002287783A priority patent/CA2287783C/en
Priority to US09/433,071 priority patent/US6344169B2/en
Publication of JP2000144208A publication Critical patent/JP2000144208A/en
Application granted granted Critical
Publication of JP3822372B2 publication Critical patent/JP3822372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which is capable of efficiently increasing the density of a formed body, and further improving the mechanism characteristic and the magnetic characteristic of a final formed body in compressing powders for powder metallurgy such as iron powders and iron-based powders. SOLUTION: In compressing powders for powder metallurgy using a forming die, the forming pressure is set to >=5 tons/cm2, the vibration is applied to the forming die, and the amplitude without pressure is set to 0.002 to 0.10 mm. The amplitude with pressure of 5 tons/cm2 is set to >=20% of the amplitude without pressure. Compression forming is achieved by filling powders for powder metallurgy including <=0.2 wt.% (including 0%) lubricant in the forming die to an inner wall surface of which the lubricant is preferably applied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば鉄粉や鉄基
合金粉末の如き粉末冶金用粉末を圧縮成形する際に、成
形体密度を効率よく高めることができ、最終成形体の機
械的特性や磁気的特性などを高めることのできる方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for compressively molding powder for powder metallurgy such as iron powder or iron-based alloy powder. And a method capable of improving magnetic characteristics and the like.

【0002】[0002]

【従来の技術】粉末冶金法によって成形される成形品の
機械的特性や磁気的特性を高めるには、密度をできるだ
け高くすることが有効であり、そのためには、焼結前の
圧縮成形段階でできるだけ高い密度を得ることが重要で
ある。
2. Description of the Related Art It is effective to increase the density as much as possible in order to enhance the mechanical and magnetic properties of a molded article formed by powder metallurgy. It is important to obtain the highest possible density.

【0003】そこで、圧縮成形段階で粉末冶金用粉末に
振動を与えることにより圧密化を増進する方法が採用さ
れている(たとえば、特公平3−25278号、特公昭
41−6549号、特公昭54−14781号、特公昭
54−41523号など)。
[0003] Therefore, a method of increasing the compaction by applying vibration to the powder for powder metallurgy in the compression molding stage has been adopted (for example, Japanese Patent Publication No. 3-25278, Japanese Patent Publication No. 41-6549, and Japanese Patent Publication No. 54-1979). No. 14781, Japanese Patent Publication No. 54-41523).

【0004】ところがこれら従来の振動成形は、粉末冶
金用粉末の再配列増進に主眼を置く方法であり、タイル
や陶磁器粉末の様に低圧で成形する場合には有効である
が、鉄粉の如く粉末を高圧力で塑性変形させて圧密化を
図る様な用途に対しては必ずしも十分な方法とは言えな
い。
[0004] However, these conventional vibration molding methods focus on the enhancement of rearrangement of powder for powder metallurgy, and are effective when molding at low pressure such as tiles and ceramic powders. It is not necessarily a sufficient method for applications in which the powder is plastically deformed under high pressure to consolidate.

【0005】また従来の粉末冶金法では、成形しようと
する粉末に予め潤滑剤を混合しておくことによって粉末
の流動性を高め、粉末−粉末間、或いは粉末−成形型間
の摩擦を低減することが行われている。これは、成形体
を型から取り外すときの抵抗を小さくし、成形型の焼き
付きを防止するのが主たる目的である。そして従来から
採用されている潤滑剤の添加量は、成形しようとする粉
末に対し0.2〜10重量%程度が一般的であり(たと
えば、特開平2−156002号など)、「Metal
powder report」Vol.42,No.
11,P.781〜786(1987)においても、潤
滑剤の添加量が0.5%のときに最大の圧密度が得られ
る旨報告されている。
[0005] In the conventional powder metallurgy method, the fluidity of the powder is increased by previously mixing a lubricant with the powder to be molded, and the friction between the powder and the powder or between the powder and the molding die is reduced. That is being done. The main purpose of this is to reduce the resistance when the molded body is removed from the mold and to prevent seizure of the molded mold. The amount of the conventionally used lubricant is generally about 0.2 to 10% by weight based on the powder to be molded (for example, Japanese Patent Application Laid-Open No. 2-156002).
powder report "Vol. 42, no.
11, p. 78-786 (1987) also report that the maximum compaction density is obtained when the amount of the lubricant added is 0.5%.

【0006】また、現在実用化されている潤滑剤の添加
量は0.5〜1.0重量%の範囲であるが、この場合、
圧縮成形体の密度を高めるべく成形圧力を高めても、潤
滑剤が粉末間の空隙に充満されて密度の向上を阻害する
ので、金属粉の高密度成形には自ずと限界がある。かと
いって潤滑剤の添加量を減らすと、粉末と成形型との摩
擦が大きくなるため高圧密化ができず、しかも成形型の
寿命を低下させるという問題も生じてくる。
[0006] Further, the amount of the lubricant currently in practical use is in the range of 0.5 to 1.0% by weight.
Even if the molding pressure is increased to increase the density of the compression molded body, the lubricant is filled in the voids between the powders and hinders the improvement of the density. On the other hand, if the amount of the lubricant is reduced, the friction between the powder and the mold becomes large, so that it is not possible to achieve high-pressure densification, and there is also a problem that the life of the mold is shortened.

【0007】更に圧縮成形時の高密度化を増進するた
め、粉末冶金用粉末や成形型を潤滑剤の融点以下(通常
は70〜120℃程度)に加熱して圧縮成形する方法が
提案されており(米国特許第4,9555,798
号)、また特開平5−271709号公報には、潤滑剤
が完全に溶融する温度よりも低い温度(具体的には37
0℃程度以下)に加熱して加圧成形する方法が開示され
ている。これらの技術は、いずれも潤滑剤が溶融すると
粉末の流動が著しく阻害されるという知見に基づくもの
であるが、これらの方法でも、通常の潤滑剤添加量では
潤滑剤が成形体内に残存するため、根本的な改善策とは
言えない。
In order to further increase the density at the time of compression molding, there has been proposed a method in which powder for powder metallurgy or a molding die is heated to a temperature lower than the melting point of a lubricant (usually about 70 to 120 ° C.) to carry out compression molding. (See U.S. Pat. No. 4,9555,798)
JP-A-5-271709 discloses a temperature lower than the temperature at which the lubricant is completely melted (specifically, 37 ° C.).
A method of heating to about 0 ° C. or lower and performing pressure molding is disclosed. These techniques are all based on the finding that when the lubricant is melted, the flow of the powder is significantly inhibited.However, even in these methods, the lubricant remains in the molded body at the usual amount of the lubricant added. This is not a fundamental improvement.

【0008】他方、成形型の内面に潤滑剤を塗布してお
けば、冶金用粉末と成形型との摩擦が低減されることは
周知であるが、冶金用粉末に潤滑剤が配合されていない
ため粉末の流動性が悪く、高密度化の目的は達成できな
い。
On the other hand, it is well known that if a lubricant is applied to the inner surface of a molding die, friction between the metallurgical powder and the molding die is reduced, but no lubricant is blended in the metallurgical powder. Therefore, the fluidity of the powder is poor, and the purpose of high density cannot be achieved.

【0009】更に特開平9−272901号公報には、
成形型の内面に潤滑剤を塗布しておき、潤滑剤を含まな
い冶金用粉末と成形型を150℃〜400℃に加熱して
圧縮成形することにより、高密度の成形体を得る方法が
開示されている。しかしこの方法では、冶金用粉末内に
潤滑剤が全く含まれていないため該粉末の流動性や粉末
粒子間の摩擦低減が不十分であり、満足のいく高密度の
圧縮成形体は得られ難い。しかも、冶金用粉末間の摩擦
を低減できないため圧縮成形体内部で密度むらを生じ易
く、その後の焼結工程などで寸法バラツキの原因とな
る。
[0009] Further, JP-A-9-272901 discloses that
Disclosed is a method of obtaining a high-density molded body by applying a lubricant to an inner surface of a molding die, heating the metallurgical powder containing no lubricant and the molding die to 150 ° C. to 400 ° C., and compression molding. Have been. However, in this method, since no lubricant is contained in the metallurgical powder, the fluidity of the powder and the reduction of friction between powder particles are insufficient, and it is difficult to obtain a satisfactory high-density compression molded body. . In addition, since friction between metallurgical powders cannot be reduced, density unevenness is likely to occur inside the compression-molded product, which causes dimensional variations in the subsequent sintering process and the like.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記の様な従
来技術の問題点に着目してなされたものであって、圧縮
成形時における冶金用粉末の流動性不良の問題や、成形
型との摩擦の問題を解消し、冶金用粉末を効率よく高密
度に圧縮成形することのできる技術を確立することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and has been described in connection with the problem of poor fluidity of metallurgical powder during compression molding, and the problem with molding dies. It is an object of the present invention to solve the problem of friction and to establish a technology capable of efficiently compacting metallurgical powder at high density.

【0011】[0011]

【課題を解決するための手段】上記課題を解決すること
のできた本発明にかかる成形法とは、成形型を用いて粉
末冶金用粉末を圧縮成形するに当たり、成形圧力を5ト
ン/cm2 以上に設定すると共に成形型に振動を加え、
無加圧時の振幅を0.002〜0.10mmに設定する
と共に、5トン/cm2 加圧時の振幅を無加圧時の振幅
の20%以上にするところに要旨を有している。
Means for Solving the Problems A molding method according to the present invention which can solve the above-mentioned problems is that, when compressing powder for powder metallurgy using a molding die, the molding pressure is 5 ton / cm 2 or more. And apply vibration to the mold,
The gist is that the amplitude at the time of no pressurization is set to 0.002 to 0.10 mm and the amplitude at the time of pressurization of 5 tons / cm 2 is set to 20% or more of the amplitude at the time of no pressurization. .

【0012】この方法を実施するに当たっては、成形型
内壁面に潤滑剤を塗布すると共に、粉末冶金用粉末に
は、0.2重量%以下(0%を含む)の潤滑剤を含有さ
せておけば、圧縮成形体の密度を更に効果的に高めるこ
とができるので好ましく、成形型に加えられる振動の好
ましい周波数は5Hz〜20kHz、より好ましくは5
〜200Hzの範囲である。
In carrying out this method, a lubricant is applied to the inner wall surface of the mold, and the powder for powder metallurgy is made to contain 0.2% by weight or less (including 0%) of a lubricant. For example, the density of the compression molded body can be more effectively increased, and the preferable frequency of the vibration applied to the mold is 5 Hz to 20 kHz, more preferably 5 Hz to 20 kHz.
It is in the range of -200 Hz.

【0013】また、圧縮成形時の温度は80〜500℃
との範囲が好適であり、中でも該成形温度を、粉末冶金
用粉末内に含まれる潤滑剤の融点(Tm)以上で且つ
(Tm×3)以下の範囲に調整することは、成形体密度
を高める上でより有効である。
The temperature during compression molding is 80 to 500 ° C.
In particular, adjusting the molding temperature to the range of not less than the melting point (Tm) of the lubricant contained in the powder for powder metallurgy and not more than (Tm × 3) can reduce the density of the compact. More effective in raising.

【0014】[0014]

【発明の実施の形態】発明者らは、粉末冶金用の金属
粉、特に鉄粉を対象として、圧縮成形時の高密度化を増
進すべく様々の角度から研究を重ねてきた。その結果、
上記の条件設定を行なえばその目的が容易に達成できる
ことを知り、本発明に想到したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies on metal powders for powder metallurgy, particularly iron powders, from various angles in order to increase the density in compression molding. as a result,
The inventor has found that the object can be easily achieved by setting the above conditions, and the present invention has been made.

【0015】以下、本発明の実施形態について詳述す
る。本発明で使用する粉末冶金用粉末とは、粉末を所定
の形状に圧縮成形し、場合によってはその後に焼結等の
工程を経て様々の成形品を得るために用いられる粉末を
総称する。また本明細書では、成形型と粉末との摩擦
や、粉末同士の摩擦を低減するために潤滑剤などが混合
されているものも含めて粉末冶金用粉末と言う。その例
としては、金属粉末やセラミックス粉末など挙げられ、
中でも圧縮成形時に塑性変形を伴う金属粉末に対して本
発明は極めて有効に活用できる。
Hereinafter, embodiments of the present invention will be described in detail. The powder for powder metallurgy used in the present invention is a general term for powders used to obtain various molded products by compressing the powder into a predetermined shape and, if necessary, sintering or the like. In this specification, the powder for powder metallurgy includes a powder mixed with a lubricant or the like for reducing friction between a molding die and powder and friction between powders. Examples include metal powder and ceramic powder.
In particular, the present invention can be used very effectively for metal powders that undergo plastic deformation during compression molding.

【0016】代表例としては、純鉄粉(或いは、不純物
として少量のC、Mn、Si、P、S、Cr、O、Nな
どが含まれているものを包含する)や、焼結後の強度を
確保するためにNi、Mo、Mn、Cr、Siその他の
元素を意図的に添加した鉄基合金粉(プレアロイ型、拡
散型、それらのハイブリッド型など)等が含まれる。た
だし、合金元素の添加量が多過ぎると鉄粉が硬質化して
圧縮性が低下し、粉末冶金製品としての高密度化を阻害
する要因になることがあるので注意すべきである。
Typical examples include pure iron powder (or one containing a small amount of C, Mn, Si, P, S, Cr, O, N, etc. as impurities), Iron-based alloy powder (prealloy type, diffusion type, hybrid type thereof, etc.) to which Ni, Mo, Mn, Cr, Si and other elements are intentionally added to secure the strength are included. However, it should be noted that if the addition amount of the alloying element is too large, the iron powder hardens and the compressibility decreases, which may be a factor that hinders the high density of the powder metallurgy product.

【0017】また、焼結後の特性を高めるため種々の合
金化元素、たとえばグラファイト、Cu、Ni、Moな
ど単独で若しくは2種以上を配合したものであってもよ
く、更には、少量のバインダーを用いて鉄粉の表面にグ
ラファイト等を付着させた複合粉末であってもよい。
Further, in order to enhance the properties after sintering, various alloying elements such as graphite, Cu, Ni, Mo and the like may be used alone or in combination of two or more kinds. A composite powder in which graphite or the like is adhered to the surface of an iron powder using the above method may be used.

【0018】本発明において極めて重要なのは、圧縮成
形時に与える振動の振幅の制御である。粉末を圧縮成形
する際に、粉末同士の摩擦を振動により低減して高密度
化するには、加圧中にも振動の振幅をある程度以上に維
持することが必要である。しかし、鉄粉の如き塑性変形
する粉末を高圧で圧縮成形する場合、従来の振動成形法
では、無加圧時に十分な振幅の振動を与えていたとして
も、加圧時には減衰してしまって振動の効果が十分に発
揮されていなかった。
What is very important in the present invention is the control of the amplitude of vibration applied during compression molding. In order to reduce the friction between powders and increase the density of the powders by vibration during compression molding of the powders, it is necessary to maintain the amplitude of the vibrations to a certain level even during pressing. However, when plastically deforming powder, such as iron powder, is compression-molded at high pressure, the conventional vibration molding method provides vibration with sufficient amplitude when no pressure is applied, but it is attenuated when pressurized. Was not fully effective.

【0019】ところが本発明者らが確認したところによ
ると、5トン/cm2 加圧時の振幅が無加圧時の振幅の
20%以上、より好ましくは50%以上となる様に制御
してやれば、5トン/cm2 以上の高圧成形時において
も振動による粉末同士間の摩擦低減効果と粉末−成形型
間の摩擦低減効果が十分に発揮され、成形体密度を大幅
に高め得ることが確認された。
However, the present inventors have confirmed that if the control is performed so that the amplitude at the time of pressurization of 5 tons / cm 2 is 20% or more, more preferably 50% or more of the amplitude at the time of no pressurization. It was confirmed that even at the time of high-pressure molding of 5 ton / cm 2 or more, the effect of reducing friction between powders due to vibration and the effect of reducing friction between powder and a molding die were sufficiently exhibited, and the density of the compact could be greatly increased. Was.

【0020】ちなみに、5トン/cm2 加圧時の振幅が
無加圧時の振幅の20%を下回ると、振動による上記摩
擦低減効果が大幅に低下し、圧縮成形体の密度を十分に
向上できなくなる。
Incidentally, when the amplitude at the time of pressurization of 5 ton / cm 2 is less than 20% of the amplitude at the time of no pressurization, the above-mentioned friction reducing effect by vibration is greatly reduced, and the density of the compression-molded body is sufficiently improved. become unable.

【0021】成形型に振動を与える場合、上下パンチを
介して粉末に振動が伝わる様にすることによって、成形
体密度を最も効果的に高めることができるが、上パンチ
のみ、或いは下パンチのみから振動を与えたり、もしく
はダイスにも振動与え、パンチの振動と組み合わせるこ
とも有効である。また振動を与えるタイミングは、圧力
が加わる時に振動を与えることが必須条件であって、粉
末の充填時あるいは圧縮成形後の脱型時に振動を与える
かどうかは自由である。
When vibration is applied to the molding die, the density of the compact can be most effectively increased by transmitting the vibration to the powder through the upper and lower punches. It is also effective to apply vibration to the die or to apply vibration to the die and to combine the vibration with the punch. The timing for applying the vibration is an essential condition that the vibration is applied when pressure is applied, and the vibration can be freely applied at the time of filling the powder or at the time of demolding after compression molding.

【0022】振動を与えるための装置にも特に制限がな
く、上記の振幅に制御し得る限りどの様な振動発生装置
を使用しても構わない。
There is no particular limitation on the device for giving the vibration, and any vibration generating device may be used as long as the vibration can be controlled to the above-mentioned amplitude.

【0023】また、付与される振動の基本周波数は、粉
末同士の摩擦を低減し得るよう通常は5Hz〜20kH
zの範囲から選定されるが、より好ましいのは5〜20
0Hzの範囲である。ちなみに、基本周波数が5Hz未
満では粉末同士の摩擦を十分に低減できず、また20k
Hzを超える振幅を加圧時に維持するには過大なエネル
ギーが必要となり、実用規模の実施にそぐわないからで
ある。ただし、振動発生装置でそれらの整数倍に当たる
周波数の振幅が合成されている場合は、問題なく実用化
できる。
The fundamental frequency of the applied vibration is usually 5 Hz to 20 kHz so as to reduce the friction between the powders.
selected from the range of z, more preferably from 5 to 20
The range is 0 Hz. By the way, if the fundamental frequency is less than 5 Hz, the friction between powders cannot be reduced sufficiently,
This is because excessive energy is required to maintain an amplitude exceeding Hz at the time of pressurization, which is not suitable for implementation on a practical scale. However, in the case where the amplitude of the frequency corresponding to an integral multiple of those is synthesized in the vibration generator, it can be put to practical use without any problem.

【0024】振幅については、無加圧時の振幅が0.0
02〜0.10mmの範囲であれば、5トン/cm2
圧時の振幅を無加圧時の20%とした場合でも十分な振
幅が得られるので好ましい。該振幅が0.002mm未
満の場合は、加圧時の振幅が不足気味となって振動によ
るの効果が有効に発揮され難くなり、また0.10mm
を超えて振幅が大きくなり過ぎると、加圧時の振幅を維
持するのに過大なエネルギーが必要となり、実質的に加
圧時の振幅維持が困難となる。
Regarding the amplitude, the amplitude when no pressure is applied is 0.0
A range of 02 to 0.10 mm is preferable because a sufficient amplitude can be obtained even when the amplitude at the time of pressurization of 5 ton / cm 2 is set to 20% of that at the time of no pressurization. When the amplitude is less than 0.002 mm, the amplitude at the time of pressurization tends to be insufficient, and it is difficult to effectively exert the effect due to vibration.
When the amplitude is excessively larger than the above, excessive energy is required to maintain the amplitude during pressurization, and it becomes substantially difficult to maintain the amplitude during pressurization.

【0025】また本発明によれば、圧縮成形時の圧力が
低い場合でもそれなりの高密度化を達成できるが、本発
明では圧縮成形時に粉末を塑性変形させることによって
より高度の圧密化を達成できるので、成形圧力は5トン
/cm2 以上とすべきである。但し、密度向上効果は1
5トン/cm2 程度で飽和し、それ以上に圧力を高めて
もそれ以上の密度向上効果は得られないので経済的に無
駄である。
According to the present invention, a high density can be achieved even when the pressure during compression molding is low, but in the present invention, a higher degree of consolidation can be achieved by plastically deforming the powder during compression molding. Therefore, the molding pressure should be 5 ton / cm 2 or more. However, the density improvement effect is 1
It saturates at about 5 ton / cm 2 , and even if the pressure is further increased, no further effect of increasing the density can be obtained, which is economically wasteful.

【0026】次に、潤滑剤添加量の限定理由を明らかに
する。従来例の如く、潤滑効果を有効に発揮させるため
潤滑剤を0.5〜10重量%程度添加した場合、圧縮成
形体の密度が高くなるにつれて潤滑剤が粉末間の空隙の
大部分を占める様になるため、高密度化には限界があっ
た。ところが、圧縮成形時に振動を与えると、潤滑剤の
使用量を0.2重量%以下に低減することができ、それ
に伴って、粉末間の空隙に侵入する潤滑剤の量が少なく
なって圧縮成形体密度を大幅に高めることが可能とな
る。
Next, the reasons for limiting the amount of lubricant added will be clarified. As in the conventional example, when a lubricant is added in an amount of about 0.5 to 10% by weight to effectively exert a lubricating effect, the lubricant occupies most of the voids between the powders as the density of the compression molded body increases. Therefore, there is a limit in increasing the density. However, when vibration is applied during the compression molding, the amount of the lubricant used can be reduced to 0.2% by weight or less, and accordingly, the amount of the lubricant entering the voids between the powders decreases, and the compression molding is performed. It is possible to greatly increase body density.

【0027】この時、潤滑剤を全く添加せずとも振動に
よる再配列促進効果によってある程度の高密度化は達成
できるが、粉末の流動性を確保する意味から、望ましく
は0.01重量%以上、0.20重量%以下、より好ま
しくは0.01重量%以上、0.10重量%以下とする
のがよい。
At this time, even if no lubricant is added, a certain degree of high density can be achieved by the effect of promoting rearrangement by vibration, but from the viewpoint of securing the fluidity of the powder, desirably 0.01% by weight or more. The content is preferably 0.20% by weight or less, more preferably 0.01% by weight or more and 0.10% by weight or less.

【0028】また、潤滑剤量を上記の程度まで低減した
場合、成形型と紛未との摩擦が大きくなって高密度化が
困難になる。従って本発明を実施する際には、粉末を成
形型内へ充填する前に成形型の内壁面に潤滑剤を塗布し
ておくことが必要となる。潤滑剤を成形型の内壁面に塗
布する方法にも特に制限はないが、通常は、固体状態で
付着させる方法、溶媒に溶解乃至分散させたものを刷毛
塗りしたり噴霧付着させる方法、潤滑剤を加熱溶融させ
て塗布する方法等が採用される。
If the amount of the lubricant is reduced to the above-mentioned level, the friction between the molding die and the powder becomes large, making it difficult to increase the density. Therefore, when practicing the present invention, it is necessary to apply a lubricant to the inner wall surface of the mold before filling the powder into the mold. The method of applying the lubricant to the inner wall surface of the mold is not particularly limited. However, usually, a method of applying the lubricant in a solid state, a method of brushing or spraying a solution dissolved or dispersed in a solvent, a method of applying a lubricant, Is applied by heating and melting.

【0029】圧縮成形用の粉末に添加される潤滑剤とし
て好ましいのは、ステアリン酸の如き高級脂肪酸の金属
塩やワックス系潤滑剤などであり、これらは必要により
2種以上を複合添加してもよい。また圧縮成形時に加熱
する場合、従来の様に潤滑剤を0.5〜10重量%添加
した場合は、添加した潤滑剤の融点以上に加熱すると粉
末の流動性が大幅に低下するが、本発明では上記の様に
潤滑剤の添加量を大幅に抑えているので、多少加熱した
としても流動性が低下することもない。また、潤滑剤の
融点以上でも成形型と粉末間の潤滑作用は保持されるの
で、高密度化が阻害されることもない。
Preferred examples of the lubricant to be added to the powder for compression molding include metal salts of higher fatty acids such as stearic acid and wax-based lubricants. Good. When heating at the time of compression molding and adding 0.5 to 10% by weight of a lubricant as in the prior art, heating the powder to a temperature higher than the melting point of the added lubricant significantly reduces the fluidity of the powder. As described above, since the amount of the lubricant added is largely suppressed as described above, the fluidity does not decrease even if heated slightly. In addition, since the lubricating action between the molding die and the powder is maintained even at a temperature higher than the melting point of the lubricant, the high density is not hindered.

【0030】成形型内壁面に塗布する好ましい潤滑剤と
しては、ステアリン酸等の高級脂肪酸の金属塩、ワック
ス系、二硫化モリブデン系、BN系、グラファイト系、
その他一般的な潤滑剤を使用することができ、これらは
単独で使用してもよく或いは2種以上を併用しても構わ
ない。この場合、圧縮成形時の加熱温度に応じて、最適
の潤滑剤を選択して使用することが望ましい。
Preferred lubricants applied to the inner wall of the mold include metal salts of higher fatty acids such as stearic acid, waxes, molybdenum disulfides, BNs, graphites, and the like.
Other general lubricants can be used, and these may be used alone or in combination of two or more. In this case, it is desirable to select and use an optimal lubricant according to the heating temperature during compression molding.

【0031】圧縮成形時の温度は室温でもよいが、一層
の高密度成形を実現するには粉末を加熱して塑性変形抵
抗を下げることが望ましい。加熱手段としては、粉末自
体を適当な温度に予熱しておくか、成形型に充填した後
で成形型からの伝熱を利用して加熱してもよいが、成形
型の温度が低いと加圧中に粉末の温度が低下して圧縮性
が低下するので、成形型の温度を適正に維持できる様に
するのがよい。
The temperature during compression molding may be room temperature, but it is desirable to lower the plastic deformation resistance by heating the powder in order to achieve higher density molding. As the heating means, the powder itself may be preheated to an appropriate temperature, or may be heated by utilizing heat transfer from the mold after filling the mold, but if the temperature of the mold is low, heating is performed. Since the temperature of the powder decreases during compression and the compressibility decreases, it is preferable that the temperature of the mold can be appropriately maintained.

【0032】成形型の加熱温度は、粉末の種類によって
当然に変わってくるが、最も代表的な鉄粉を使用する場
合は、80〜500℃の範囲が望ましい。ちなみに、8
0℃未満の低温では粉末の変形抵抗が大きいため高密度
化が進み難く、また500℃を超えて過度に高温になる
と成形型が熱歪みを起こしたり寿命短縮の原因になるか
らである。得られる成形体の密度や加熱に要するコス
ト、型寿命などを総合的に考慮してより好ましい加熱温
度の下限は100℃、より好ましい上限は250℃であ
る。
The heating temperature of the mold naturally depends on the type of powder, but when the most typical iron powder is used, the temperature is preferably in the range of 80 to 500 ° C. By the way, 8
If the temperature is lower than 0 ° C., the deformation resistance of the powder is large, so that it is difficult to increase the density. If the temperature is excessively higher than 500 ° C., the molding die undergoes thermal distortion or shortens the life. A more preferred lower limit of the heating temperature is 100 ° C., and a more preferred upper limit is 250 ° C. in consideration of the density of the obtained molded body, the cost required for heating, and the life of the mold.

【0033】この時、粉末中に混入させた潤滑剤の融点
(Tm)に対し、成形型の温度を[Tm以上、Tm×3
以下]の温度に調整すると、圧縮成形体を更に高密度化
することができるので好ましい。その理由は、圧縮成形
時に潤滑剤が溶融することによって潤滑剤が成形体表面
に滲み出し、粉末間の空隙から潤滑剤が自然に除かれる
と共に、成形型−粉末間の潤滑効果も高めるからであ
る。
At this time, with respect to the melting point (Tm) of the lubricant mixed into the powder, the temperature of the mold was set to [Tm or more, Tm × 3
It is preferable to adjust the temperature to the following value because the density of the compression molded body can be further increased. The reason is that when the lubricant is melted at the time of compression molding, the lubricant oozes out on the surface of the molded product, the lubricant is naturally removed from the gap between the powders, and the lubricating effect between the molding die and the powder is also enhanced. is there.

【0034】従来技術では、前述の如く粉末の流動性確
保の観点から潤滑剤の融点以下で成形することが薦めら
れていたが、本発明では、潤滑剤の添加量が前述の如く
大幅に低減されているので、加熱による流動性低下の問
題は生じない。但し、成形温度が潤滑剤の融点(Tm)
に対して[Tm×3]を超えると、潤滑剤の熱劣化が激
しくなって成形型に対する焼き付きなどの問題が生じて
くるので、それ以下の温度に抑えるべきである。
In the prior art, as mentioned above, it was recommended to mold at a temperature lower than the melting point of the lubricant from the viewpoint of ensuring the fluidity of the powder. However, in the present invention, the amount of the lubricant added is greatly reduced as described above. Therefore, there is no problem of a decrease in fluidity due to heating. However, the molding temperature is the melting point of the lubricant (Tm)
On the other hand, if it exceeds [Tm × 3], the thermal deterioration of the lubricant becomes so severe that a problem such as seizure to a molding die occurs, so that the temperature should be kept below that.

【0035】成形型の加熱方法としては、外部からのヒ
ーター加熱、通電によるジュール加熱、高周波加熱、赤
外線加熱など任意の方法を採用できる。また、成形型内
に充填された粉末が加熱された成形型によって温められ
るまでに多少の時間がかかるので、より短時間で圧縮成
形を完了するには、粉末を成形型内に充填する前に所定
の温度まで予熱しておくことも有効である。そのときの
予熱温度は、粉末が酸化したり、焼結したりしない範囲
であれば特に限定されない。
As a method for heating the mold, any method such as external heater heating, Joule heating by energization, high-frequency heating, and infrared heating can be adopted. Also, since it takes some time before the powder filled in the mold is warmed by the heated mold, to complete the compression molding in a shorter time, before filling the powder into the mold, Preheating to a predetermined temperature is also effective. The preheating temperature at that time is not particularly limited as long as the powder is not oxidized or sintered.

【0036】[0036]

【実施例】以下、実施例を挙げて本発明をより具体的に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に適合し得る範囲で適当に変
更を加えて実施することも可能であり、それらはいずれ
も本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples. However, the following Examples are not intended to limit the present invention, and should be appropriately performed within a range that can conform to the purpose described above and below. Modifications can be made and implemented, all of which are included in the technical scope of the present invention.

【0037】実施例 V型混合器を用いて、表1,2に示す配合組成の原料粉
末を30分間混合する。得られた各混合粉末を約20g
づつ秤量し、所定の温度に加熱した金型(直径31.5
mm×深さ12.5mm)の金型に充填し、表1〜4に
示す条件で加圧成形した。この成形工程で、振動発生器
(ダイイチ社製の震動盤ユニット)を用いて金型に振動
を加え、無加圧時の振幅Aと5トン/mm2 加圧時の振
幅Bを色々変えて実験を行った。得られた各成形体の密
度を下記の方法で測定し、表3,4に示す結果を得た。
尚、成形体の密度は、成形体の体積と重量から算出し
た。
Example Using a V-type mixer, raw material powders having the composition shown in Tables 1 and 2 are mixed for 30 minutes. About 20 g of each obtained mixed powder
Each mold was weighed and heated to a predetermined temperature (diameter 31.5
mm × 12.5 mm in depth) and press-molded under the conditions shown in Tables 1-4. In this molding process, vibration is applied to the mold using a vibration generator (vibration board unit manufactured by Daiichi Co., Ltd.), and the amplitude A when no pressure is applied and the amplitude B when 5 tons / mm 2 are applied are varied. An experiment was performed. The density of each obtained compact was measured by the following method, and the results shown in Tables 3 and 4 were obtained.
In addition, the density of the compact was calculated from the volume and weight of the compact.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】表1〜4より次の様に考察できる。No.
1〜7は、加圧成形時における振動の減衰率(5トン/
cm2 加圧時の振幅Bと無加圧時の板幅Aの比)を変更
したもので、減衰率が本発明の規定範囲内のもの(N
o.1〜5)は、加圧成形時の振幅減衰率が20%未満
であるNo.5,6に比べて高い成形体密度が得られて
いる。
The following can be considered from Tables 1 to 4. No.
1 to 7 are vibration damping rates during pressure molding (5 tons /
(amplitude B at the time of pressurization of cm 2 and the width A of the plate at the time of no pressurization).
o. Nos. 1 to 5) are Nos. 1 to 5 in which the amplitude attenuation rate during pressure molding is less than 20%. A higher compact density is obtained as compared with 5,6.

【0043】No.8〜14は振動の振幅を変えたもの
であり、振幅が本発明の規定範囲内のものは、規定範囲
を外れるNo.8,14に比べて高い成形体密度が得ら
れている。
No. Nos. 8 to 14 are obtained by changing the amplitude of the vibration. Higher molded body density is obtained as compared with 8,14.

【0044】No.15〜20は成形圧力を変えたもの
であるが、成形圧力が5トン/cm 2 未満(No.1
5)では成形体密度が低い。そして、成形圧力を高める
ほど成形体密度は高まるが、15トン/cm2 で上昇程
度は飽和し、それ以上に圧力を高めても成形体密度は殆
ど上昇しなくなるため、経済的に無駄であることが分か
る。
No. 15-20 are the ones with different molding pressures
But the molding pressure is 5 ton / cm Two (No. 1)
In 5), the density of the compact is low. And increase the molding pressure
The density of the compact increases as theTwo About ascending
The density is saturated, and even if the pressure is increased further,
It is not economically wasteful because it does not rise anymore
You.

【0045】No.21〜27は振動の周波数を変えた
もので、周度数好適範囲内(20〜200kHz)に設
定したもの(No.22〜26)は、高い成形体密度が
得られている。またNo.28〜33は、金型潤滑を施
した上で混合粉末中の潤滑剤量を変えたものであるが、
潤滑剤添加量が0.2重量%以下で高い成形体密度が得
られており、特に0.01重量%以上、0.1重量%以
下で高い成形体密度が得られている。
No. 21 to 27 are obtained by changing the frequency of the vibration, and when the frequency is set within a suitable range of the frequency (20 to 200 kHz) (Nos. 22 to 26), a high compact density is obtained. No. 28 to 33 are obtained by changing the amount of lubricant in the mixed powder after performing mold lubrication.
A high molded article density is obtained when the amount of the lubricant added is 0.2% by weight or less, and a high molded article density is particularly obtained when the amount of the lubricant is 0.01% by weight or more and 0.1% by weight or less.

【0046】No.34〜41は、添加潤滑剤としてス
テアリン酸Liを使用すると共に、金型塗布潤滑剤とし
て二硫化モリブデンを使用し、成形温度を変えた例であ
り、成形温度は80℃以上が好ましく、温度を高めるに
つれて成形体密度は高まるが、密度の上昇は約500℃
で飽和するので、500℃以下が好ましいことが分か
る。またNo.42〜49は、添加潤滑剤としてステア
リン酸Znを使用すると共に、金型塗布潤滑剤としてB
N系潤滑剤を使用し、同様に成形温度を変えた例であ
り、この場合も、成形温度は80〜500℃の範囲が特
に好ましいことが分かる。
No. Nos. 34 to 41 are examples in which Li stearate is used as an additive lubricant, and molybdenum disulfide is used as a mold coating lubricant, and the molding temperature is changed. The molding temperature is preferably 80 ° C or higher. As the density increases, the density of the compact increases, but the density increases by about 500 ° C.
, The temperature is preferably 500 ° C. or less. No. Nos. 42 to 49 use Zn stearate as an additive lubricant and B as a mold coating lubricant.
This is an example in which the N-type lubricant was used and the molding temperature was similarly changed. In this case, too, it is understood that the molding temperature is particularly preferably in the range of 80 to 500 ° C.

【0047】[0047]

【発明の効果】本発明は以上の様に構成されており、冶
金用粉末内に配合する潤滑剤の量を0.2%以下に抑
え、好ましくは成形型内壁面への潤滑剤塗布を採用する
と共に、成形型に振動を加えて特に加圧成形時の振幅減
衰率を特定することにより、安定して高い成形体密度を
確保できる。
According to the present invention, the amount of the lubricant compounded in the metallurgical powder is suppressed to 0.2% or less, and the lubricant is preferably applied to the inner wall surface of the mold. At the same time, by applying vibration to the mold and specifying the amplitude attenuation rate particularly during pressure molding, a high compact density can be stably secured.

フロントページの続き (72)発明者 関 義和 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 佐藤 正昭 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 赤城 宣明 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 澤山 哲也 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 Fターム(参考) 4K018 AA24 CA02 CA05 CA07 CA16Continued on the front page (72) Inventor Yoshikazu Seki 2-3-1, Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside Kobe Steel, Ltd. Takasago Works (72) Inventor Masaaki Sato 2-3-1, Shinama, Araimachi, Takasago-shi, Hyogo Prefecture Kobe Steel, Ltd. Takasago Works (72) Inventor Noriaki Akagi 2-3-1, Shinama, Arai-machi, Takasago City, Hyogo Prefecture Inside Kobe Steel Works, Takasago Works (72) Inventor Tetsuya Sawayama 2-chome, Araimachi, Takasago City, Hyogo Prefecture No.3-1 F-term in Kobe Steel, Ltd. Takasago Works (reference) 4K018 AA24 CA02 CA05 CA07 CA16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 成形型を用いて粉末冶金用粉末を圧縮成
形するに当たり、成形圧力を5トン/cm2 以上に設定
すると共に成形型に振動を加え、無加圧時の振幅を0.
002〜0.10mmに設定すると共に、5トン/cm
2 加圧時の振幅を無加圧時の振幅の20%以上とするこ
とを特徴とする粉末冶金用粉末の圧縮成形法。
When compressing powder for powder metallurgy using a molding die, the molding pressure is set to 5 ton / cm 2 or more, vibration is applied to the molding die, and the amplitude when no pressure is applied is set to 0.
002 to 0.10 mm and 5 tons / cm
(2) A compression molding method of powder for powder metallurgy, wherein the amplitude at the time of pressurization is 20% or more of the amplitude at the time of no pressurization.
【請求項2】 内壁面に潤滑剤が塗布された成形型内
に、0.2重量%以下(0%を含む)の潤滑剤を含む粉
末冶金用粉末を充填して圧縮成形を行なう請求項1に記
載の成形法。
2. A compact having a lubricant applied to an inner wall thereof is filled with a powder for powder metallurgy containing 0.2% by weight or less (including 0%) of a lubricant, and compression molding is performed. 2. The molding method according to 1.
【請求項3】 圧縮成形時の温度を80〜500℃とす
る請求項1または2に記載の成形法。
3. The molding method according to claim 1, wherein the temperature during compression molding is 80 to 500 ° C.
【請求項4】 圧縮成形時の温度を、粉末冶金用粉末内
に配合された潤滑剤の融点(Tm)以上で且つ(Tm×
3)以下に制御する請求項3に記載の成形法。
4. The temperature at the time of compression molding is not less than the melting point (Tm) of the lubricant compounded in the powder for powder metallurgy and (Tm ×
3) The molding method according to claim 3, which is controlled as follows.
【請求項5】 振動の周波数を5Hz〜20kHzとす
る請求項1〜4のいずれかに記載の成形法。
5. The molding method according to claim 1, wherein the frequency of the vibration is 5 Hz to 20 kHz.
JP31503098A 1998-11-05 1998-11-05 Powder metallurgy powder compression molding method Expired - Fee Related JP3822372B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31503098A JP3822372B2 (en) 1998-11-05 1998-11-05 Powder metallurgy powder compression molding method
CA002287783A CA2287783C (en) 1998-11-05 1999-10-29 Method for the compaction of powders for powder metallurgy
US09/433,071 US6344169B2 (en) 1998-11-05 1999-11-03 Method for compaction of powders for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31503098A JP3822372B2 (en) 1998-11-05 1998-11-05 Powder metallurgy powder compression molding method

Publications (2)

Publication Number Publication Date
JP2000144208A true JP2000144208A (en) 2000-05-26
JP3822372B2 JP3822372B2 (en) 2006-09-20

Family

ID=18060588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31503098A Expired - Fee Related JP3822372B2 (en) 1998-11-05 1998-11-05 Powder metallurgy powder compression molding method

Country Status (1)

Country Link
JP (1) JP3822372B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055238A3 (en) * 2001-01-12 2003-01-30 Gkn Sinter Metals Gmbh Method for producing a sintered component with superimposed oscillations during the pressing process
JP2009507368A (en) * 2005-09-02 2009-02-19 エイブイエックス リミテッド Method for forming an anode body for a solid state capacitor
JP2009085234A (en) * 2007-09-27 2009-04-23 Ntn Corp Plain bearing and method for manufacturing same
JP2015213148A (en) * 2013-11-29 2015-11-26 株式会社神戸製鋼所 Mixed powder for powder magnetic core, and powder magnetic core

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055238A3 (en) * 2001-01-12 2003-01-30 Gkn Sinter Metals Gmbh Method for producing a sintered component with superimposed oscillations during the pressing process
JP2009507368A (en) * 2005-09-02 2009-02-19 エイブイエックス リミテッド Method for forming an anode body for a solid state capacitor
US8114340B2 (en) 2005-09-02 2012-02-14 Avx Corporation Method of forming anode bodies for solid state capacitors
JP2009085234A (en) * 2007-09-27 2009-04-23 Ntn Corp Plain bearing and method for manufacturing same
JP2015213148A (en) * 2013-11-29 2015-11-26 株式会社神戸製鋼所 Mixed powder for powder magnetic core, and powder magnetic core

Also Published As

Publication number Publication date
JP3822372B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
CN101733400B (en) High-strength composition iron powder and sintered part made therefrom
JPH07505679A (en) Bearing manufacturing method
JPH08253826A (en) Sintered friction material, composite copper alloy powder used therefor and their production
CN101069927B (en) Sinter-hardening powder and their sintered compacts
TW436345B (en) Metallic powder molding material and its re-compression molded body and sintered body obtained from the re-compression molded body and production methods thereof
CN107000053B (en) Powder used in metallurgy iron(-)base powder and sintering forging component
US5552109A (en) Hi-density sintered alloy and spheroidization method for pre-alloyed powders
EP1145788B1 (en) Lubricating agent for mold at elevated temperature and method for producing high density iron-based sintered compact
JP2002504188A (en) Manufacturing method for high density high carbon sintered metal powder steel parts
JP4658602B2 (en) Mixture for producing compression molded products
JP2000199002A (en) Compacting method of powder for powder metallurgical processing
JP3822372B2 (en) Powder metallurgy powder compression molding method
JP2004323939A (en) Method for manufacturing sintered part
JP4352559B2 (en) Method for producing metal powder compact
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
JP5012645B2 (en) Method for producing high-density iron-based powder compact
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP2004513233A (en) High density product and method of manufacturing the same
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
JP2001181701A (en) Method for producing high strength/high density ferrous sintered body
JP3634376B2 (en) Manufacturing method of powder metal sintered product
WO2006025432A1 (en) Method for forming powder in powder metallurgy and method for producing sintered parts
US5951737A (en) Lubricated aluminum powder compositions
JP3931503B2 (en) Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body
JP2008240031A (en) Preform for pressing using iron powder as raw material, and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees