JP4737107B2 - Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body - Google Patents
Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body Download PDFInfo
- Publication number
- JP4737107B2 JP4737107B2 JP2007035371A JP2007035371A JP4737107B2 JP 4737107 B2 JP4737107 B2 JP 4737107B2 JP 2007035371 A JP2007035371 A JP 2007035371A JP 2007035371 A JP2007035371 A JP 2007035371A JP 4737107 B2 JP4737107 B2 JP 4737107B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- based powder
- powder
- mass
- powder mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 248
- 239000000843 powder Substances 0.000 title claims description 198
- 229910052742 iron Inorganic materials 0.000 title claims description 121
- 239000000203 mixture Substances 0.000 title claims description 85
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000000654 additive Substances 0.000 claims description 49
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 230000000996 additive effect Effects 0.000 claims description 20
- 239000000454 talc Substances 0.000 claims description 20
- 229910052623 talc Inorganic materials 0.000 claims description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 229910045601 alloy Inorganic materials 0.000 claims description 18
- 239000000956 alloy Substances 0.000 claims description 18
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 15
- 239000000194 fatty acid Substances 0.000 claims description 15
- 229930195729 fatty acid Natural products 0.000 claims description 15
- 150000004665 fatty acids Chemical class 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000000344 soap Substances 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 description 26
- 238000010438 heat treatment Methods 0.000 description 25
- 238000000465 moulding Methods 0.000 description 23
- 238000007792 addition Methods 0.000 description 22
- 239000010949 copper Substances 0.000 description 20
- 238000005245 sintering Methods 0.000 description 20
- 238000002156 mixing Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 239000000314 lubricant Substances 0.000 description 9
- 239000011812 mixed powder Substances 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910021382 natural graphite Inorganic materials 0.000 description 7
- 238000004663 powder metallurgy Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 241001275831 Tanais Species 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- -1 steatite Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005256 carbonitriding Methods 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- VAKIVKMUBMZANL-UHFFFAOYSA-N iron phosphide Chemical compound P.[Fe].[Fe].[Fe] VAKIVKMUBMZANL-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0264—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/105—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、鉄粉、合金鋼粉などの鉄基粉末に、所定の添加材、さらには黒鉛粉および銅粉などの合金用粉末を混合した鉄基粉末混合物に関し、さらに詳しくは、常温から100℃未満の温度域での加圧成形において優れた圧縮性が得られ、特に自動車用高強度焼結部品の製造に好適な粉末冶金用の鉄基粉末混合物に関するものである。
また、本発明は、上記の鉄基粉末混合物を原料とする鉄基粉末成形体の製造方法および該鉄基粉末成形体を素材とする鉄基粉末焼結体の製造方法に関するものである。
The present invention relates to an iron-based powder mixture in which iron-based powders such as iron powder and alloy steel powder are mixed with predetermined additives, and further alloy powders such as graphite powder and copper powder. The present invention relates to an iron-based powder mixture for powder metallurgy, which is excellent in compressibility in pressure molding in a temperature range of less than 0 ° C. and is particularly suitable for the production of high-strength sintered parts for automobiles.
The present invention also relates to a method for producing an iron-based powder compact using the iron-based powder mixture as a raw material, and a method for producing an iron-based powder sintered body using the iron-based powder compact as a raw material.
粉末冶金用の鉄基粉末混合物は、鉄基粉末に、銅粉や黒鉛粉、燐化鉄粉などの合金用粉末と、ステアリン酸亜鉛やステアリン酸アルミニウム、ステアリン酸鉛などの潤滑剤、さらに必要に応じて切削性改善用粉末を混合して製造するのが一般的である。そして、使用する潤滑剤は、鉄基粉末との混合性や焼結時の散逸性などを考慮して選択されてきた。 Iron-based powder mixture for powder metallurgy requires iron-based powder, alloy powder such as copper powder, graphite powder, and iron phosphide powder, lubricant such as zinc stearate, aluminum stearate, lead stearate, etc. In general, it is generally produced by mixing the machinability improving powder. The lubricant to be used has been selected in consideration of the miscibility with the iron-based powder and the dissipating property during sintering.
近年、焼結部品に対する高強度化の要求の高まりと共に、特許文献1、特許文献2、特許文献3および特許文献4に開示されたように、鉄基粉末混合物を加熱しつつ成形することにより、成形体の高密度かつ高強度化を可能にする温間成形技術が開発された。この技術により、鉄基粉末が加熱により塑性変形抵抗が低下することを利用して、より低い荷重での成形体密度の向上が可能となった。 In recent years, with increasing demand for higher strength for sintered parts, as disclosed in Patent Literature 1, Patent Literature 2, Patent Literature 3 and Patent Literature 4, by molding an iron-based powder mixture while heating, Warm forming technology that enables high density and high strength of the compact has been developed. This technique makes it possible to improve the density of the molded body at a lower load by utilizing the fact that the plastic deformation resistance of iron-based powder is reduced by heating.
しかしながら、このような鉄基粉末混合物は、以下に述べるような問題を残していた。
すなわち、温間成形は、金型および粉末を100℃以上の高温に予め加熱した後、鉄基粉末混合物を加圧成形する技術であるが、熱伝導性が悪い鉄基粉末混合物を安定して100℃以上に加熱・保温することは極めて難しいため、焼結部品の生産性の低下を招く傾向にあった。また、鉄基粉末混合物を長時間加熱することによって、鉄基粉末混合物の酸化による変質という問題も生じていた。
However, such an iron-based powder mixture has left the following problems.
In other words, warm molding is a technique in which a mold and powder are preheated to a high temperature of 100 ° C. or higher, and then an iron-based powder mixture is pressure-molded, but an iron-based powder mixture having poor thermal conductivity is stably formed. Since it is extremely difficult to heat and keep above 100 ° C., the productivity of sintered parts tends to be reduced. In addition, heating the iron-based powder mixture for a long time has caused a problem of alteration due to oxidation of the iron-based powder mixture.
また、特許文献5や特許文献6には、MoS2やフッ化炭素、黒鉛などの層状結晶を有する無機化合物を潤滑剤として用いる技術が開示されている。
しかしながら、MoS2を用いた場合は、焼結時に分解して有害なSが発生し、焼成炉が汚染される危険性がある。また、フッ化炭素を用い、水素雰囲気中で焼結した場合は、フッ化水素の発生が懸念される。
Patent Documents 5 and 6 disclose techniques using an inorganic compound having a layered crystal such as MoS 2 , fluorocarbon, and graphite as a lubricant.
However, when MoS 2 is used, there is a risk of decomposing at the time of sintering, generating harmful S and contaminating the firing furnace. In addition, when carbon fluoride is used and sintered in a hydrogen atmosphere, the generation of hydrogen fluoride is a concern.
ところで、自動車等の各種機械の部品を粉末冶金技術で製造するには、鉄基粉末混合物を金型に充填して圧粉成形し、さらに焼結を行う。こうして得られた焼結部品は寸法精度が良く、複雑な形状のものを製造することができる。但し、非常に厳しい寸法精度が要求される焼結部品を製造する場合には、焼結した後に、さらに機械加工(例えば切削加工やドリル加工等)を施す必要がある。 By the way, in order to manufacture parts of various machines such as automobiles by powder metallurgy technology, an iron-based powder mixture is filled in a mold, compacted, and further sintered. The sintered parts thus obtained have good dimensional accuracy and can be manufactured in complex shapes. However, when manufacturing a sintered part that requires extremely strict dimensional accuracy, it is necessary to perform further machining (for example, cutting or drilling) after sintering.
しかしながら、焼結部品は切削性に劣るので、機械加工で使用する切削工具が著しく損耗する。その結果、機械加工費が増大し、焼結部品の製造コストの上昇を招く。このような焼結部品の切削性の劣化は、内部に存在する気孔によって焼結部品の熱伝導率が低下し、切削中の焼結部品の温度が上昇するために生じる。
粉末冶金用の鉄基粉末混合物に快削成分(例えばS、MnS等)を添加することによって、焼結部品の切削性が改善されることは従来から知られている。快削成分は、切り屑を容易に破断させる効果、あるいは切削工具に薄い構成刃先を形成して切削工具(特にすくい面)の潤滑性を高める効果を有している。
However, since sintered parts are inferior in machinability, cutting tools used in machining are significantly worn. As a result, the machining cost increases and the manufacturing cost of the sintered part increases. Such deterioration of the machinability of the sintered part is caused by a decrease in the thermal conductivity of the sintered part due to pores present inside, and an increase in the temperature of the sintered part during cutting.
It has been conventionally known that the machinability of sintered parts is improved by adding a free-cutting component (for example, S, MnS, etc.) to an iron-based powder mixture for powder metallurgy. The free-cutting component has the effect of easily breaking chips, or the effect of increasing the lubricity of a cutting tool (particularly the rake face) by forming a thin component edge on the cutting tool.
焼結部品は、様々な機器の部品として採用されているが、とりわけ自動車の部品(例えばギヤ等)は高強度、高疲労強度が要求される。そこで、高強度、高疲労強度を有する焼結部品を製造するために、合金成分を添加した鉄基粉末混合物を使用する技術が種々検討されている。
例えば、特許文献7には、Ni,Cu,Mo等の粉末を純鉄粉に付着拡散させる技術が開示されている。この技術で得られた鉄基粉末混合物は圧縮性に優れており、高強度、高疲労強度を有する焼結部品の製造に好適である。
しかしながら、特許文献7に開示された技術では、Niの拡散が遅いので、純鉄粉にNiを十分に拡散させるために長時間の焼結が必要となる。また、得られた焼結部品の硬度が高いので、快削成分を鉄基粉末混合物に添加しても切削性の大幅な改善は期待できない。
Sintered parts are used as parts for various devices, but automobile parts (for example, gears) are required to have high strength and high fatigue strength. Therefore, various techniques using an iron-based powder mixture to which alloy components are added have been studied in order to produce sintered parts having high strength and high fatigue strength.
For example, Patent Document 7 discloses a technique for adhering and diffusing powders such as Ni, Cu, and Mo to pure iron powder. The iron-based powder mixture obtained by this technique has excellent compressibility and is suitable for the production of sintered parts having high strength and high fatigue strength.
However, in the technique disclosed in Patent Document 7, since diffusion of Ni is slow, long-time sintering is required to sufficiently diffuse Ni into the pure iron powder. Moreover, since the hardness of the obtained sintered part is high, even if a free-cutting component is added to the iron-based powder mixture, a significant improvement in machinability cannot be expected.
また、引用文献8には、CとMoを含有し、MnとCrを実質的に含有しない低合金鋼粉に、Cu粉および/またはNi粉を添加し、さらに黒鉛粉を添加した鉄基粉末混合物が開示されている。さらに、引用文献9には、Mo,Mn,Cを含有する合金鋼粉にCu粉を融着させた鉄基粉末混合物が開示されている。これらの鉄基粉末混合物は、高強度の焼結部品の製造に好適である。
しかしながら、特許文献8,9に開示された鉄基粉末混合物では、切削性に優れた焼結部品を製造することは困難であった。
Also, in Cited Document 8, an iron-based powder in which Cu powder and / or Ni powder is added to a low alloy steel powder containing C and Mo but substantially free of Mn and Cr, and further graphite powder is added. Mixtures are disclosed. Furthermore, cited document 9 discloses an iron-based powder mixture in which Cu powder is fused to alloy steel powder containing Mo, Mn, and C. These iron-based powder mixtures are suitable for the production of high strength sintered parts.
However, with the iron-based powder mixture disclosed in Patent Documents 8 and 9, it was difficult to produce a sintered part excellent in machinability.
本発明は、上記の問題を有利に解決するもので、成形体の焼結に際し、焼成炉の炉内環境に悪影響を及ぼすことなく、また100℃未満という低温度域で優れた成形性が得られ、しかも切削性に優れた焼結部品を製造するのに好適な粉末冶金用の鉄基粉末混合物を提案することを目的とする。
また、本発明は、上記の鉄基粉末混合物を原料とする鉄基粉末成形体の製造方法、さらには該鉄基粉末成形体を素材とする鉄基粉末焼結体の製造方法を提案することを目的とする。
The present invention advantageously solves the above-mentioned problems, and has excellent moldability in a low temperature range of less than 100 ° C. without adversely affecting the furnace environment of the firing furnace when the molded body is sintered. Another object of the present invention is to propose an iron-based powder mixture for powder metallurgy that is suitable for producing sintered parts excellent in machinability.
The present invention also proposes a method for producing an iron-based powder compact using the iron-based powder mixture as a raw material, and a method for producing an iron-based powder sintered body using the iron-based powder compact as a raw material. With the goal.
さて、発明者らは、上記の問題を解決する方策として、鉄基粉末混合物の成形に際し、炉内環境に悪影響を及ぼすことなく、また鉄基粉末混合物の加熱温度をより低く、好ましくは加熱なしに成形した場合であっても、高密度の成形体の製造を可能とする添加材について、鋭意検討を重ねた。
その結果、添加材として、タルクやステアタイトおよび脂肪酸アミドを用いた場合、さらには金属石鹸を用いた場合に、これらの添加材の潤滑機能により、加圧成形時に鉄基粉末粒子の再配列が促進され、室温程度の低い成形温度であっても、成形密度の高い鉄基粉末成形体が得られること、またかかる鉄基粉末成形体を焼結して得られる焼結体は機械的強度および切削性に優れていることの知見を得た。
本発明は上記の知見に立脚するものである。
Now, as a measure for solving the above problems, the inventors do not adversely affect the furnace environment when forming the iron-based powder mixture, and lower the heating temperature of the iron-based powder mixture, preferably no heating. Even in the case of forming into a compact, the inventors have made extensive studies on the additive that enables the production of a high-density molded body.
As a result, when talc, steatite, and fatty acid amide are used as additives, and when metal soap is used, the iron-based powder particles are rearranged during pressure molding due to the lubricating function of these additives. The iron-based powder molded body having a high molding density can be obtained even at a molding temperature as low as room temperature, and the sintered body obtained by sintering such an iron-based powder molded body has mechanical strength and The knowledge of excellent machinability was obtained.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
(1)鉄基粉末に、添加材として、タルクおよびステアタイトのうちから選んだ少なくとも1種ならびに脂肪酸アミドを添加し、さらに合金用粉末を添加した鉄基粉末混合物であって、上記タルクおよびステアタイトのうちから選んだ少なくとも1種の添加量を、上記鉄基粉末混合物全体に対して0.01〜0.5 mass%の範囲にすると共に、上記鉄基粉末が、上記鉄基粉末混合物全体に対してMo:0.3〜0.5mass%およびMn:0.1〜0.25mass%を含有し、残部はFeおよび不可避的不純物からなる水アトマイズ合金鋼粉であり、さらに上記合金用粉末の添加量を、上記鉄基粉末混合物全体に対してCu粉:1〜3mass%および黒鉛粉:0.5〜1.0mass%としたことを特徴とする鉄基粉末混合物。
That is, the gist configuration of the present invention is as follows.
(1) An iron-based powder mixture obtained by adding at least one selected from talc and steatite and a fatty acid amide as an additive to an iron-based powder , and further adding an alloy powder , the talc and The addition amount of at least one selected from steatite is in the range of 0.01 to 0.5 mass% with respect to the entire iron-based powder mixture, and the iron-based powder is added to the entire iron-based powder mixture. Mo: 0.3 to 0.5 mass% and Mn: 0.1 to 0.25 mass%, the balance is water atomized alloy steel powder composed of Fe and unavoidable impurities, and the addition amount of the above alloy powder is the above iron-based powder An iron-based powder mixture characterized in that Cu powder: 1 to 3 mass% and graphite powder: 0.5 to 1.0 mass% with respect to the entire mixture.
(2)前記添加材中に、さらに金属石鹸を含有させたことを特徴とする上記(1)に記載の鉄基粉末混合物。 (2) The iron-based powder mixture as described in (1) above, wherein the additive further contains a metal soap.
(3)請求項(1)または(2)に記載の鉄基粉末混合物を、金型に充填し、100℃未満の温度で成形することを特徴とする鉄基粉末成形体の製造方法。 ( 3 ) A method for producing an iron-based powder molded body comprising filling the mold with the iron-based powder mixture according to claim (1) or (2) and molding at a temperature of less than 100 ° C.
(4)請求項(1)または(2)に記載の鉄基粉末混合物を、金型に充填し、100℃未満の温度で成形したのち、得られた鉄基粉末成形体を焼結することを特徴とする鉄基粉末焼結体の製造方法。 ( 4 ) Filling the mold with the iron-based powder mixture according to claim (1) or (2) and molding the mixture at a temperature of less than 100 ° C., and then sintering the obtained iron-based powder compact. A method for producing an iron-based powder sintered body characterized by the above.
本発明によれば、室温程度の低い温度で成形したとしても、成形密度が高くかつ抜出力が小さい鉄基粉末混合物を得ることができる。
また、本発明によれば、上記の鉄基粉末混合物を原料とすることにより、成形密度が高い鉄基粉末成形体、さらには焼結密度が高く、しかも機械的強度および切削性に優れた鉄基粉末焼結体を得ることができる。
According to this invention, even if it shape | molds at the low temperature of about room temperature, the iron-based powder mixture with a high shaping | molding density and a small extraction output can be obtained.
Further, according to the present invention, by using the above iron-based powder mixture as a raw material, an iron-based powder molded body having a high molding density, an iron having a high sintering density, and excellent mechanical strength and machinability. A base powder sintered body can be obtained.
以下、本発明を具体的に説明する。
まず、本発明の鉄基粉末混合物の原料について説明する。
本発明において、鉄基粉末は、水アトマイズ合金鋼粉とする。
Hereinafter, the present invention will be specifically described.
First, the raw material of the iron-based powder mixture of the present invention will be described.
In the present invention, Tetsumotoko powder shall be the water-atomized alloyed steel powder.
また、合金用粉末としては、黒鉛粉末、Cu,Mo,Niなどの金属粉末、ボロン粉末および亜酸化銅粉末などが例示される。これらの合金用粉末を鉄基粉末に混合させることにより焼結体の強度を上昇させることができる。
この合金用粉末の配合量は、鉄基粉末混合物中0.1〜10mass%程度とすることが好ましい。というのは、合金用粉末を0.1mass%以上配合することにより、得られる焼結体の強度が有利に向上し、一方10mass%を超えると焼結体の寸法精度が低下するからである。
Examples of the alloy powder include graphite powder, metal powder such as Cu, Mo, and Ni, boron powder, and cuprous oxide powder. The strength of the sintered body can be increased by mixing these alloy powders with the iron-based powder.
The blending amount of the alloy powder is preferably about 0.1 to 10 mass% in the iron-based powder mixture. This is because, by adding 0.1 mass% or more of the alloy powder, the strength of the obtained sintered body is advantageously improved, while when it exceeds 10 mass%, the dimensional accuracy of the sintered body decreases.
さて、本発明では、添加材として、タルクおよびステアタイトのうちから選んだ少なくとも1種と、脂肪酸アミドとを添加することが重要である。そして、タルクは単斜晶系または三斜晶系の結晶構造、ステアタイトは単斜晶系の結晶構造をそれぞれ有することが好ましい。 In the present invention, it is important to add at least one selected from talc and steatite and a fatty acid amide as an additive. The talc preferably has a monoclinic or triclinic crystal structure, and the steatite preferably has a monoclinic crystal structure.
添加材として、上記したタルクやステアタイトおよび脂肪酸アミドを添加することにより、成形体の圧縮性が向上すると同時に、成形時の抜出力が低減し、成形性が大幅に改善される理由は、次のとおりと考えられる。
すなわち、タルクやステアタイトは、成形時に鉄基粉末粒子間で剪断応力を受けた際に、上記物質が結晶面に沿ってへき開し易く、そのため成形体内部の粒子間の摩擦抵抗が低減し、粒子間相互で動き易くなるという潤滑効果によって、成形体の密度が向上するものと考えられる。また、成形体と金型間にタルクやステアタイトが存在すると、成形体抜出時に金型表面からの剪断応力を受けてへき開するため、金型表面での成形体のすべり易さが向上し、抜出力が低減するものと考えられる。なお、これらの効果は、さらに脂肪酸アミドを添加することによって、格段に改善される。
The reason why the addition of talc, steatite and fatty acid amide as an additive improves the compressibility of the molded body and at the same time reduces the output during molding and greatly improves the moldability is as follows. It is thought that
That is, talc and steatite, when subjected to shear stress between iron-based powder particles at the time of molding, the substance is easily cleaved along the crystal plane, so the frictional resistance between the particles inside the molded body is reduced, It is considered that the density of the molded body is improved by the lubrication effect of facilitating movement between particles. In addition, if talc or steatite is present between the molded body and the mold, it will be cleaved by the shearing stress from the mold surface when the molded body is extracted, which improves the ease of sliding of the molded body on the mold surface. It is considered that the unplugging power is reduced. These effects are remarkably improved by further adding a fatty acid amide.
これらの効果は、鉄基粉末混合物の温度によらず発現するため、鉄基粉末混合物を加熱する必要は必ずしもなく、常温での成形における鉄基粉末成形体の密度向上に有効に寄与する。また、鉄基粉末を加熱した場合は、加圧成形時に鉄基粉末の塑性変形抵抗が低下するため、より高い成形体密度が得られることが可能となる。従って、必要とする成形体密度に応じて、鉄基粉末の加熱温度を適宜設定することができるが、この加熱温度は100℃未満で十分である。 Since these effects are manifested regardless of the temperature of the iron-based powder mixture, it is not always necessary to heat the iron-based powder mixture, which effectively contributes to improving the density of the iron-based powder molded body in molding at room temperature. In addition, when the iron-based powder is heated, the plastic deformation resistance of the iron-based powder is reduced during pressure molding, so that a higher molded body density can be obtained. Therefore, although the heating temperature of the iron-based powder can be set as appropriate according to the required density of the compact, it is sufficient that the heating temperature is less than 100 ° C.
これらタルクおよびステアタイトの添加量は、鉄基粉末混合物全体に対し0.01〜0.5 mass%程度とする。というのは、これらの添加材を0.01mass%以上添加することにより、加圧成形時における成形体密度を十分に向上させ、かつ成形体抜出時における抜出力を十分に低減させることができるからである。一方、添加量が0.5mass%を超えると、成形体を焼結して得た焼結材の機械的強度を低下させることが懸念される。 The addition amount of the talc and steatite shall be the order of 0.01 to 0.5 mass% relative to the total iron-based powder mixture. This is because by adding 0.01 mass% or more of these additives, it is possible to sufficiently improve the density of the molded body at the time of pressure molding and sufficiently reduce the output at the time of extracting the molded body. It is. On the other hand, when the added amount exceeds 0.5 mass%, there is a concern that the mechanical strength of the sintered material obtained by sintering the compact is reduced.
また、脂肪酸アミドとしては、脂肪酸モノアミドおよび脂肪酸ビスアミドのうちから選ばれる1種以上が好適である。この脂肪酸アミドの添加量は、鉄基粉末混合物全体に対し0.01〜0.5 mass%程度とすることが好ましい。というのは、添加量が0.01mass%に満たないとその添加効果に乏しく、一方0.5 mass%を超えると成形体強度の低下を招くからである。 As the fatty acid amide, one or more selected from fatty acid monoamides and fatty acid bisamides are suitable. The addition amount of the fatty acid amide is preferably about 0.01 to 0.5 mass% with respect to the entire iron-based powder mixture. Since the added amount of poor Tanai and its addition effect fully to 0.01 mass%, whereas because lowering the strength of the shaped body and more than 0.5 mass%.
また、本発明では、添加材中に、さらに金属石鹸を含有させることもできる。ここに、金属石鹸としてはステアリン酸亜鉛およびステアリン酸リチウムなどが好ましい。これらは、前記成形時の潤滑効果により、粒子間の摩擦抵抗を低減し、粒子相互を動きやすくすることにより、成形体の密度を向上させるだけでなく、鉄基粉末混合物の流動性をさらに向上させることができる。
この金属石鹸の添加量は、鉄基粉末混合物全体に対し0.01〜0.5 mass%程度とすることが好ましい。というのは、添加量が0.01mass%に満たないとその添加効果に乏しく、一方0.5 mass%を超えると成形体の強度が低下するからである。
さらに、脂肪酸アミドと、ステアリン酸亜鉛やステアリン酸リチウムとを複合添加する場合は、脂肪酸アミドとステアリン酸亜鉛やステアリン酸リチウムとの総量が、鉄基粉末混合物全体に対し0.01〜1.0 mass%添加することが好ましく、0.05〜0.5mass%添加することがさらに好適である。というのは、添加量が0.01mass%に満たないと金属石鹸の添加効果が発現せず、一方1.0 mass%を超えると成形体の強度が低下し、焼結条件によっては焼結を阻害して、焼結体強度の低下を招き、好ましくないからである。
In the present invention, metal soap can be further contained in the additive. Here, as the metal soap, zinc stearate and lithium stearate are preferable. These not only improve the density of the compact but also improve the fluidity of the iron-based powder mixture by reducing the frictional resistance between the particles and making the particles easier to move due to the lubricating effect during the molding. Can be made.
The addition amount of the metal soap is preferably about 0.01 to 0.5 mass% with respect to the entire iron-based powder mixture. Because the addition amount poor Tanai and its addition effect fully to 0.01 mass%, whereas the strength of the shaped body and more than 0.5 mass% is lowered.
Furthermore, when a fatty acid amide and zinc stearate or lithium stearate are added in combination, the total amount of the fatty acid amide and zinc stearate or lithium stearate is added in an amount of 0.01 to 1.0 mass% with respect to the entire iron-based powder mixture. It is preferable that 0.05 to 0.5 mass% be added. This is because if the amount added is less than 0.01 mass%, the effect of adding metal soap does not appear. On the other hand, if it exceeds 1.0 mass%, the strength of the molded product decreases, and depending on the sintering conditions, sintering may be hindered. This is because the strength of the sintered body is lowered, which is not preferable.
また、タルクやステアタイトは、潤滑性能を発揮する他、鉄基粉末混合物を成形し、焼結する際に分解しない、すなわち有害な分解ガスを発生させず、焼結を阻害しないため、焼結体の機械的強度の向上にも寄与する。
さらに、これらのタルクやステアタイトは、快削成分として知られるMgO−SiO2系酸化物であり、焼結体の切削性の改善にも有効に寄与するが、その効果は金属石鹸と複合添加することにより一層向上する。
以下、上記の効果を発現させるのに好適なタルク、ステアタイトの添加量について説明する。
In addition, talc and steatite exhibit lubrication performance, and do not decompose when forming and sintering an iron-based powder mixture, that is, no harmful decomposition gas is generated and sintering is not inhibited. It also contributes to improving the mechanical strength of the body.
Furthermore, these talc and steatite are MgO-SiO 2 oxides known as free-cutting components and contribute effectively to improving the machinability of the sintered body, but the effect is combined with metal soap. It improves further by doing.
Hereinafter, the addition amount of talc and steatite suitable for expressing the above effects will be described.
上記の目的でタルク(3MgO・4SiO2)やステアタイト(MgO・SiO2)を添加する場合、単独添加または複合添加いずれの場合においても、添加量が0.05mass%に満たないと十分に満足いくほどの切削性の改善効果が得られず、一方0.5mass%を超えると鉄基粉末混合物の圧縮性が低下し、焼結部品の強度低下を招く。
従って、特に好適な機械的強度および切削性を得ようとする場合には、タルクおよびステアタイトは単独添加または複合添加いずれの場合においても0.05〜0.5mass%の範囲で添加することが好ましい。
When talc (3MgO · 4SiO 2 ) or steatite (MgO · SiO 2 ) is added for the above purpose, it is sufficiently satisfactory if the addition amount does not reach 0.05 mass% in either case of single addition or compound addition. However, when the amount exceeds 0.5 mass%, the compressibility of the iron-based powder mixture is lowered and the strength of the sintered part is reduced.
Therefore, in order to obtain particularly suitable mechanical strength and machinability, it is preferable to add talc and steatite in the range of 0.05 to 0.5 mass% in either case of single addition or combined addition.
次に、上記した優れた機械的強度および切削性を得るのに好適な合金組成について説明する。
鉄基粉末としては、水アトマイズ合金鋼粉を用い、その合金成分については次のとおりである。なお、合金成分の含有量(mass%)は、水アトマイズ合金鋼粉と後述する添加剤とを混合して得られる鉄基粉末混合物の質量(mass%)に占める比率を内数で示す。
Mo:0.3〜0.5mass%
Moは、水アトマイズ合金鋼粉の固溶強化、焼入れ性向上によって焼結部品の強度を高める元素である。しかしながら、含有量が0.3mass%未満では、十分満足いくほどの焼結部品の強度向上が望めず、一方0.5mass%を超えると、焼結部品の強度向上効果が飽和するばかりか、切削性の低下を招く。従って、Moは0.3〜0.5mass%の範囲内とする。
Next, an alloy composition suitable for obtaining the above-described excellent mechanical strength and machinability will be described.
As the iron-based powder, water atomized alloy steel powder is used , and the alloy components are as follows. In addition, content (mass%) of an alloy component shows the ratio which occupies for the mass (mass%) of the iron-based powder mixture obtained by mixing water atomized alloy steel powder and the additive mentioned later by an internal number.
Mo: 0.3-0.5mass%
Mo is an element that enhances the strength of sintered parts by strengthening the solid solution of water atomized alloy steel powder and improving hardenability. However, if the content is less than 0.3 mass%, it is not possible to expect a sufficiently satisfactory improvement in the strength of the sintered part. On the other hand, if it exceeds 0.5 mass%, not only the strength improvement effect of the sintered part is saturated, but also the machinability is improved. Incurs a decline. Therefore, Mo is in the range of 0.3 to 0.5 mass%.
Mn:0.1〜0.25mass%
Mnも、水アトマイズ合金鋼粉の固溶強化、焼入れ性向上によって焼結部品の強度を高める元素である。しかしながら、含有量が0.1mass%未満では、やはり十分な焼結部品の強度向上が望めず、一方0.25mass%を超えると、Mnの酸化が進行し易くなり、合金鋼粉の強度と圧縮性が低下する。従って、Mnは0.1〜0.25mass%の範囲内とする。
Mn: 0.1-0.25mass%
Mn is an element that enhances the strength of sintered parts by strengthening the solid solution of water atomized alloy steel powder and improving hardenability. However, if the content is less than 0.1 mass%, sufficient strength improvement of the sintered parts cannot be expected. On the other hand, if the content exceeds 0.25 mass%, the oxidation of Mn tends to proceed, and the strength and compressibility of the alloy steel powder are reduced. descend. Therefore, Mn is set within a range of 0.1 to 0.25 mass%.
上記した水アトマイズ合金鋼粉に、以下に述べる添加剤を混合する。なお、これらの添加剤の添加量(mass%)は、水アトマイズ合金鋼粉と添加剤とを混合して得られる鉄基粉末混合物の質量(mass%)に占める比率を内数で示す。
Cu粉:1〜3mass%
Cuは、水アトマイズ合金鋼粉の固溶強化、焼入れ性向上によって焼結部品の強度を高める元素である。また、Cu粉は、焼結の際に溶融して液相となり、水アトマイズ合金鋼粉の粒子を互いに固着させる作用がある。しかしながら、添加量が1mass%に満たないとその効果に乏しく、一方3mass%を超えると、焼結部品の強度向上効果が飽和するばかりでなく、切削性の低下を招く。従って、Cu粉は1〜3mass%の範囲内とする。
Additives described below are mixed with the above water atomized alloy steel powder. In addition, the addition amount (mass%) of these additives shows the ratio which occupies for the mass (mass%) of the iron-based powder mixture obtained by mixing water atomized alloy steel powder and an additive by internal number.
Cu powder: 1-3mass%
Cu is an element that increases the strength of sintered parts by strengthening the solid solution of water atomized alloy steel powder and improving hardenability. Further, the Cu powder melts during sintering to form a liquid phase, and has an effect of fixing the particles of the water atomized alloy steel powder to each other. However, if the added amount is less than 1 mass%, the effect is poor. On the other hand, if it exceeds 3 mass%, the effect of improving the strength of the sintered part is saturated, and the machinability is reduced. Therefore, Cu powder shall be in the range of 1-3 mass%.
なお、Cuを添加するにあたっては、添加量が上記の範囲内であれば、
(a) 水アトマイズ合金鋼粉にCu粉を添加して単に混合する、
(b) 水アトマイズ合金鋼粉の表面にバインダーを介してCu粉を付着させる、
(c) 水アトマイズ合金鋼粉とCu粉を混合し、さらに熱処理して水アトマイズ合金鋼粉の表面にCu粉を付着拡散させる
という方法のいずれを採用しても良い。
In addition, when adding Cu, if the addition amount is within the above range,
(a) Add Cu powder to water atomized alloy steel powder and simply mix.
(b) Adhering Cu powder to the surface of the water atomized alloy steel powder via a binder,
(c) Any of the methods of mixing water atomized alloy steel powder and Cu powder, further heat-treating, and adhering and diffusing Cu powder on the surface of the water atomized alloy steel powder may be adopted.
黒鉛粉:0.5〜1.0mass%
黒鉛粉の主成分であるCは、水アトマイズ合金鋼粉の固溶強化、焼入れ性向上によって焼結部品の強度を高める元素である。しかしながら、黒鉛粉の含有量が0.5mass%未満ではその添加効果に乏しく、一方1.0mass%を超えると焼結部品の強度が過剰に上昇して、切削性の低下を招く。従って、黒鉛粉は0.5〜1.0mass%の範囲内とする。
Graphite powder: 0.5-1.0mass%
C, which is the main component of the graphite powder, is an element that increases the strength of the sintered part by strengthening the solid solution of the water atomized alloy steel powder and improving the hardenability. However, if the content of graphite powder is less than 0.5 mass%, the effect of addition is poor. On the other hand, if the content exceeds 1.0 mass%, the strength of the sintered part is excessively increased and the machinability is reduced. Therefore, the graphite powder is in the range of 0.5 to 1.0 mass%.
次に、本発明の鉄基粉末混合物の製造方法について説明する。
鉄基粉末に、タルク、ステアタイトおよび脂肪酸アミド、さらには金属石鹸などの添加材、合金用粉末を加えて、1次混合する。ついで、1次混合後の混合物を、上記した添加材のうち少なくとも1種の添加材の融点以上に加熱しつつ撹拌し、混合しながら徐々に冷却して、鉄基粉末の表面に溶融した添加剤によって合金用粉末やその他の添加剤を固着させる。
なお、上記したタルク、ステアタイト、脂肪酸アミド、金属石鹸などの添加材は、必ずしも全量を一度に添加する必要はなく、一部のみを添加して1次混合を行ったのち、残部を添加して2次混合することもできる。
また、混合手段としては、特に制限はなく従来から公知の混合機いずれもが使用できるが、加熱が容易な、高速底部撹拌式混合機、傾斜回転パン型混合機、回転クワ型混合機および円錐遊星スクリュー形混合機などは特に有利に適合する。
Next, the manufacturing method of the iron-based powder mixture of this invention is demonstrated.
The iron-based powder, talc, steatite and fatty acid amides, further additives, such as metal soaps, in addition to alloy powder, mixed primary. Next, the mixture after the primary mixing is stirred while being heated above the melting point of at least one of the above-mentioned additives, gradually cooled while mixing, and added to the surface of the iron-based powder. The alloy powder and other additives are fixed by the agent.
The above-mentioned additives such as talc, steatite, fatty acid amide, and metal soap do not necessarily need to be added all at once, but after adding only a part and performing primary mixing, the remainder is added. And secondary mixing.
The mixing means is not particularly limited and any conventionally known mixer can be used. However, a high-speed bottom stirring mixer, an inclined rotary pan mixer, a rotary mulberry mixer, and a cone that can be easily heated can be used. A planetary screw type mixer or the like is particularly advantageously adapted.
次に、本発明の鉄基粉末混合物を用いた鉄基粉末成形体の製造方法および鉄基粉末焼結体の製造方法について説明する。
本発明の鉄基粉末混合物は、通常の成形方法で成形体とすることができる。すなわち、常温で成形することができる。とはいえ、鉄基粉末混合物や金型を加熱したり、金型に潤滑剤を塗布することは有利である。加熱雰囲気で成形を行う場合、鉄基粉末混合物や金型の温度は100℃未満とすることが好ましい。というのは、本発明に従う鉄基粉末混合物は圧縮性に富むので100℃未満の温度でも優れた成形性を示し、また100℃以上になると酸化による劣化が懸念されるからである。
Next, a method for producing an iron-based powder molded body and a method for producing an iron-based powder sintered body using the iron-based powder mixture of the present invention will be described.
The iron-based powder mixture of the present invention can be formed into a molded body by a normal molding method. That is, it can be molded at room temperature. Nevertheless, it is advantageous to heat the iron-based powder mixture or the mold or to apply a lubricant to the mold. When molding is performed in a heated atmosphere, the temperature of the iron-based powder mixture and the mold is preferably less than 100 ° C. This is because the iron-based powder mixture according to the present invention is highly compressible and exhibits excellent moldability even at temperatures below 100 ° C., and when it exceeds 100 ° C., there is a concern about deterioration due to oxidation.
ついで、上記のようにして得られた高密度鉄基粉末成形体に、焼結処理を施して、高密度の焼結体とする。焼結処理については、特に限定されることはなく、従来公知の焼結処理方法いずれもが好適に使用できる。また、焼結処理後に、ガス浸炭熱処理や浸炭窒化処理等の熱処理を適用することも可能である。 Next, the high-density iron-based powder molded body obtained as described above is subjected to a sintering treatment to obtain a high-density sintered body. The sintering treatment is not particularly limited, and any conventionally known sintering treatment method can be suitably used. It is also possible to apply a heat treatment such as a gas carburizing heat treatment or a carbonitriding treatment after the sintering treatment.
以下、実験例および実施例に基づき本発明を具体的に説明する。
表1に、実験例1〜4で鉄基粉末として用いた各種粉末冶金用鉄粉(いずれも平均粒径:約80μm)の種類を示す。特に合金鋼粉の場合には、完全合金化鋼粉であるのか、部分合金化鋼粉であるのか、さらには完全合金化鋼粉に合金成分を部分拡散させたハイブリッド鋼粉であるのかの区別を示す。
Hereinafter, the present invention will be specifically described based on experimental examples and examples.
Table 1 shows the types of various iron powders for powder metallurgy (all average particle diameter: about 80 μm) used as iron-based powders in Experimental Examples 1 to 4. Particularly in the case of alloy steel powder, it is distinguished whether it is a fully alloyed steel powder, a partially alloyed steel powder, or a hybrid steel powder in which the alloy components are partially diffused in the fully alloyed steel powder. Indicates.
実験例1
表2に示す各種の鉄基粉末、天然黒鉛粉(平均粒径:5μm)および/または銅粉(平均粒径:25μm)に、各種添加材(1次添加材)を添加し、高速底部撹拌式混合機で混合しながら140℃に加熱した後、60℃以下に冷却し、さらに各種添加材(2次添加材)を添加し、500rpmで1分間撹拌後、混合機から混合粉末を排出した。1次および2次添加材の種類と添加量を 、表2に併記する。添加材の添加量(質量部)は、鉄基粉末と天然黒鉛粉と銅粉との合計質量:100mass%に対する比率を外数で示したものであるが、内数で表した数値とほぼ同じである。なお、タルク粉末、ステアタイト粉末の平均粒径はそれぞれ6μm、4μmであった。
また、比較のために、上記と同じ鉄基粉末、天然黒鉛粉および/または銅粉の組成の粉末に、潤滑剤としてステアリン酸亜鉛を0.8mass%添加し、V型容器回転式混合機で混合した混合粉末を用意した(表3参照)。この比較材は、常温成形で通常用いられる組成である。
Experimental example 1
Various additives (primary additive) are added to various iron-based powders, natural graphite powder (average particle size: 5 μm) and / or copper powder (average particle size: 25 μm) shown in Table 2, and high-speed bottom stirring is performed. After heating to 140 ° C. while mixing with a mixer, cool to 60 ° C. or below, add various additives (secondary additives), stir at 500 rpm for 1 minute, and then discharge the mixed powder from the mixer . Table 2 shows the types and amounts of primary and secondary additives. The additive amount (parts by mass) of the additive is the total mass of iron-based powder, natural graphite powder, and copper powder: the ratio to 100 mass% is indicated by an external number, but is almost the same as the numerical value expressed by the internal number It is. The average particle sizes of talc powder and steatite powder were 6 μm and 4 μm, respectively.
For comparison, 0.8 mass% of zinc stearate as a lubricant is added to the same iron-based powder, natural graphite powder and / or copper powder composition as above, and mixed in a V-type container rotary mixer. The prepared mixed powder was prepared (see Table 3). This comparative material has a composition usually used in room temperature molding.
次に、得られた各鉄基粉末混合物を、室温下で、内径:11mmの超硬製タブレット型に充填し、490MPaおよび686MPaで加圧成形した。その際、成形体を金型から抜出す時の抜出力および得られた成形体の圧粉密度を測定した。
さらに、得られた各鉄基粉末混合物に対し、別途、切削試験用の試験片(外径:60mm,内径:20mm,長さ:30mm)の圧粉成形を行った。圧粉成形の加圧力は590MPaとした。焼結はRXガス雰囲気中で行い、加熱温度を1130℃とし、加熱時間を20分とした。切削性を評価するに当たり、サーメットの切削工具を用いて、切削速度:200m/分、送り:0.1mm/回、切込み深さ:0.3mm,切削距離:1000mの条件で切削試験を行い、切削工具の逃げ面の摩耗幅を測定した。切削工具の逃げ面の摩耗幅が小さいほど、焼結体の切削性が優れていることを示す。
得られた結果を表4に示す。
Next, each obtained iron-based powder mixture was filled into a cemented carbide tablet mold having an inner diameter of 11 mm at room temperature, and pressure-molded at 490 MPa and 686 MPa. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
Further, each iron-based powder mixture obtained was separately compacted with a test piece for cutting test (outer diameter: 60 mm, inner diameter: 20 mm, length: 30 mm). The pressing force for compacting was 590 MPa. Sintering was performed in an RX gas atmosphere, the heating temperature was 1130 ° C., and the heating time was 20 minutes. In evaluating the machinability, a cutting test was performed using a cermet cutting tool under the conditions of cutting speed: 200 m / min, feed: 0.1 mm / turn, cutting depth: 0.3 mm, cutting distance: 1000 m. The wear width of the flank was measured. It shows that the machinability of a sintered compact is excellent, so that the wear width of the flank of a cutting tool is small.
Table 4 shows the obtained results.
表2〜表4に示した参考例1〜9と比較例1〜9とを比較すれば明らかなように、潤滑剤として本発明に従う添加材を用いることにより、室温成形であっても、抜出力をあまり増加させることなく高密度の圧粉体を得ることができた。 As is clear from the comparison between Reference Examples 1 to 9 and Comparative Examples 1 to 9 shown in Tables 2 to 4, by using the additive according to the present invention as a lubricant, it can be removed even at room temperature molding. A high-density green compact could be obtained without significantly increasing the output.
実験例2
表5に示す各種の鉄基粉末、天然黒鉛粉および/または銅粉に、各種添加材(1次添加材)を添加し、高速底部撹拌式混合機で混合しながら140℃で加熱した後、60℃以下に冷却し、さらに各種添加材(2次添加材)を添加し、500rpmで1分間撹拌後、混合機から混合粉末を排出した。1次および2次添加材の種類と添加量を、表5に併記する。使用した原料は、実験例1と同様、表1に記載されたものである。
また、比較のために、上記と同じ鉄基粉末、天然黒鉛粉および/または鋼粉の組成の粉末に、エチレンビスステアロアミドを0.6mass%添加し、V型容器回転式混合機で混合した混合粉末を用意した(比較材)。
Experimental example 2
After adding various additives (primary additive) to various iron-based powders, natural graphite powders and / or copper powders shown in Table 5 and heating at 140 ° C. while mixing with a high-speed bottom stirring mixer, After cooling to 60 ° C. or lower, various additives (secondary additives) were added, and the mixture was stirred at 500 rpm for 1 minute, and then the mixed powder was discharged from the mixer. Table 5 shows the types and amounts of the primary and secondary additives. The raw materials used are those described in Table 1 as in Experimental Example 1.
For comparison, 0.6 mass% of ethylene bisstearamide was added to the same iron-based powder, natural graphite powder and / or steel powder composition as above, and mixed with a V-type container rotary mixer. Mixed powder was prepared (comparative material).
次に、得られた室温の各鉄基粉末混合物を、予めキャビティ壁面温度が80℃になるように加熱した内径:11mmの超硬製タブレット型に充填し、490MPaおよび686MPaで加圧成形した。その際、成形体を金型から抜出す時の抜出力および得られた成形体の圧粉密度を測定した。 Next, each obtained iron-based powder mixture at room temperature was filled in a cemented carbide tablet mold having an inner diameter of 11 mm, which was heated in advance so that the cavity wall surface temperature was 80 ° C., and pressure-molded at 490 MPa and 686 MPa. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
また、比較材を一般的な温間成形の成形条件、すなわち120℃に加熱したのち、金型を130℃に加熱した内径:11mmの超硬製タブレット型に充填し、490MPaおよび686MPaで加圧成形した。その際、成形体を金型から抜出す時の抜出力および得られた成形体の圧粉密度を測定した。
また、実験例1と同様に、切削試験用の試験片を圧粉成形し、ついで焼結したのち、切削試験を行った。
得られた結果を表6に示す。
In addition, after heating the comparative material to general warm molding conditions, that is, 120 ° C, the mold was filled in a cemented carbide tablet mold with an inner diameter of 11mm heated to 130 ° C and pressurized at 490MPa and 686MPa. Molded. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
Further, similarly to Experimental Example 1, a test piece for a cutting test was compacted and then sintered, and then a cutting test was performed.
The results obtained are shown in Table 6.
表5〜表6に示した参考例10〜15と比較例10〜15との比較で明らかなように、潤滑剤として本発明の1次および2次添加材を添加することにより、金型を100℃未満の比較的低い温度に加熱するだけで、混合粉末を加熱せずとも抜出力が増加することなく一般的な温間成形材と同等の高密度の圧粉体を得ることができた。
なお、各発明例の逃げ面磨耗幅(mm)は、同じ系統(番号)の比較例の約20〜40%に低下しており、切削性についても顕著な改善が見られた。
As is apparent from the comparison between Reference Examples 10 to 15 and Comparative Examples 10 to 15 shown in Tables 5 to 6, by adding the primary and secondary additives of the present invention as a lubricant, the mold can be obtained. By simply heating to a relatively low temperature of less than 100 ° C, we were able to obtain a high-density green compact equivalent to a general warm molding material without increasing the extraction power without heating the mixed powder. .
In addition, the flank wear width (mm) of each invention example was reduced to about 20 to 40% of the comparative example of the same system (number), and a marked improvement was also seen in machinability.
実験例3
表7に示す各種の鉄基粉末、天然黒鉛粉および/または銅粉に、各種添加材(1次添加材)を添加し、高速底部撹拌式混合機で混合しながら140℃で加熱した後、60℃以下に冷却し、さらに各種添加材(2次添加材)を添加し、500rpmで1分間撹拌後、混合機から混合粉末を排出した。1次および2次添加剤の種類と添加量を、表7に併記する。使用した原料は、実験例1と同様、表1に記載されたものである。
また、比較のために、各重量のエチレンビスステアロアミドを添加し、V型容器回転式混合機で混合した混合粉末を作製した。
Experimental example 3
After adding various additives (primary additive) to various iron-based powders, natural graphite powders and / or copper powders shown in Table 7, and heating at 140 ° C. while mixing with a high-speed bottom stirring mixer, After cooling to 60 ° C. or lower, various additives (secondary additives) were added, and the mixture was stirred at 500 rpm for 1 minute, and then the mixed powder was discharged from the mixer. Table 7 shows the types and amounts of the primary and secondary additives. The raw materials used are those described in Table 1 as in Experimental Example 1.
For comparison, each weight of ethylenebisstearamide was added, and mixed powder was prepared by mixing with a V-type container rotary mixer.
次に、得られた各鉄基粉末混合物を60℃に加熱したのち、予めキャビティ壁面温度が80℃になるように加熱し、さらにステアリン酸リチウム粉末を壁面に塗布した内径:11mmの超硬製タブレット型に充填し、490および686MPaで加圧成形した。その際、成形体を金型から抜出す時の抜出力とおよび得られた成形体の圧粉密度を測定した。 Next, after heating each obtained iron-based powder mixture to 60 ° C, the cavity wall surface temperature was heated beforehand to 80 ° C, and lithium stearate powder was applied to the wall surface. The tablet mold was filled and pressure molded at 490 and 686 MPa. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
また、比較材を一般的な温間成形の成形条件、すなわち120℃に加熱した後、金型を130℃に加熱した内径:11mmの超硬製タブレット型に充填し、490および686MPaで加圧成形した。その際、成形体を金型から抜出す時の抜出力および得られた成形体の圧粉密度を測定した。
得られた結果を表8に示す。
In addition, after heating the comparative material to the general warm molding conditions, that is, 120 ° C, the mold was filled in an 11 mm inside carbide tablet mold heated to 130 ° C and pressurized at 490 and 686 MPa. Molded. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
Table 8 shows the obtained results.
表7〜表8に示した参考例16と比較例16および参考例17と比較例17との比較で明らかなように、潤滑剤として本発明の1次および2次添加材を添加することにより、金型および粉末を100℃未満の比較的低い温度に加熱するだけで、一般的な温間成形材と同等の高密度の成形体を極めて低い抜出力で成形することができた。
また、各発明例の逃げ面磨耗幅(mm)は、同じ系統(番号)の比較例の約25〜35%に低下しており、切削性についても顕著な改善が見られた。
By adding the primary and secondary additives of the present invention as a lubricant, as is apparent from the comparison between Reference Example 16, Comparative Example 16, and Reference Example 17 and Comparative Example 17 shown in Tables 7 to 8. By simply heating the mold and the powder to a relatively low temperature of less than 100 ° C., it was possible to form a compact having a high density equivalent to that of a general warm molding material with an extremely low output.
Further, the flank wear width (mm) of each invention example was reduced to about 25 to 35% of the comparative example of the same system (number), and a marked improvement was also seen in the machinability.
実験例4
表9に示す各種の鉄基粉末、天然黒鉛粉および/または銅粉に、各種添加材(1次添加材)を添加し、高速底部撹拌式混合機で混合しながら140℃で加熱した後、60℃以下に冷却し、さらに各種添加材(2次添加材)を添加し、500rpmで1分間撹拌後、混合機から混合粉末を排出した。1次および2次添加材の種類と添加量を、表9に併記する。使用した原料は、実験例1と同じものである。なお、比較例20は、1次・2次添加に代えて、ステアタイト粉末を添加し、高速底部撹拌式混合機により同条件で混合する処理を行った。
次に、得られた各鉄基粉末混合物を、室温下で、内径:11mmの超硬製タブレット型に充填し、490MPaおよび686MPaで加圧成形した。その際、成形体を金型から抜出す時の抜出力および得られた成形体の圧粉密度を測定した。
さらに、得られた鉄基粉末混合物に対し、別途、粉末冶金工業会JPMA M04-1992に準拠した引張試験片と切削試験用の試験片(外径:60mm,内径:20mm,長さ:30mm)の圧粉成形を行った。圧粉成形の加圧力は590MPaとした。
ついで、圧粉体を焼結した。焼結は、RXガス雰囲気中で行い、加熱温度を1130℃とし、加熱時間を20分とした。切削性の評価法は実験例1と同様である。
得られた結果を表10に示す。
Experimental Example 4
After adding various additives (primary additives) to various iron-based powders, natural graphite powders and / or copper powders shown in Table 9, and heating at 140 ° C. while mixing with a high-speed bottom stirring mixer, After cooling to 60 ° C. or lower, various additives (secondary additives) were added, and the mixture was stirred at 500 rpm for 1 minute, and then the mixed powder was discharged from the mixer. Table 9 shows the types and addition amounts of the primary and secondary additives. The raw materials used are the same as in Experimental Example 1. In Comparative Example 20, a steatite powder was added instead of the primary and secondary additions, and the mixture was mixed under the same conditions using a high-speed bottom stirring mixer.
Next, each obtained iron-based powder mixture was filled into a cemented carbide tablet mold having an inner diameter of 11 mm at room temperature, and pressure-molded at 490 MPa and 686 MPa. At that time, the output when the molded body was extracted from the mold and the green density of the obtained molded body were measured.
Furthermore, for the obtained iron-based powder mixture, a tensile test piece and a test piece for cutting test according to JPMA M04-1992 (outer diameter: 60 mm, inner diameter: 20 mm, length: 30 mm) are separately provided. The green compacting was performed. The pressing force for compacting was 590 MPa.
The green compact was then sintered. Sintering was performed in an RX gas atmosphere, the heating temperature was 1130 ° C., and the heating time was 20 minutes. The machinability evaluation method is the same as in Experimental Example 1.
The results obtained are shown in Table 10.
表9〜表10に示した参考例18〜21と比較例18、19との比較から明らかなように、ステアタイト等を本発明の範囲内で添加した鉄基混合粉末は、抜出力を増加させることなく高密度の圧粉体を得ることができる。また、ステアタイト等が0.5mass%を超えて添加された比較例19は機械的特性の低下が大きい。さらに、機械的特性の観点からは参考例18〜21より、ステアタイト等の添加量が0.2mass%以下であることがより好ましいことが分かる。
また、参考例22、23と比較例20、21との比較から明らかなように、脂肪酸アミド等をステアタイト等と共に添加することが、抜出力を増加させることがなく高密度の圧粉体を得る上で有効である。また、さらに金属石鹸を添加することにより、焼結体の切削性を格段に改善することができることが分かる。
As is clear from the comparison between Reference Examples 18 to 21 and Comparative Examples 18 and 19 shown in Tables 9 to 10, the iron-based mixed powder to which steatite or the like is added within the scope of the present invention increases the output power. A high-density green compact can be obtained without this. In Comparative Example 19 in which steatite or the like was added in excess of 0.5 mass%, the mechanical properties were greatly reduced. Furthermore, from the viewpoint of mechanical properties, it can be seen from Reference Examples 18 to 21 that the addition amount of steatite and the like is more preferably 0.2 mass% or less.
Further, as is clear from the comparison between Reference Examples 22 and 23 and Comparative Examples 20 and 21, the addition of fatty acid amide and the like together with steatite and the like does not increase the output power, and a high-density green compact is obtained. It is effective in obtaining. Moreover, it turns out that the machinability of a sintered compact can be improved significantly by adding a metal soap further.
実施例1
表11に示す成分の水アトマイズ鋼粉を、水アトマイズ法で製造した。Mn,Mo以外の残部は、Feおよび不可避的不純物である。この水アトマイズ合金鋼粉に、Cu粉,黒鉛粉,タルク,ステアタイトを表11に示す割合で添加した。なお、水アトマイズ鋼粉中のMn含有量、Mo含有量(mass%)および水アトマイズ鋼粉に添加するCu粉,黒鉛粉,タルク,ステアタイトの添加量(mass%)は、いずれも鉄基粉末混合物の質量に占める比率を内数で示す。
Example 1
Water atomized steel powder having the components shown in Table 11 was produced by the water atomization method. The balance other than Mn and Mo is Fe and inevitable impurities. To this water atomized alloy steel powder, Cu powder, graphite powder, talc and steatite were added in the proportions shown in Table 11. The Mn content, Mo content (mass%) in the water atomized steel powder, and Cu powder, graphite powder, talc, and steatite added to the water atomized steel powder (mass%) are all iron-based. The ratio to the mass of the powder mixture is shown by the internal number.
さらに、添加材を表11に示す割合で添加した。添加材の添加量(質量部)は、水アトマイズ鋼粉と添加材とを混合して得られる鉄基粉末混合物の質量(100質量部)に対する比率を外数で示す(但し、この比率は、内数で表した数値とほぼ同じである)。
ついで、V型ブレンダーで混合し、得られた鉄基粉末混合物を金型に充填し、粉末冶金工業会JPMA M04−1992に準拠した引張試験片と切削試験用の試験片(外径:60mm,内径:20mm,長さ:30mm)の圧粉成形を行った。圧粉成形の加圧力は590MPaとした。
ついで、圧粉体を焼結した。焼結は、RXガス雰囲気中で行い、加熱温度を1130℃とし、加熱時間を20分とした。
Further, the additive was added at a ratio shown in Table 11. The additive amount (parts by mass) of the additive indicates the ratio to the mass (100 parts by mass) of the iron-based powder mixture obtained by mixing the water atomized steel powder and the additive (in this case, this ratio is It is almost the same as the number expressed in the number.)
Next, the mixture was mixed with a V-type blender, and the obtained iron-based powder mixture was filled in a mold, and a tensile test piece and a test piece for cutting test (outer diameter: 60 mm, in accordance with JPMA M04-1992) Compaction molding was performed with an inner diameter of 20 mm and a length of 30 mm. The pressing force for compacting was 590 MPa.
The green compact was then sintered. Sintering was performed in an RX gas atmosphere, the heating temperature was 1130 ° C., and the heating time was 20 minutes.
かくして得られた焼結体の引張強度および切削性について調査した結果を表11に併記する。
なお、引張強度は引張試験によって測定した。
また、切削性については、サーメットの切削工具を用いて切削速度:200m/分、送り:0.1mm/回、切込み深さ:0.5mm,切削距離:1000mの条件で切削試験を行い、切削工具の逃げ面の摩耗幅を測定した。この逃げ面の摩耗幅が小さいほど、焼結体の切削性が優れていることを示す。
The results of investigation on the tensile strength and machinability of the sintered body thus obtained are also shown in Table 11.
The tensile strength was measured by a tensile test.
For cutting performance, a cutting test was performed using a cermet cutting tool under the conditions of cutting speed: 200 m / min, feed: 0.1 mm / turn, cutting depth: 0.5 mm, cutting distance: 1000 m. The wear width of the flank was measured. The smaller the wear width of the flank, the better the machinability of the sintered body.
表11中で、発明例は本発明の範囲を満足する鉄基粉末混合物を使用した例であり、比較例は本発明の範囲を外れる鉄基粉末混合物を使用した例である。No.15の従来例は、従来から実用化されているFe-4Ni-1.5Cu-0.5Mo系の水アトマイズ合金鋼粉を用いた粉末冶金用混合粉末に従来の潤滑剤を添加した例である。No. 15の合金元素に付記された数値は質量%を示す。 In Table 11, inventive examples are examples using an iron-based powder mixture that satisfies the scope of the present invention, and comparative examples are examples using an iron-based powder mixture that is outside the scope of the present invention. The conventional example of No. 15 is an example in which a conventional lubricant is added to a powder mixture for powder metallurgy using Fe-4Ni-1.5Cu-0.5Mo water atomized alloy steel powder that has been put to practical use. . The numerical value attached to the alloy element of No. 15 indicates mass%.
表11から明らかなように、特に発明例の鉄基粉末混合物から得た焼結体は、いずれも機械的特性および切削性に優れている。これに対し、特に従来例は、焼結体の切削性が著しく悪い。
なお、水アトマイズ合金鋼粉がMo:0.3〜0.5mass%およびMn:0.1〜0.25mass%を含有し、かつCu粉:1〜3mass%および黒鉛粉:0.5〜1.0mass%を含有する場合、引張強度が500MPa以上であり、しかも切削性に優れた焼結体を得ることができる。
As is apparent from Table 11, all the sintered bodies obtained from the iron-based powder mixtures of the inventive examples are excellent in mechanical properties and machinability. On the other hand, especially in the conventional example, the machinability of the sintered body is extremely poor.
In addition, when water atomized alloy steel powder contains Mo: 0.3 to 0.5 mass% and Mn: 0.1 to 0.25 mass%, and Cu powder: 1 to 3 mass% and graphite powder: 0.5 to 1.0 mass%, tensile A sintered body having a strength of 500 MPa or more and excellent machinability can be obtained.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007035371A JP4737107B2 (en) | 2006-02-15 | 2007-02-15 | Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006037916 | 2006-02-15 | ||
JP2006037916 | 2006-02-15 | ||
JP2006337876 | 2006-12-15 | ||
JP2006337876 | 2006-12-15 | ||
JP2007035371A JP4737107B2 (en) | 2006-02-15 | 2007-02-15 | Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011006271A Division JP4844693B2 (en) | 2006-02-15 | 2011-01-14 | Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008169460A JP2008169460A (en) | 2008-07-24 |
JP2008169460A5 JP2008169460A5 (en) | 2010-10-28 |
JP4737107B2 true JP4737107B2 (en) | 2011-07-27 |
Family
ID=38509266
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007035371A Active JP4737107B2 (en) | 2006-02-15 | 2007-02-15 | Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body |
JP2011006271A Active JP4844693B2 (en) | 2006-02-15 | 2011-01-14 | Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011006271A Active JP4844693B2 (en) | 2006-02-15 | 2011-01-14 | Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body |
Country Status (8)
Country | Link |
---|---|
US (1) | US20090041608A1 (en) |
EP (1) | EP1985393B1 (en) |
JP (2) | JP4737107B2 (en) |
KR (2) | KR101101734B1 (en) |
CN (1) | CN101384387B (en) |
CA (1) | CA2642254C (en) |
TW (2) | TWI368544B (en) |
WO (1) | WO2007105429A1 (en) |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4935731B2 (en) * | 2008-03-18 | 2012-05-23 | Jfeスチール株式会社 | Iron-based powder mixture |
JP2009242887A (en) * | 2008-03-31 | 2009-10-22 | Jfe Steel Corp | Iron-based powdery mixture |
JP5200768B2 (en) * | 2008-08-27 | 2013-06-05 | Jfeスチール株式会社 | Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same |
KR101637546B1 (en) | 2008-12-22 | 2016-07-08 | 회가내스 아베 (피유비엘) | Machinability improving composition |
JP5558041B2 (en) * | 2009-08-04 | 2014-07-23 | Ntn株式会社 | Fe-based sintered metal bearing and manufacturing method thereof |
WO2010106909A1 (en) * | 2009-03-19 | 2010-09-23 | Ntn株式会社 | Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing |
JP5318619B2 (en) * | 2009-03-19 | 2013-10-16 | Ntn株式会社 | Sintered metal bearing |
CN102361997B (en) * | 2009-03-20 | 2014-06-18 | 霍加纳斯公司(Publ) | Iron vanadium powder alloy |
TWI482865B (en) * | 2009-05-22 | 2015-05-01 | 胡格納斯股份有限公司 | High strength low alloyed sintered steel |
JP2010285633A (en) * | 2009-06-09 | 2010-12-24 | Kobe Steel Ltd | Method of producing powder mixture for powder metallurgy, and method of producing sintered body |
JP5696512B2 (en) * | 2010-02-18 | 2015-04-08 | Jfeスチール株式会社 | Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same |
JP5617529B2 (en) * | 2010-10-28 | 2014-11-05 | Jfeスチール株式会社 | Iron-based mixed powder for powder metallurgy |
JP5552031B2 (en) * | 2010-11-09 | 2014-07-16 | 株式会社神戸製鋼所 | Mixed powder for powder metallurgy |
RU2450069C1 (en) * | 2011-01-19 | 2012-05-10 | Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" | Sintered antifriction iron-based material |
CN102069187B (en) * | 2011-03-01 | 2012-09-19 | 杭州寰宇粉体科技有限公司 | Mixing method of iron-based powder metallurgy bonding powder |
CN104114306A (en) * | 2012-02-15 | 2014-10-22 | Gkn烧结金属有限公司 | Powder metal with solid lubricant and powder metal scroll compressor made therefrom |
CN102672164A (en) * | 2012-06-07 | 2012-09-19 | 太仓市锦立得粉末冶金有限公司 | Powder metallurgy |
CN103071799A (en) * | 2013-01-22 | 2013-05-01 | 山东信义粉末冶金有限公司 | Method for producing surface-densified powder metallurgic gear |
JP6309215B2 (en) * | 2013-07-02 | 2018-04-11 | Ntn株式会社 | Sintered machine part manufacturing method and mixed powder used therefor |
CN105377477B (en) * | 2013-07-18 | 2017-11-24 | 杰富意钢铁株式会社 | The manufacture method of powder used in metallurgy mixed powder and its manufacture method and iron-based powder sintered body |
JP5741649B2 (en) * | 2013-08-20 | 2015-07-01 | Jfeスチール株式会社 | Iron-based powder mixture |
CN105899315A (en) * | 2014-01-22 | 2016-08-24 | Ntn株式会社 | Sintered machine part and manufacturing method thereof |
JP6391954B2 (en) * | 2014-01-22 | 2018-09-19 | Ntn株式会社 | Sintered machine parts and manufacturing method thereof |
US20170018344A1 (en) * | 2014-04-02 | 2017-01-19 | Jfe Steel Corporation | Iron powder for iron powder cores and method for selecting iron powder for iron powder cores |
JP6262078B2 (en) * | 2014-05-29 | 2018-01-17 | 株式会社神戸製鋼所 | Mixed powder for powder metallurgy |
JP2016056445A (en) * | 2014-09-04 | 2016-04-21 | Ntn株式会社 | Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy |
CN104328366B (en) * | 2014-10-22 | 2016-06-08 | 新昌县康泓机械科技有限公司 | Iron base composite material and preparation method thereof |
CN104357739A (en) * | 2014-12-08 | 2015-02-18 | 湖北工业大学 | Method for preparing compact ferroaluminium by using spark plasma sintering method |
JP6395217B2 (en) * | 2014-12-12 | 2018-09-26 | 住友電工焼結合金株式会社 | Method for manufacturing sintered parts |
JP6445858B2 (en) * | 2014-12-12 | 2018-12-26 | 住友電工焼結合金株式会社 | Sintered part manufacturing method and drill |
KR101655184B1 (en) * | 2015-01-14 | 2016-09-07 | 현대자동차 주식회사 | Crank position sensor wheel and method for manufacturing the same |
DK3253512T3 (en) | 2015-02-03 | 2023-06-06 | Hoeganaes Ab Publ | POWDER METAL COMPOSITION FOR LIGHT MACHINING |
WO2017043094A1 (en) * | 2015-09-11 | 2017-03-16 | Jfeスチール株式会社 | Method for producing mixed powder for powder metallurgy, method for producing sintered compact, and sintered compact |
CN108025357B (en) * | 2015-09-18 | 2020-03-03 | 杰富意钢铁株式会社 | Mixed powder for powder metallurgy, sintered body, and method for producing sintered body |
KR102023113B1 (en) * | 2015-09-30 | 2019-09-19 | 제이에프이 스틸 가부시키가이샤 | Production method for alloy steel powder for powder metallurgy |
JP6112282B1 (en) * | 2015-09-30 | 2017-04-12 | Jfeスチール株式会社 | Method for producing alloy steel powder for powder metallurgy |
CN105483573A (en) * | 2015-12-03 | 2016-04-13 | 无锡拓能自动化科技有限公司 | Stainless steel material for dust-free chamber workbench and manufacturing method of stainless steel material |
KR102228107B1 (en) * | 2016-01-15 | 2021-03-15 | 제이에프이 스틸 가부시키가이샤 | Mixed powder for powder metallurgy |
CN105886929A (en) * | 2016-06-14 | 2016-08-24 | 芜湖三刀材料科技有限公司 | Iron-based insert material and preparation method |
CN106270527A (en) * | 2016-08-05 | 2017-01-04 | 海安县鹰球粉末冶金有限公司 | Nickel alloy starting motor of automobile planetary gear and manufacture method thereof |
JP6561962B2 (en) * | 2016-10-24 | 2019-08-21 | Jfeスチール株式会社 | Method for producing mixed powder for powder metallurgy and production equipment for mixed powder for powder metallurgy |
JP6634365B2 (en) * | 2016-12-02 | 2020-01-22 | 株式会社神戸製鋼所 | Method for producing mixed powder for iron-based powder metallurgy and sintered body |
CN107297495A (en) * | 2017-06-20 | 2017-10-27 | 江苏军威电子科技有限公司 | A kind of electric tool mixed powder and preparation method thereof |
RU2692002C1 (en) * | 2018-12-19 | 2019-06-19 | Публичное акционерное общество "Северсталь" | Method of producing complex-alloyed powder mixture, ready for molding |
KR20210029582A (en) * | 2019-09-06 | 2021-03-16 | 현대자동차주식회사 | Iron-based prealloy powder, iron-based diffusion-bonded powder, and iron-based alloy powder for powder metallurgy using the same |
JP7060101B2 (en) * | 2019-09-27 | 2022-04-26 | Jfeスチール株式会社 | Alloy steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy, and sintered body |
CN111687411A (en) * | 2020-06-10 | 2020-09-22 | 王公明 | Net pendant and manufacturing method thereof |
CN114700496B (en) * | 2022-03-18 | 2023-09-12 | 广东潮艺金属实业有限公司 | Preparation method of high-strength stainless steel powder |
FR3138817A1 (en) * | 2022-08-09 | 2024-02-16 | Aubert & Duval | Alloy with low coefficient of thermal expansion and high mechanical resistance |
CN117600459B (en) * | 2023-11-06 | 2024-08-09 | 广东凯洋新材料有限公司 | Heat dissipation bracket and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005264201A (en) * | 2004-03-17 | 2005-09-29 | Jfe Steel Kk | Ferrous group powder mixture for powder metallurgy, and its production method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5256185A (en) * | 1992-07-17 | 1993-10-26 | Hoeganaes Corporation | Method for preparing binder-treated metallurgical powders containing an organic lubricant |
US5279640A (en) * | 1992-09-22 | 1994-01-18 | Kawasaki Steel Corporation | Method of making iron-based powder mixture |
JPH06145701A (en) * | 1992-11-04 | 1994-05-27 | Kawasaki Steel Corp | Iron base powder mixture for powder metallurgy |
US5368630A (en) * | 1993-04-13 | 1994-11-29 | Hoeganaes Corporation | Metal powder compositions containing binding agents for elevated temperature compaction |
SE9702466D0 (en) * | 1997-06-26 | 1997-06-26 | Hoeganaes Ab | Metal powder composition and a method for making sintered products |
US6599345B2 (en) * | 2001-10-02 | 2003-07-29 | Eaton Corporation | Powder metal valve guide |
JP2005015866A (en) * | 2003-06-27 | 2005-01-20 | Mitsubishi Materials Corp | Iron based sintered alloy having high surface denseness and surface hardness and its production method |
JP4368245B2 (en) * | 2004-05-17 | 2009-11-18 | 株式会社リケン | Hard particle dispersion type iron-based sintered alloy |
US7653995B2 (en) * | 2006-08-01 | 2010-02-02 | Siemens Energy, Inc. | Weld repair of superalloy materials |
CN102974917B (en) * | 2012-11-09 | 2015-03-18 | 哈尔滨汽轮机厂有限责任公司 | Stellite alloy bead weld method of gas turbine combustion chamber |
US9528175B2 (en) * | 2013-02-22 | 2016-12-27 | Siemens Aktiengesellschaft | Pre-weld heat treatment for a nickel based superalloy |
-
2007
- 2007-02-14 CN CN2007800057277A patent/CN101384387B/en active Active
- 2007-02-14 TW TW096105451A patent/TWI368544B/en not_active IP Right Cessation
- 2007-02-14 KR KR1020087020086A patent/KR101101734B1/en active IP Right Grant
- 2007-02-14 KR KR1020117019641A patent/KR20110114679A/en not_active Application Discontinuation
- 2007-02-14 TW TW101117534A patent/TWI412416B/en not_active IP Right Cessation
- 2007-02-14 CA CA2642254A patent/CA2642254C/en active Active
- 2007-02-14 EP EP07714625.6A patent/EP1985393B1/en active Active
- 2007-02-14 US US12/279,471 patent/US20090041608A1/en not_active Abandoned
- 2007-02-14 WO PCT/JP2007/053125 patent/WO2007105429A1/en active Application Filing
- 2007-02-15 JP JP2007035371A patent/JP4737107B2/en active Active
-
2011
- 2011-01-14 JP JP2011006271A patent/JP4844693B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005264201A (en) * | 2004-03-17 | 2005-09-29 | Jfe Steel Kk | Ferrous group powder mixture for powder metallurgy, and its production method |
Also Published As
Publication number | Publication date |
---|---|
KR101101734B1 (en) | 2012-01-05 |
TWI368544B (en) | 2012-07-21 |
CN101384387A (en) | 2009-03-11 |
EP1985393B1 (en) | 2016-12-21 |
TW200735985A (en) | 2007-10-01 |
KR20110114679A (en) | 2011-10-19 |
TWI412416B (en) | 2013-10-21 |
JP2008169460A (en) | 2008-07-24 |
EP1985393A1 (en) | 2008-10-29 |
US20090041608A1 (en) | 2009-02-12 |
TW201244852A (en) | 2012-11-16 |
JP4844693B2 (en) | 2011-12-28 |
EP1985393A4 (en) | 2015-06-10 |
KR20080085920A (en) | 2008-09-24 |
CA2642254A1 (en) | 2007-09-20 |
CA2642254C (en) | 2013-07-23 |
CN101384387B (en) | 2011-12-21 |
WO2007105429A1 (en) | 2007-09-20 |
JP2011084816A (en) | 2011-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4737107B2 (en) | Iron-based powder mixture, iron-based powder molded body, and method for producing iron-based powder sintered body | |
JP5696512B2 (en) | Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same | |
JP4412133B2 (en) | Iron-based mixed powder for powder metallurgy | |
JP5904234B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP7141827B2 (en) | Powder metal composition for simple machining | |
JP5741649B2 (en) | Iron-based powder mixture | |
JP5504963B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JP5504971B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JP2015172238A (en) | Mixed powder for powder metallurgy, production method thereof and iron-based powder-made sintered body | |
JP2009242887A (en) | Iron-based powdery mixture | |
JP5200768B2 (en) | Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same | |
JP4935731B2 (en) | Iron-based powder mixture | |
JP5962691B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP2014025109A (en) | Mixed powder for powder metallurgy | |
JP5816413B2 (en) | Method for producing ferrous sintered material | |
JP5504863B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JP6007928B2 (en) | Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder | |
JP2018090854A (en) | Mixed powder for iron-based powder metallurgy and method for producing sintered body | |
JP2017106102A (en) | Mixture powder for powder metallurgy, manufacturing method of mixture powder for powder metallurgy and sintered body | |
JP5310074B2 (en) | Iron-based powder mixture for high-strength sintered parts of automobiles | |
JP6493357B2 (en) | Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body | |
JP2007291467A (en) | Powdery mixture for producing iron based sintered compact, and iron based sintered compact | |
JP2017106060A (en) | Mixture powder for powder metallurgy, manufacturing method therefor and manufacturing method of iron-based powder-made sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090727 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100520 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100913 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100913 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20101008 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110418 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4737107 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |