JP2005015866A - Iron based sintered alloy having high surface denseness and surface hardness and its production method - Google Patents

Iron based sintered alloy having high surface denseness and surface hardness and its production method Download PDF

Info

Publication number
JP2005015866A
JP2005015866A JP2003183803A JP2003183803A JP2005015866A JP 2005015866 A JP2005015866 A JP 2005015866A JP 2003183803 A JP2003183803 A JP 2003183803A JP 2003183803 A JP2003183803 A JP 2003183803A JP 2005015866 A JP2005015866 A JP 2005015866A
Authority
JP
Japan
Prior art keywords
iron
based sintered
sintered alloy
mass
high surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003183803A
Other languages
Japanese (ja)
Inventor
Kinya Kawase
欣也 川瀬
Takashi Nakai
崇 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003183803A priority Critical patent/JP2005015866A/en
Priority to CA2526886A priority patent/CA2526886C/en
Priority to US10/557,663 priority patent/US20070081913A1/en
Priority to RU2005132968/02A priority patent/RU2352670C2/en
Priority to BRPI0411913-4B1A priority patent/BRPI0411913B1/en
Priority to CN2004800181675A priority patent/CN1813076B/en
Priority to PCT/JP2004/008880 priority patent/WO2005001150A1/en
Priority to ES04746349.2T priority patent/ES2474159T3/en
Priority to EP04746349.2A priority patent/EP1640469B1/en
Priority to KR1020057020802A priority patent/KR101146957B1/en
Publication of JP2005015866A publication Critical patent/JP2005015866A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron based sintered alloy which has high surface denseness and surface hardness, and to provide its production method. <P>SOLUTION: The iron based sintered alloy has a composition comprising, by mass, 0.1 to 0.9% C and one or more kinds of metals selected from Mo, Ni, Cr, and Cu by 0.1 to 10% in total, and further comprising one or more kinds of metals selected from Mn, Si, V, Nb, W, Al, Ti, Ca, and S by 0.1 to 3% in total, and the balance Fe with inevitable impurities. In the surface layer part having a thickness in the range of 1 μm to 2 mm from the surface, K and/or N comprises 0.0001 to 1 mass% by the average concentration. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、合金表面から1μm〜2mmの範囲内の厚さ部分で構成する鉄基焼結合金表層部(以下、鉄基焼結合金表層部という)と、鉄基焼結合金表層部よりも内側にある鉄基焼結合金内部(以下、鉄基焼結合金内部という)とで構成されている鉄基焼結合金であって、鉄基焼結合金表層部にカリウムおよびナトリウムの内の1種または2種が含まれている表面緻密性および表面硬度の高い鉄基焼結合金およびその製造方法に関するものであり、この鉄基焼結合金は、特に表面の硬さおよび耐摩耗性を必要とする機械部品、例えば、スプロケット、歯車、ローター、インナーレース、アウターレースなどの部材として使用され、またこの発明の鉄基焼結合金は表面緻密性が高いので、表面にメッキを施す必要のある鉄基焼結合金からなる機械部品などの部材として使用することが有効である。
【0002】
【従来の技術】
一般に、鉄基焼結合金は各種機械部品の部材として使用されており、この鉄基焼結合金は鉄基合金粉末にステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸リチウムなどの高級脂肪酸の塩を潤滑剤として混合したのち、これを成形金型のキャビティに充填しプレス成形することにより圧粉体を作製し、得られた圧粉体を燒結することにより製造することは知られている。
しかし、鉄基合金粉末に従来の高級脂肪酸の塩を潤滑剤として混合した混合粉末を成形金型のキャビティに充填しプレス成形して得られた圧粉体は、内部に多量の潤滑剤が含まれているために高密度の圧粉体を作製することができず、この方法で得られた圧粉体を燒結して作製した鉄基焼結合金は、添加した潤滑剤が鉄基焼結合金内部に残留するので機械的強度を低下させる。
一方、圧粉体成形に使用する鉄基合金粉末に添加する潤滑剤を減らして潤滑剤の少ない圧粉体を作製し、この潤滑剤含有量の少ない圧粉体を燒結して機械的強度の優れた鉄基焼結合金を製造しようとすると、圧粉体に含まれる潤滑剤の量の不足により潤滑性が不足し、そのために成形された圧粉体の型抜きが困難になり、不良な圧粉体が発生して歩留まりが低下する。
そこで、この潤滑剤の減少に伴って発生する圧粉体型抜き不良を防止するために、100℃以上に加熱された金型のキャビティ内面に、高級脂肪酸の塩(例えば、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸亜鉛)を溶媒に懸濁させた高級脂肪酸系潤滑剤を塗布し、金型の加熱によって溶媒は蒸発させ、それによって成形金型のキャビティ内面に高級脂肪酸の塩膜を形成し、この高級脂肪酸の塩膜が形成されたキャビティに通常より潤滑剤の少ない鉄基合金粉末を充填し600MPa以上の圧力でプレス成形して圧粉体を作製すると、圧粉体の表面にステアリン酸鉄の単分子膜のような高級脂肪酸の鉄塩の被膜が圧粉体表面に生成し、その結果、圧粉体と金型の間の摩擦力が減少し、圧粉体を抜出する圧力が減少して圧粉体を金型から簡単に取り出すことができ、また600MPa以上の高圧力で加圧成形するので高密度の圧粉体を製造できるとされている(特許文献1参照)。
この方法によると、得られた圧粉体は内部に含まれる潤滑剤の量が少ない高密度の圧粉体を得ることができ、さらに型抜けを容易に行なうことができるので金型からの抜出し圧力を減少させることができ、さらに圧粉体の型抜け時における破損が少ないなどの優れた効果があり、効率よく優れた圧粉体を製造し、得られた圧粉体を焼結することにより優れた鉄基燒結合金を製造することができるという。
【0003】
【特許文献1】
特許第3309970号明細書
【0004】
【発明が解決しようとする課題】
しかし、従来の固体粉末であるステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸リチウムなど固体状態の高級脂肪酸の塩を水中に懸濁した高級脂肪酸系潤滑剤を成形金型のキャビティ内面に塗布して得られた潤滑剤膜は、キャビティ内面に固体粉末膜として形成するために成形金型のキャビティ内面に緻密な被膜が形成されず、またキャビティ内面に対する密着性も不十分であるなどの欠点があり、安定した潤滑剤膜の形成が困難となるという課題があった。
【0005】
【課題を解決するための手段】
そこで、本発明者らは、上述のような観点から、成形金型のキャビティ内面に一層緻密な潤滑剤膜を形成すべく研究を行っていたところ、
(a)溶媒に溶解可能な硫酸カリウム塩および/または硫酸ナトリウム塩を溶媒に溶解した溶液を作製し、この溶液を潤滑剤として、潤滑剤の溶媒が蒸発する温度以上に加熱された成形金型のキャビティ内面に塗布すると、成形金型は溶媒が蒸発する程度の高温に加熱されているので潤滑剤に含まれる溶媒は蒸発し、硫酸カリウム塩および/または硫酸ナトリウム塩が成形金型のキャビティ内面に晶出して成形金型のキャビティ内面に硫酸カリウム塩および/または硫酸ナトリウム塩の晶出膜を形成し、この成形金型のキャビティ内面に形成した硫酸カリウム塩および/または硫酸ナトリウム塩の晶出膜は極めて緻密な潤滑剤膜を形成することができ、また密着性に優れているので作業中に剥離することが少ない、
(b)前記硫酸カリウム塩および/または硫酸ナトリウム塩の晶出膜を形成した成形金型のキャビティに原料粉末である鉄基合金粉末を充填し、プレス成形して得られた圧粉体は成形金型のキャビティ内面に硫酸カリウム塩および/または硫酸ナトリウム塩の晶出膜が形成されているために容易に型抜きすることができ、さらに得られた圧粉体の表面はカリウム(以下、Kと記す)および/またはナトリウム(以下、Naと記す)が含まれており、この表面にKおよび/またはNaが含まれている圧粉体を燒結すると、Kおよび/またはNaは酸化鉄被膜を還元して鉄基合金粉末の表面を活性化させ、焼結体表面に開放気孔(焼結合金の表面から内部に連通している気孔)の極めて少ない表面緻密な鉄基焼結合金が得られ、この表面緻密な鉄基焼結合金は表面硬度も高くなるので表面耐摩耗性を増すところからスプロケット、歯車、ローター、インナーレース、アウターレースなどの耐摩耗性を必要とする機械部品の部材として使用され、また表面緻密性が高いところから表面にメッキを施す必要のある鉄基焼結合金製機械部品および磁性部品などの部材として有効である、
(c)このようにして得られた表面緻密性および表面硬度の高い鉄基焼結合金は、鉄基焼結合金表層部にKおよび/またはNaが0.0001〜1質量%含まれている、
(d)前記鉄基焼結合金表層部におけるK濃度およびNa濃度は、高精度分析を行うと、表面からの深さ位置および表面位置によって大きく検出されたり検出されなかったりして大きくばらつき、そのために鉄基焼結合金表層部におけるK濃度およびNa濃度は平均値で求めることが好ましい、などの知見を得たのである。
【0006】
この発明は、かかる知見にもとづいて成されたものであって、
(1)鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、鉄基焼結合金表層部にKが含まれている表面緻密性および表面硬度の高い鉄基焼結合金、
(2)鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、鉄基焼結合金表層部にNaが含まれている表面緻密性および表面硬度の高い鉄基焼結合金、
(3)鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、鉄基焼結合金表層部にKおよびNaが含まれている表面緻密性および表面硬度の高い鉄基焼結合金、
(4)鉄基焼結合金表層部と鉄基焼結合金内部で構成されている鉄基焼結合金であって、鉄基焼結合金表層部にKが平均濃度で0.0001〜1質量%含有している表面緻密性および表面硬度の高い鉄基焼結合金、
(5)鉄基焼結合金表層部と鉄基焼結合金内部で構成されている鉄基焼結合金であって、鉄基焼結合金表層部にNaが平均濃度で0.0001〜1質量%含有している表面緻密性および表面硬度の高い鉄基焼結合金、
(6)鉄基焼結合金表層部と鉄基焼結合金内部で構成されている鉄基焼結合金であって、鉄基焼結合金表層部にKおよびNaの合計が平均濃度で0.0001〜1質量%含有している表面緻密性および表面硬度の高い鉄基焼結合金、に特徴を有するものである。
【0007】
スプロケット、歯車、ローター、インナーレース、アウターレースなどの表面耐摩耗性を必要とする機械部品の材料としてC:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量を含有し、さらに必要に応じてMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、残部がFeおよび不可避不純物からなる組成を有する鉄基合金焼結合金が使用されることは一般に知られており、この発明の表面緻密性および表面硬度の高い鉄基焼結合金における鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%、P:0.05質量%以下(0%も含む)を含有し、さらに必要に応じてMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、残部がFeおよび不可避不純物からなる組成を有する鉄基合金焼結体で構成されており、鉄基焼結合金表層部はC:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらに必要に応じてMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、さらにKおよびNaの内の1種または2種の合計が平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる鉄基合金焼結体で構成されている。
【0008】
したがって、この発明は、
(7)鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにKが平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有する表面緻密性および表面硬度の高い鉄基焼結合金、
(8)鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにNaが平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有する表面緻密性および表面硬度の高い鉄基焼結合金、
(9)鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにKおよびNaの合計が平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有する表面緻密性および表面硬度の高い鉄基焼結合金、
(10)鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、さらにKが平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有する表面緻密性および表面硬度の高い鉄基焼結合金、
(11)鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、さらにNaが平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有する表面緻密性および表面硬度の高い鉄基焼結合金、
(12)鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、さらにKおよびNaの内の1種または2種の合計が平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有する表面緻密性および表面硬度の高い鉄基焼結合金、に特徴を有するものである。
【0009】
前記(1)〜(12)記載のこの発明の表面緻密性および表面硬度の高い鉄基焼結合金における鉄基焼結合金表層部は、表面が緻密になり、表面における気孔、特に開放気孔(焼結合金の表面から内部に連通している気孔)が極めて少なくなり、開放気孔率が5%以下になる。したがって、この発明は、
(13)前記鉄基焼結合金表層部の開放気孔率は5%以下である前記(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)または(12)記載の表面緻密性および表面硬度の高い鉄基焼結合金、に特徴を有するものである。
開放気孔率は小さいほど好ましく、2%以下であることが一層好ましく、1%以下であることがさらに一層好ましい。
【0010】
この発明において、前記(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)または(13)記載の表面緻密性および表面硬度の高い鉄基焼結合金は、各種の機械部品の材料として使用することができ、特にスプロケット、歯車、ローター、インナーレース、アウターレースなどの強度が必要でかつ表面が摩耗しやすい部品の材料として使用することが好ましい。したがって、この発明は、
(14)前記(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)または(13)記載の表面緻密性および表面硬度の高い鉄基焼結合金からなる機械部品、
(15)前記機械部品はスプロケットである前記(14)記載の機械部品、
(16)前記機械部品は歯車である前記(14)記載の機械部品、
(17)前記機械部品はローターである前記(14)記載の機械部品、
(18)前記機械部品はインナーレースである前記(14)記載の機械部品、
(19)前記機械部品はアウターレースである前記(14)記載の機械部品、
に特徴を有するものである。
【0011】
この発明の表面緻密性および表面硬度の高い鉄基焼結合金における「鉄基焼結合金表層部」とは、その厚さが鉄基焼結合金の表面から1μm〜2mm範囲内にある部分である。鉄基焼結合金表層部の厚さが1μm未満では表面緻密性および表面硬度に格別な効果がなく、一方、これら鉄基焼結合金表層部の厚さが2mmを越えるようになると、鉄基焼結合金内部にまで焼結が進行するところから寸法精度が低下し、さらに焼入れ時に割れが生じやすくなり、好ましくないからである。
また、この発明の表面緻密性および表面硬度の高い鉄基焼結合金における「鉄基焼結合金内部」は、表面から1μm〜2mmの範囲内の厚さを有する鉄基焼結合金表層部よりも内部の部分である。
【0012】
この発明の表面緻密性および表面硬度の高い鉄基焼結合金において、鉄基焼結合金表層部におけるKおよびNaの内の1種または2種を合計で平均濃度が0.0001質量%以上となるように定めたのは、これら成分の平均濃度が0.0001質量%よりも少ないと、鉄基焼結合金原料粉末の表面酸化膜を還元して活性化する効果が不十分であるところから緻密な表層部が得られなくなり、一方、鉄基焼結合金表層部におけるこれら成分の平均濃度が1質量%を越えるほど高くすることは通常の焼結条件では不可能であり、また、特に表面緻密性が高くなることはない。したがって、この発明の表面緻密性および表面硬度の高い鉄基焼結合金における鉄基焼結合金表層部に含まれるKおよびNaの内の1種または2種を合計の平均濃度は0.0001〜1質量%に定めた。この発明の表面緻密性および表面硬度の高い鉄基焼結合金における鉄基焼結合金表層部に含まれるNaまたはK濃度の内の1種または2種を合計の平均値は0.02〜0.5質量%含まれるようにするのが製造しやすく、製造効率の上で一層好ましい。
【0013】
前記(1)、(4)、(7)または(10)記載の表面緻密性および表面硬度の高い鉄基焼結合金は、成形金型のキャビティ内面に潤滑剤としての硫酸カリウム、亜硫酸カリウム、チオ硫酸カリウム、ドデシル硫酸カリウム、ドデシルベンゼン硫酸カリウム、食用青色1号およびアスコルビン酸硫酸エステルカリウムの内の1種または2種以上からなる硫酸カリウム塩の膜を形成したのち、鉄基焼結合金原料粉末を成形金型のキャビティに充填しプレス成形することにより表面に硫酸カリウム塩が付着した表面にKを含む圧粉体を作製し、得られた圧粉体を1000〜1300℃で燒結することにより製造することができる。
【0014】
成形金型のキャビティ内面に前記硫酸カリウム塩の膜を形成するには、硫酸カリウム塩を溶媒(例えば水)に溶解した溶液を加熱した成形金型のキャビティ内面に塗布して溶媒(例えば水)を蒸発させ、潤滑剤として硫酸カリウム塩を晶出させることにより形成する。この時、成形金型を加熱する温度は溶媒(例えば水)が蒸発する温度に加熱すればよいから、成形金型の加熱温度は100℃以上であれば良い。
【0015】
前記(2)、(5)、(8)または(11)記載の表面緻密性および表面硬度の高い鉄基焼結合金は、成形金型のキャビティ内面に潤滑剤としての硫酸ナトリウム、亜硫酸ナトリウム、チオ硫酸ナトリウム、ドデシル硫酸ナトリウム、ドデシルベンゼン硫酸ナトリウム、食用黄色5号およびアスコルビン酸硫酸エステルナトリウムの内の1種または2種以上からなる硫酸ナトリウム塩の膜を形成したのち、鉄基焼結合金原料粉末を成形金型のキャビティに充填しプレス成形することにより表面に硫酸ナトリウム塩が付着した表面のNa濃度が高い圧粉体を作製し、得られた圧粉体を1000〜1300℃で燒結することにより製造することができる。
成形金型のキャビティ内面に前記硫酸ナトリウム塩の膜を形成するには、硫酸ナトリウム塩を溶媒(例えば水)に溶解した溶液を加熱した成形金型のキャビティ内面に塗布して溶媒(例えば水)を蒸発させ、潤滑剤として硫酸ナトリウム塩を晶出させることにより形成する。この時、成形金型を加熱する温度は溶媒(例えば水)が蒸発する温度に加熱すればよいから、成形金型の加熱温度は100℃以上であれば良い。
【0016】
前記(3)、(6)、(9)または(12)記載の表面緻密性および表面硬度の高い鉄基焼結合金は、成形金型のキャビティ内面に潤滑剤としての前記硫酸カリウム塩と前記硫酸ナトリウム塩の混合塩膜を形成したのち、鉄基焼結合金原料粉末を成形金型のキャビティに充填しプレス成形することにより表面に硫酸カリウム塩と硫酸ナトリウム塩が付着した表面のKおよびNaの合計濃度が高い圧粉体を作製し、得られた圧粉体を1000〜1300℃で燒結することにより製造することができる。
成形金型のキャビティ内面に前記硫酸カリウム塩と前記硫酸ナトリウム塩の混合塩膜を形成するには、硫酸カリウム塩と硫酸ナトリウム塩の混合塩を溶媒(例えば水)に溶解した溶液を加熱した成形金型のキャビティ内面に塗布して溶媒(例えば水)を蒸発させ、潤滑剤として硫酸カリウム塩と硫酸ナトリウム塩の混合塩を晶出させることにより形成する。この時、成形金型を加熱する温度は溶媒(例えば水)が蒸発する温度に加熱すればよいから、成形金型の加熱温度は100℃以上であれば良い。
【0017】
前記(13)に記載されたこの発明の表面緻密性および表面硬度の高い鉄基焼結合金および(14)〜(19)に記載されたこの発明の表面緻密性および表面硬度の高い鉄基焼結合金からなる機械部品は、前記この発明の表面緻密性および表面硬度の高い鉄基焼結合金の製造方法と同じ製造方法により製造することができる。
【0018】
この発明の表面緻密性および表面硬度の高い鉄基焼結合金を製造する際に使用する原料粉末は、スプロケット、歯車、ローター、インナーレース、アウターレースなどの表面耐摩耗性を必要とする機械部品を製造する際に使用する原料粉末として知られているC:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらに必要に応じてMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、残部がFeおよび不可避不純物からなる組成を有する公知の鉄基合金粉末に対して、C含有量を調整するために、必要に応じてC粉末を添加した混合粉末を使用する。
【0019】
【発明の実施の形態】
直径:11mm、高さ:40mmを有するキャビティを有し、キャビティ内面を所定の温度に加熱することができる成形金型を用意した。さらに原料粉末として、平均粒径:90μmのFe−1.5%Mo鉄基合金粉末および平均粒径:20μmのC粉末を用意し、V型ブレンダーでFe−1.5%Mo−0.3%Cとなるように配合し混合して混合粉末を作製した。
さらに、硫酸カリウム塩として、硫酸カリウム、亜硫酸カリウム、チオ硫酸カリウム、ドデシル硫酸カリウム、ドデシルベンゼン硫酸カリウム、食用青色1号およびアスコルビン酸硫酸エステルカリウムを用意し、
さらに、硫酸ナトリウム塩として硫酸ナトリウム、亜硫酸ナトリウム、チオ硫酸ナトリウム、ドデシル硫酸ナトリウム、ドデシルベンゼン硫酸ナトリウム、食用黄色5号およびアスコルビン酸硫酸エステルナトリウムを用意した。
これらを溶媒である水に異なる濃度で溶解させることにより、表1に示される潤滑剤A〜Uおよびa〜fを作製した。
【0020】
【表1】

Figure 2005015866
【0021】
実施例1
予め成形金型のキャビティ内面の温度を150℃に保持ししたのち、キャビティ内面に表1に示される潤滑剤A〜Gおよびa〜bを異なる厚さで塗布し、水を蒸発させることによりキャビティ内面に硫酸カリウム、亜硫酸カリウム、チオ硫酸カリウム、ドデシル硫酸カリウム、ドデシルベンゼン硫酸カリウム、食用青色1号およびアスコルビン酸硫酸エステルカリウムからなる異なる厚さを有する晶出層を形成した。
一方、これら晶出層を形成した成形金型のキャビティ内に原料粉末であるFe−1.5%Mo鉄基合金粉末およびC粉末からなりFe−1.5%Mo−0.3%Cの成分組成となるように配合しV型ブレンダーで混合して得られた混合粉末を充填し、800MPaでプレス成形することにより表面にKの高濃度層を有する圧粉体を作製した。このようにして得られた表面にKの高濃度層を有する圧粉体を5%H−Nのガス雰囲気中、温度:1150℃で焼結し、さらに浸炭焼入れおよび焼き戻しを行い、鉄基焼結合金表層部にKを含む本発明鉄基焼結合金1〜7および比較鉄基焼結合金1〜4を作製した。
【0022】
従来例1
平均粒径5μmのステアリン酸リチウム粉末をアセトンに分散させた潤滑剤を実施例1で用意した150℃に加熱した成形金型のキャビティ内面に塗布し、アセトンを蒸発させることにより成形金型のキャビティ内面にステア硫酸リチウム層を形成したのち実施例1で用意した成分組成がFe−1.5%Mo−0.3%Cを有する鉄基合金混合粉末を充填し、800MPaでプレス成形することにより圧粉体を作製した。これら圧粉体を取り出して5%H−Nのガス雰囲気中、温度:1150℃で焼結することにより従来鉄基焼結合金1を作製した。
【0023】
これら本発明鉄基焼結合金1〜7、比較鉄基焼結合金1〜4および従来鉄基焼結合金1における鉄基焼結合金表層部の厚さおよび平均K濃度をEPMAにより測定し、それらの測定結果を表2に示し、さらにこれら合金の表面におけるロックウェル硬さ、開放気孔率および合金の密度を測定し、その結果を表2に示した。
【0024】
【表2】
Figure 2005015866
【0025】
表2に示される結果から、硫酸カリウム塩を溶媒に溶解した潤滑剤を使用して作製した本発明鉄基焼結合金1〜7は、ステアリン酸リチウム粉末をアセトンに懸濁させた潤滑剤を使用して作製した従来鉄基焼結合金1に比べて、密度がほぼ同等であっても、本発明鉄基焼結合金1〜7はいずれも表面の硬さが高く、さらに表面の開放気孔率が格段に小さくなっているところから、表面が緻密であり、表面の耐摩耗性に優れていることが分かる。しかし、この発明の範囲から外れた値を有する比較鉄基焼結合金1〜4は一部好ましくない特性が現れることが分かる。
【0026】
実施例2
予め成形金型のキャビティ内面の温度を150℃に保持ししたのち、キャビティ内面に表1に示される潤滑剤H〜Nおよびc〜dを異なる厚さで塗布し、水を蒸発させることによりキャビティ内面に硫酸水素2ナトリウム、硫酸3ナトリウム、ポリ硫酸ナトリウム、硫酸リボフラビンナトリウムの異なる厚さを有する晶出層を形成した。
一方、これら晶出層を形成した成形金型のキャビティ内に原料粉末であるFe−1.5%Mo鉄基合金粉末およびC粉末からなりFe−1.5%Mo−0.3%Cの成分組成となるように配合しV型ブレンダーで混合して得られた混合粉末を充填し、800MPaでプレス成形することにより表面にNaの高濃度層を有する圧粉体を作製した。このようにして得られた表面にNaの高濃度層を有する圧粉体を5%H−Nのガス雰囲気中、温度:1150℃で焼結し、さらに浸炭焼入れおよび焼き戻しを行い、表3に示される鉄基焼結合金表層部における平均Na濃度を有する本発明鉄基焼結合金8〜14および比較鉄基焼結合金5〜8を作製した。
【0027】
これら本発明鉄基焼結合金8〜14および比較鉄基焼結合金5〜8における鉄基焼結合金表層部の厚さおよび平均Na濃度をEPMAにより測定し、それらの測定結果を表3に示し、さらにこれら合金の表面におけるロックウェル硬さ、開放気孔率および合金の密度を測定し、その結果を表3に示した。
【0028】
【表3】
Figure 2005015866
【0029】
表3に示される結果から、硫酸ナトリウム塩を溶媒に溶解した潤滑剤を使用して作製した本発明鉄基焼結合金8〜14は、ステアリン酸リチウム粉末をアセトンに懸濁させた潤滑剤を使用して作製した表1の従来鉄基焼結合金1に比べて、密度がほぼ同等であっても、本発明鉄基焼結合金8〜14はいずれも表面の硬さが高く、さらに表面の開放気孔率が格段に小さくなっているところから、表面が緻密であり、表面の耐摩耗性に優れていることが分かる。しかし、この発明の範囲から外れた値を有する比較鉄基焼結合金5〜8は一部好ましくない特性が現れることが分かる。
【0030】
実施例3
予め成形金型のキャビティ内面の温度を150℃に保持ししたのち、キャビティ内面に表1に示される潤滑剤O〜Uおよびe〜fを異なる厚さで塗布し、水を蒸発させることによりキャビティ内面に、硫酸カリウム塩と硫酸ナトリウム塩の混合塩からなる晶出層を形成した。
一方、これら晶出層を形成した成形金型のキャビティ内に原料粉末であるFe−1.5%Mo鉄基合金粉末およびC粉末からなりFe−1.5%Mo−0.3%Cの成分組成となるように配合しV型ブレンダーで混合して得られた混合粉末を充填し、800MPaでプレス成形することにより表面にKおよびNaの高濃度層を有する圧粉体を作製した。このようにして得られた表面にKおよびNaの高濃度層を有する圧粉体を5%H−Nのガス雰囲気中、温度:1150℃で焼結し、さらに浸炭焼入れおよび焼き戻しを行い、鉄基焼結合金表層部におけるK濃度およびNa濃度が高い本発明鉄基焼結合金15〜21および比較鉄基焼結合金9〜12を作製した。
【0031】
これら本発明鉄基焼結合金15〜21および比較鉄基焼結合金9〜12の鉄基焼結合金表層部における厚さ、並びに平均K濃度および平均Na濃度をEPMAにより測定し、それらの測定結果を表4に示し、さらに表面のロックウェル硬さ、開放気孔率および合金の密度を測定し、その結果を表4に示した。
【0032】
【表4】
Figure 2005015866
【0033】
表4に示される結果から、硫酸カリウム塩と硫酸ナトリウム塩の混合塩を溶媒に溶解した潤滑剤を使用して作製した本発明鉄基焼結合金15〜21は、ステアリン酸リチウム粉末をアセトンに懸濁させた潤滑剤を使用して作製した表1の従来鉄基焼結合金1に比べて、密度がほぼ同等であっても、本発明鉄基焼結合金15〜21はいずれも表面の硬さが高く、さらに表面の開放気孔率が格段に小さくなっているところから、表面が緻密であり、表面の耐摩耗性に優れていることが分かる。しかし、この発明の範囲から外れた値を有する比較鉄基焼結合金9〜12は一部好ましくない特性が現れることが分かる。
【0034】
【発明の効果】
上述のように、この発明の鉄基燒結合金は、従来の同じ成分組成を有する鉄基焼結合金に比べて表面における硬さが高く、さらに開放気孔率が小さいところからメッキなどの表面処理を施しやすく、各種の耐摩耗性を必要とする機械部品用部材とすることができ、機械産業の発展に大いに貢献し得るものである。[0001]
BACKGROUND OF THE INVENTION
The present invention comprises an iron-based sintered alloy surface layer portion (hereinafter referred to as an iron-based sintered alloy surface layer portion) constituted by a thickness portion within a range of 1 μm to 2 mm from the alloy surface, and an iron-based sintered alloy surface layer portion. An iron-based sintered alloy composed of an inner iron-based sintered alloy (hereinafter referred to as an iron-based sintered alloy), and one of potassium and sodium in the surface of the iron-based sintered alloy. TECHNICAL FIELD The present invention relates to an iron-based sintered alloy having high surface density and high surface hardness containing two or two species, and a method for producing the same, and the iron-based sintered alloy particularly requires surface hardness and wear resistance. Machine parts such as sprockets, gears, rotors, inner races, outer races and the like, and since the iron-based sintered alloy of the present invention has high surface density, the surface must be plated. Machine made of iron-based sintered alloy It is effective to use as a member of such components.
[0002]
[Prior art]
Generally, an iron-based sintered alloy is used as a member for various machine parts, and this iron-based sintered alloy is a lubricant containing a higher fatty acid salt such as zinc stearate, calcium stearate, or lithium stearate in an iron-based alloy powder. It is known that a green compact is prepared by filling the mold cavity into a cavity of the molding die and press-molding and then sintering the obtained green compact.
However, the green compact obtained by press-molding a mixed powder of iron-base alloy powder mixed with conventional higher fatty acid salt as a lubricant into the mold cavity contains a large amount of lubricant inside. Therefore, it is not possible to produce a high-density green compact, and the iron-based sintered alloy produced by sintering the green compact obtained by this method has an added lubricant that is iron-based sintered. Since it remains inside the gold, the mechanical strength is lowered.
On the other hand, by reducing the amount of lubricant added to the iron-base alloy powder used for compacting, a compact with a small amount of lubricant is produced, and this compact with a low lubricant content is sintered to increase the mechanical strength. If an attempt is made to produce an excellent iron-based sintered alloy, the lubricity is insufficient due to the insufficient amount of lubricant contained in the green compact. A green compact is generated and yield decreases.
Therefore, in order to prevent the compacting failure caused by the reduction of the lubricant, a salt of higher fatty acid (for example, lithium stearate, stearate) is formed on the cavity inner surface of the mold heated to 100 ° C. or higher. Apply a higher fatty acid lubricant in which calcium phosphate and zinc stearate) are suspended in a solvent, and evaporate the solvent by heating the mold, thereby forming a salt film of higher fatty acid on the inner surface of the mold cavity, Filling the cavity with the higher fatty acid salt film with iron-base alloy powder with less lubricant than usual and press-molding it at a pressure of 600 MPa or more to produce a green compact, iron stearate is formed on the surface of the green compact. A film of higher fatty acid iron salt, such as a monomolecular film, is formed on the surface of the green compact. As a result, the frictional force between the green compact and the mold is reduced, and the pressure at which the green compact is extracted is increased. Reduced to compaction Since the can be easily retrieved from the mold, and also pressed at least a high pressure 600MPa is to be able to produce a high density of the green compact (see Patent Document 1).
According to this method, the obtained green compact can obtain a high-density green compact with a small amount of lubricant contained therein, and can be easily removed from the mold. The pressure can be reduced, and there is an excellent effect such as less damage when the green compact is released, and the green compact is efficiently manufactured and sintered. It is said that an excellent iron-base bond can be produced.
[0003]
[Patent Document 1]
Japanese Patent No. 3309970
[0004]
[Problems to be solved by the invention]
However, it is obtained by applying a higher fatty acid-based lubricant in which solid fatty acid salts such as zinc stearate, calcium stearate, and lithium stearate, which are conventional solid powders, are suspended in water, to the inner surface of the mold cavity. Since the lubricant film is formed as a solid powder film on the inner surface of the cavity, there is a drawback that a dense film is not formed on the inner surface of the cavity of the molding die and the adhesion to the inner surface of the cavity is insufficient. There was a problem that it was difficult to form a lubricant film.
[0005]
[Means for Solving the Problems]
Therefore, from the viewpoints described above, the present inventors have been studying to form a denser lubricant film on the cavity inner surface of the molding die.
(A) A mold in which a potassium sulfate salt and / or sodium sulfate salt that is soluble in a solvent is dissolved in a solvent, and this solution is used as a lubricant, and the mold is heated to a temperature at which the solvent of the lubricant evaporates or higher. When the mold is applied to the inner surface of the cavity, the mold is heated to such a high temperature that the solvent evaporates, so the solvent contained in the lubricant evaporates, and potassium sulfate salt and / or sodium sulfate salt is added to the inner surface of the mold cavity. Crystallization of a potassium sulfate salt and / or sodium sulfate crystallized film on the inner surface of the mold cavity, and crystallization of potassium sulfate and / or sodium sulfate formed on the inner surface of the mold cavity The film can form a very dense lubricant film, and because it has excellent adhesion, it rarely peels off during work.
(B) Filling the cavity of the molding die formed with the crystallized film of the potassium sulfate salt and / or sodium sulfate salt with the iron-base alloy powder as the raw material powder, and pressing the green compact obtained by molding Since a crystallized film of potassium sulfate and / or sodium sulfate is formed on the inner surface of the cavity of the mold, the mold can be easily removed, and the surface of the obtained green compact is potassium (hereinafter referred to as K). And / or sodium (hereinafter referred to as Na), and when a green compact containing K and / or Na is sintered on this surface, K and / or Na will form an iron oxide coating. By reducing, the surface of the iron-based alloy powder is activated, and a surface-dense iron-based sintered alloy with very few open pores (pores communicating from the surface of the sintered alloy to the inside) is obtained on the surface of the sintered body. This surface dense iron Sintered alloy has high surface hardness, so it increases surface wear resistance, so it is used as a component for mechanical parts that require wear resistance such as sprockets, gears, rotors, inner races, outer races, etc. Is effective as a member such as iron-based sintered alloy machine parts and magnetic parts that need to be plated on the surface from a high point,
(C) The iron-based sintered alloy having a high surface density and high surface hardness thus obtained contains 0.0001 to 1% by mass of K and / or Na in the surface layer of the iron-based sintered alloy. ,
(D) The K concentration and Na concentration in the surface layer portion of the iron-based sintered alloy vary greatly depending on whether they are detected or not detected depending on the depth position and the surface position from the surface. In addition, it has been found that the K concentration and Na concentration in the surface layer portion of the iron-based sintered alloy are preferably obtained as average values.
[0006]
This invention was made based on such knowledge,
(1) An iron-based sintered alloy composed of an iron-based sintered alloy surface layer part and an iron-based sintered alloy interior, wherein the iron-based sintered alloy surface layer part contains K and Ferrous sintered alloy with high surface hardness,
(2) An iron-based sintered alloy composed of an iron-based sintered alloy surface layer part and an iron-based sintered alloy interior, wherein the iron-based sintered alloy surface layer part contains Na and Ferrous sintered alloy with high surface hardness,
(3) An iron-based sintered alloy composed of a surface layer portion of an iron-based sintered alloy and the inside of the iron-based sintered alloy, the surface dense portion containing K and Na in the surface layer portion of the iron-based sintered alloy Iron-based sintered alloy with high stability and surface hardness,
(4) An iron-based sintered alloy comprising an iron-based sintered alloy surface layer part and an iron-based sintered alloy inside, wherein K is 0.0001 to 1 mass in terms of average concentration in the iron-based sintered alloy surface layer part % Iron-based sintered alloy with high surface density and high surface hardness,
(5) An iron-based sintered alloy composed of an iron-based sintered alloy surface layer part and an iron-based sintered alloy inside, wherein Na is an average concentration of 0.0001-1 mass in the iron-based sintered alloy surface layer part % Iron-based sintered alloy with high surface density and high surface hardness,
(6) An iron-based sintered alloy composed of an iron-based sintered alloy surface layer portion and an iron-based sintered alloy inside, wherein the total concentration of K and Na is 0.0. It is characterized by an iron-based sintered alloy containing 0001 to 1% by mass and having high surface density and high surface hardness.
[0007]
As a material for machine parts that require surface wear resistance such as sprockets, gears, rotors, inner races, outer races, etc., C: 0.1 to 0.9% by mass, one of Mo, Ni, Cr and Cu Or it contains 0.1-10 mass in total in 2 or more types, and also totals 1 type or 2 or more types in Mn, Si, V, Nb, W, Al, Ti, Ca and S as needed. It is generally known that an iron-based alloy sintered alloy having a composition of 0.1 to 3% by mass with the balance consisting of Fe and inevitable impurities is used. The iron-based sintered alloy in the high-iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu are 0.1 in total. -10 mass%, P: 0.05 mass% or less (including 0%) And, if necessary, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S are contained in a total amount of 0.1 to 3% by mass, and the balance Is composed of an iron-based alloy sintered body having a composition composed of Fe and inevitable impurities, and the surface layer portion of the iron-based sintered alloy is made of C: 0.1 to 0.9 mass%, Mo, Ni, Cr and Cu. 1 type or 2 types or more in total and 0.1-10 mass% in total, Furthermore, 1 type in Mn, Si, V, Nb, W, Al, Ti, Ca and S as needed or 2 or more types in total contain 0.1 to 3% by mass, and one or two of K and Na in total contain 0.0001 to 1% by mass in average concentration, the balance being Fe and inevitable It is composed of an iron-based alloy sintered body made of impurities.
[0008]
Therefore, the present invention
(7) An iron-based sintered alloy composed of an iron-based sintered alloy surface layer part and an iron-based sintered alloy inside,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. And the balance has a composition consisting of Fe and inevitable impurities,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. And an iron-based sintered alloy having a high surface density and high surface hardness, in which K is contained in an average concentration of 0.0001 to 1% by mass, and the balance is composed of Fe and inevitable impurities,
(8) An iron-based sintered alloy composed of a surface layer portion of an iron-based sintered alloy and the inside of the iron-based sintered alloy,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. And the balance has a composition consisting of Fe and inevitable impurities,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. Further, an iron-based sintered alloy having a high surface density and high surface hardness, wherein Na is contained in an average concentration of 0.0001 to 1% by mass, and the balance is composed of Fe and inevitable impurities,
(9) An iron-based sintered alloy composed of a surface layer portion of an iron-based sintered alloy and the inside of the iron-based sintered alloy,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. And the balance has a composition consisting of Fe and inevitable impurities,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. Further, an iron-based sintered alloy having a high surface density and high surface hardness, wherein the total concentration of K and Na is 0.0001 to 1% by mass in average concentration, and the balance is composed of Fe and inevitable impurities,
(10) An iron-based sintered alloy composed of an iron-based sintered alloy surface layer part and an iron-based sintered alloy inside,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. Further, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S are contained in a total amount of 0.1 to 3% by mass, with the balance being Fe and inevitable impurities. Having a composition,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. In addition, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S are contained in a total of 0.1 to 3% by mass, and K is 0 in average concentration. An iron-based sintered alloy having a high surface density and high surface hardness, having a composition comprising .0001 to 1% by mass, the balance being Fe and inevitable impurities;
(11) An iron-based sintered alloy composed of a surface layer portion of an iron-based sintered alloy and the inside of the iron-based sintered alloy,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. Further, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S are contained in a total amount of 0.1 to 3% by mass, with the balance being Fe and inevitable impurities. Having a composition,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. Further, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S are contained in a total amount of 0.1 to 3% by mass, and Na is an average concentration of 0. An iron-based sintered alloy having a high surface density and high surface hardness, having a composition comprising .0001 to 1% by mass, the balance being Fe and inevitable impurities;
(12) An iron-based sintered alloy composed of a surface layer portion of an iron-based sintered alloy and the inside of the iron-based sintered alloy,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. Further, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S are contained in a total amount of 0.1 to 3% by mass, with the balance being Fe and inevitable impurities. Having a composition,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. Further, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca, and S are contained in a total amount of 0.1 to 3% by mass. One or two types of total is contained in an average concentration of 0.0001 to 1% by mass, and the balance is characterized by an iron-based sintered alloy having a high surface density and high surface hardness having a composition composed of Fe and inevitable impurities. Is.
[0009]
The iron-based sintered alloy surface layer portion in the iron-based sintered alloy having high surface density and high surface hardness according to the present invention described in the above (1) to (12) has a dense surface, and pores on the surface, particularly open pores ( The pores communicating from the surface of the sintered alloy to the inside are extremely reduced, and the open porosity is 5% or less. Therefore, the present invention
(13) The open porosity of the iron-based sintered alloy surface layer portion is 5% or less (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11) or (12) is characterized in the iron-based sintered alloy having high surface density and high surface hardness.
The open porosity is preferably as small as possible, more preferably 2% or less, and even more preferably 1% or less.
[0010]
In this invention, (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), ( The iron-based sintered alloy having a high surface density and high surface hardness described in 12) or (13) can be used as a material for various machine parts, particularly sprockets, gears, rotors, inner races, outer races, etc. It is preferably used as a material for parts that require strength and are susceptible to surface wear. Therefore, the present invention
(14) (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12 ) Or (13) mechanical parts made of an iron-based sintered alloy having high surface density and surface hardness,
(15) The machine part according to (14), wherein the machine part is a sprocket,
(16) The mechanical component according to (14), wherein the mechanical component is a gear.
(17) The machine part according to (14), wherein the machine part is a rotor,
(18) The machine part according to (14), wherein the machine part is an inner race,
(19) The machine part according to (14), wherein the machine part is an outer race,
It has the characteristics.
[0011]
The “iron-based sintered alloy surface layer portion” in the iron-based sintered alloy having high surface density and high surface hardness according to the present invention is a portion whose thickness is within a range of 1 μm to 2 mm from the surface of the iron-based sintered alloy. is there. When the thickness of the surface layer portion of the iron-based sintered alloy is less than 1 μm, there is no particular effect on the surface density and surface hardness. On the other hand, when the thickness of the surface layer portion of the iron-based sintered alloy exceeds 2 mm, This is because the dimensional accuracy is lowered from the point where the sintering proceeds to the inside of the sintered alloy, and cracks are easily generated during quenching, which is not preferable.
The “iron-based sintered alloy interior” in the iron-based sintered alloy having high surface density and high surface hardness according to the present invention is obtained from the surface layer of the iron-based sintered alloy having a thickness in the range of 1 μm to 2 mm from the surface. Is also an internal part.
[0012]
In the iron-based sintered alloy having high surface density and high surface hardness according to the present invention, the total concentration of one or two of K and Na in the surface portion of the iron-based sintered alloy is 0.0001% by mass or more in total. The reason is that if the average concentration of these components is less than 0.0001% by mass, the effect of reducing and activating the surface oxide film of the iron-based sintered alloy raw material powder is insufficient. On the other hand, it is impossible to obtain a dense surface layer part, and on the other hand, it is impossible to increase the average concentration of these components in the iron-based sintered alloy surface layer part exceeding 1% by mass under normal sintering conditions. Denseness does not increase. Therefore, the total average concentration of one or two of K and Na contained in the surface layer portion of the iron-based sintered alloy in the iron-based sintered alloy having a high surface density and high surface hardness according to the present invention is 0.0001 to It was set to 1% by mass. The average value of one or two of the Na or K concentrations contained in the surface layer portion of the iron-based sintered alloy in the iron-based sintered alloy having a high surface density and high surface hardness according to the present invention is 0.02 to 0 It is easy to manufacture and it is more preferable in terms of manufacturing efficiency to contain 5 mass%.
[0013]
The iron-based sintered alloy having high surface density and high surface hardness described in the above (1), (4), (7) or (10) is formed of potassium sulfate, potassium sulfite as a lubricant on the cavity inner surface of a molding die, After forming a film of potassium sulfate salt consisting of one or more of potassium thiosulfate, potassium dodecyl sulfate, potassium dodecylbenzene sulfate, edible blue No. 1 and potassium ascorbate sulfate, raw material for iron-based sintered alloy A powder compact containing K on the surface is prepared by filling the powder into the mold cavity and press molding, and the obtained compact is sintered at 1000 to 1300 ° C. Can be manufactured.
[0014]
In order to form the potassium sulfate salt film on the cavity inner surface of the molding die, a solution obtained by dissolving potassium sulfate in a solvent (for example, water) is applied to the heated cavity surface of the molding die and the solvent (for example, water). Is evaporated to crystallize potassium sulfate as a lubricant. At this time, since the temperature for heating the molding die may be heated to a temperature at which the solvent (for example, water) evaporates, the heating temperature for the molding die may be 100 ° C. or higher.
[0015]
The iron-based sintered alloy having a high surface density and high surface hardness described in the above (2), (5), (8) or (11) is sodium sulfate, sodium sulfite as a lubricant on the cavity inner surface of the molding die, After forming a film of sodium sulfate salt consisting of one or more of sodium thiosulfate, sodium dodecyl sulfate, sodium dodecylbenzene sulfate, edible yellow No. 5 and sodium ascorbate sulfate, raw material for iron-based sintered alloy The powder compact is filled into a mold cavity and press molded to produce a green compact with a high Na concentration on the surface with sodium sulfate salt attached, and the resulting green compact is sintered at 1000-1300 ° C. Can be manufactured.
In order to form the sodium sulfate film on the inner surface of the mold cavity, a solution obtained by dissolving sodium sulfate in a solvent (for example, water) is applied to the inner surface of the heated mold cavity and the solvent (for example, water). Is evaporated and the sodium sulfate salt is crystallized out as a lubricant. At this time, since the temperature for heating the molding die may be heated to a temperature at which the solvent (for example, water) evaporates, the heating temperature for the molding die may be 100 ° C. or higher.
[0016]
The iron-based sintered alloy having a high surface density and high surface hardness described in the above (3), (6), (9) or (12), the potassium sulfate salt as a lubricant on the inner surface of a cavity of a molding die and the above-mentioned After forming a mixed salt film of sodium sulfate, K and Na on the surface where potassium sulfate salt and sodium sulfate salt are adhered to the surface by filling iron mold sintered alloy raw material powder into the mold cavity and press forming It is possible to produce a green compact having a high total concentration of and sintering the obtained green compact at 1000 to 1300 ° C.
In order to form a mixed salt film of the potassium sulfate salt and the sodium sulfate salt on the inner surface of the cavity of the molding die, a solution in which a mixed salt of potassium sulfate salt and sodium sulfate salt is dissolved in a solvent (for example, water) is heated. It is formed on the inner surface of the mold cavity by evaporating a solvent (for example, water) and crystallizing a mixed salt of potassium sulfate and sodium sulfate as a lubricant. At this time, since the temperature for heating the molding die may be heated to a temperature at which the solvent (for example, water) evaporates, the heating temperature of the molding die may be 100 ° C. or higher.
[0017]
The iron-based sintered alloy having high surface density and high surface hardness according to the present invention described in (13) above and the iron-base sintered material having high surface density and high surface hardness according to the present invention described in (14) to (19). The mechanical part made of the bond gold can be manufactured by the same manufacturing method as the manufacturing method of the iron-based sintered alloy having high surface density and high surface hardness according to the present invention.
[0018]
The raw material powder used in producing the iron-based sintered alloy having high surface density and high surface hardness according to the present invention is a machine part that requires surface wear resistance such as sprockets, gears, rotors, inner races, outer races, etc. C: 0.1 to 0.9% by mass, which is known as a raw material powder used in the production of Mo, Ni, Cr and Cu, 0.1 to 10 in total Containing 1% or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S as required, and 0.1 to 3% by mass in total. In order to adjust the C content with respect to a known iron-based alloy powder having a composition composed of Fe and inevitable impurities in the balance, a mixed powder to which C powder is added as necessary is used.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
A molding die having a cavity having a diameter of 11 mm and a height of 40 mm and capable of heating the inner surface of the cavity to a predetermined temperature was prepared. Further, Fe-1.5% Mo iron-based alloy powder having an average particle size of 90 μm and C powder having an average particle size of 20 μm were prepared as raw material powders, and Fe-1.5% Mo-0.3 was prepared using a V-type blender. The mixed powder was prepared by mixing and mixing so as to be% C.
Furthermore, as potassium sulfate, potassium sulfate, potassium sulfite, potassium thiosulfate, potassium dodecyl sulfate, potassium dodecylbenzene sulfate, edible blue No. 1 and potassium ascorbate sulfate are prepared.
Further, sodium sulfate, sodium sulfite, sodium thiosulfate, sodium dodecyl sulfate, sodium dodecylbenzene sulfate, edible yellow No. 5 and sodium ascorbate sulfate were prepared as sodium sulfate salts.
Lubricants A to U and a to f shown in Table 1 were prepared by dissolving these in water as a solvent at different concentrations.
[0020]
[Table 1]
Figure 2005015866
[0021]
Example 1
After maintaining the temperature of the inner surface of the cavity of the molding die at 150 ° C. in advance, the lubricants A to G and a to b shown in Table 1 are applied to the inner surface of the cavity with different thicknesses, and water is evaporated to evaporate the cavity. Crystallization layers having different thicknesses of potassium sulfate, potassium sulfite, potassium thiosulfate, potassium dodecyl sulfate, potassium dodecylbenzene sulfate, edible blue No. 1 and potassium ascorbate sulfate were formed on the inner surface.
On the other hand, Fe-1.5% Mo-0.3% C of Fe-1.5% Mo-0.3% C consisting of Fe-1.5% Mo iron-base alloy powder and C powder, which are raw material powders, is formed in the cavity of the molding die in which these crystallized layers are formed. A green compact having a high-concentration layer of K on the surface was prepared by filling the mixed powder obtained by mixing with a V-type blender so as to have a component composition and filling with a mixed powder and press molding at 800 MPa. A green compact having a high concentration layer of K on the surface thus obtained was added to 5% H. 2 -N 2 In the gas atmosphere of the present invention, sintering is performed at a temperature of 1150 ° C., carburizing and tempering is further performed, and the iron-based sintered alloys 1 to 7 of the present invention containing K in the surface layer portion of the iron-based sintered alloy and comparative iron-based sintered bonds Gold 1-4 were produced.
[0022]
Conventional Example 1
A lubricant in which lithium stearate powder having an average particle size of 5 μm is dispersed in acetone is applied to the cavity inner surface of the molding die heated to 150 ° C. prepared in Example 1, and acetone is evaporated to evaporate the cavity of the molding die. After forming the lithium stearate layer on the inner surface, the iron-based alloy mixed powder having the component composition prepared in Example 1 having Fe-1.5% Mo-0.3% C is filled and press-molded at 800 MPa. A green compact was produced. These green compacts are taken out and 5% H 2 -N 2 A conventional iron-based sintered alloy 1 was produced by sintering at a temperature of 1150 ° C. in a gas atmosphere of
[0023]
The thickness and average K concentration of the iron-based sintered alloy surface layer in these iron-based sintered alloys 1 to 7, comparative iron-based sintered alloys 1 to 4 and conventional iron-based sintered alloy 1 were measured by EPMA, The measurement results are shown in Table 2, and the Rockwell hardness, open porosity, and alloy density on the surface of these alloys were measured. The results are shown in Table 2.
[0024]
[Table 2]
Figure 2005015866
[0025]
From the results shown in Table 2, the iron-based sintered alloys 1 to 7 of the present invention prepared using a lubricant obtained by dissolving potassium sulfate in a solvent are prepared by suspending a lithium stearate powder suspended in acetone. The iron-based sintered alloys 1 to 7 of the present invention all have a high surface hardness even when the density is substantially the same as that of the conventional iron-based sintered alloy 1 produced by using the open-pores on the surface. From the fact that the rate is remarkably small, it can be seen that the surface is dense and the surface has excellent wear resistance. However, it can be seen that comparative iron-based sintered alloys 1 to 4 having values outside the scope of the present invention have some undesirable characteristics.
[0026]
Example 2
After maintaining the temperature of the cavity inner surface of the molding die at 150 ° C. in advance, the lubricants H to N and cd shown in Table 1 are applied to the cavity inner surface with different thicknesses, and water is evaporated to evaporate the cavity. Crystallized layers having different thicknesses of disodium hydrogen sulfate, trisodium sulfate, sodium polysulfate and sodium riboflavin sulfate were formed on the inner surface.
On the other hand, Fe-1.5% Mo-0.3% C of Fe-1.5% Mo-0.3% C consisting of Fe-1.5% Mo iron-base alloy powder and C powder, which are raw material powders, is formed in the cavity of the molding die in which these crystallized layers are formed. A powder mixture having a high concentration layer of Na on the surface was prepared by filling the mixed powder obtained by mixing with a V-type blender so as to have a component composition and filling with a mixed powder, followed by press molding at 800 MPa. A green compact having a high concentration layer of Na on the surface thus obtained was added to 5% H. 2 -N 2 In the gas atmosphere of the present invention, sintering is performed at a temperature of 1150 ° C., carburizing and tempering is further performed, and the iron-based sintered alloy according to the present invention having an average Na concentration in the surface layer portion of the iron-based sintered alloy shown in Table 3 14 and comparative iron-based sintered alloys 5 to 8 were produced.
[0027]
The thickness and average Na concentration of the iron-based sintered alloy surface layer in these iron-based sintered alloys 8 to 14 and comparative iron-based sintered alloys 5 to 8 of the present invention were measured by EPMA, and the measurement results are shown in Table 3. Further, the Rockwell hardness, open porosity, and alloy density on the surface of these alloys were measured, and the results are shown in Table 3.
[0028]
[Table 3]
Figure 2005015866
[0029]
From the results shown in Table 3, the iron-based sintered alloys 8 to 14 of the present invention produced using a lubricant obtained by dissolving sodium sulfate in a solvent were prepared by suspending a lithium stearate powder suspended in acetone. The iron-based sintered alloys 8 to 14 of the present invention all have a high surface hardness, even if the density is substantially the same as that of the conventional iron-based sintered alloy 1 shown in Table 1 and used. It can be seen that the surface has a dense surface and excellent surface wear resistance. However, it can be seen that comparative iron-based sintered alloys 5 to 8 having values outside the scope of the present invention have some undesirable characteristics.
[0030]
Example 3
After maintaining the temperature of the inner surface of the cavity of the molding die at 150 ° C. in advance, the lubricants O to U and ef shown in Table 1 are applied to the inner surface of the cavity with different thicknesses, and the water is evaporated to evaporate the cavity. A crystallization layer composed of a mixed salt of potassium sulfate and sodium sulfate was formed on the inner surface.
On the other hand, Fe-1.5% Mo-0.3% C of Fe-1.5% Mo-0.3% C consisting of Fe-1.5% Mo iron-base alloy powder and C powder, which are raw material powders, is formed in the cavity of the molding die on which these crystallization layers are formed. A powder mixture having a high concentration layer of K and Na on the surface was prepared by filling the mixed powder obtained by mixing with a V-type blender so as to have a component composition and filling with a mixed powder and press molding at 800 MPa. A green compact having a high concentration layer of K and Na on the surface thus obtained was added to 5% H. 2 -N 2 In the gas atmosphere of the present invention, sintering is performed at a temperature of 1150 ° C., carburizing and tempering is further performed, and the iron-based sintered alloys 15 to 21 of the present invention having high K concentration and Na concentration in the surface layer portion of the iron-based sintered alloy and comparison Iron-based sintered alloys 9 to 12 were produced.
[0031]
The thickness, average K concentration and average Na concentration of the iron-based sintered alloys 15 to 21 and comparative iron-based sintered alloys 9 to 12 of the present invention in the surface layer of the iron-based sintered alloy were measured by EPMA, and these measurements were made. The results are shown in Table 4, and the surface Rockwell hardness, open porosity and alloy density were measured. The results are shown in Table 4.
[0032]
[Table 4]
Figure 2005015866
[0033]
From the results shown in Table 4, the iron-based sintered alloys 15 to 21 of the present invention prepared using a lubricant obtained by dissolving a mixed salt of potassium sulfate and sodium sulfate in a solvent were used to convert lithium stearate powder into acetone. Compared with the conventional iron-based sintered alloy 1 of Table 1 prepared using the suspended lubricant, the iron-based sintered alloys 15 to 21 of the present invention all have surface From the fact that the hardness is high and the open porosity of the surface is remarkably small, it can be seen that the surface is dense and the surface has excellent wear resistance. However, it can be seen that the comparative iron-based sintered alloys 9 to 12 having values outside the scope of the present invention have some undesirable characteristics.
[0034]
【The invention's effect】
As described above, the iron-base metal alloy of the present invention has a surface hardness higher than that of a conventional iron-base sintered alloy having the same component composition and a surface treatment such as plating since the open porosity is small. It is easy to apply and can be a member for machine parts that requires various wear resistances, and can greatly contribute to the development of the machine industry.

Claims (22)

合金表面から1μm〜2mmの範囲内の厚さ部分で構成する鉄基焼結合金表層部(以下、鉄基焼結合金表層部という)と、鉄基焼結合金表層部よりも内側にある鉄基焼結合金内部(以下、鉄基焼結合金内部という)とで構成されている鉄基焼結合金であって、鉄基焼結合金表層部にカリウム(以下、Kと記す)が含まれていることを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。An iron-based sintered alloy surface layer portion (hereinafter referred to as an iron-based sintered alloy surface layer portion) composed of a thickness portion within a range of 1 μm to 2 mm from the alloy surface, and iron inside the iron-based sintered alloy surface layer portion An iron-based sintered alloy composed of a base-sintered alloy inside (hereinafter referred to as an iron-based sintered alloy), and potassium (hereinafter referred to as K) is included in the surface layer of the iron-based sintered alloy. An iron-based sintered alloy having high surface density and high surface hardness. 鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、鉄基焼結合金表層部にナトリウム(以下、Naと記す)が含まれていることを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。An iron-based sintered alloy composed of an iron-based sintered alloy surface layer portion and an iron-based sintered alloy inside portion, and the iron-based sintered alloy surface layer portion contains sodium (hereinafter referred to as Na). An iron-based sintered alloy having a high surface density and high surface hardness. 鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、鉄基焼結合金表層部にKおよびNaが含まれていることを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。An iron-based sintered alloy composed of an iron-based sintered alloy surface layer part and an iron-based sintered alloy interior, wherein the iron-based sintered alloy surface layer part contains K and Na An iron-based sintered alloy with high surface density and surface hardness. 鉄基焼結合金表層部と鉄基焼結合金内部で構成されている鉄基焼結合金であって、鉄基焼結合金表層部にKが平均濃度で0.0001〜1質量%含有していることを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。An iron-based sintered alloy composed of an iron-based sintered alloy surface layer and an iron-based sintered alloy, wherein K is contained in the iron-based sintered alloy surface layer in an average concentration of 0.0001 to 1% by mass. An iron-based sintered alloy having high surface density and high surface hardness. 鉄基焼結合金表層部と鉄基焼結合金内部で構成されている鉄基焼結合金であって、鉄基焼結合金表層部にNaが平均濃度で0.0001〜1質量%含有していることを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。An iron-based sintered alloy composed of an iron-based sintered alloy surface layer part and an iron-based sintered alloy interior, wherein the iron-based sintered alloy surface layer part contains Na in an average concentration of 0.0001 to 1% by mass. An iron-based sintered alloy having high surface density and high surface hardness. 鉄基焼結合金表層部と鉄基焼結合金内部で構成されている鉄基焼結合金であって、鉄基焼結合金表層部にKおよびNaの合計が平均濃度で0.0001〜1質量%含有していることを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。An iron-based sintered alloy composed of an iron-based sintered alloy surface layer part and an iron-based sintered alloy inside, wherein the total concentration of K and Na in the iron-based sintered alloy surface layer part is 0.0001 to 1 in average concentration An iron-based sintered alloy having a high surface density and a high surface hardness, characterized by containing a mass%. 鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにKが平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有することを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。
An iron-based sintered alloy composed of an iron-based sintered alloy surface layer and an iron-based sintered alloy inside,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. And the balance has a composition consisting of Fe and inevitable impurities,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. Further, an iron-based sintered alloy having high surface density and high surface hardness, characterized in that K has an average concentration of 0.0001 to 1% by mass, and the balance is composed of Fe and inevitable impurities.
鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにNaが平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有することを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。
An iron-based sintered alloy composed of an iron-based sintered alloy surface layer and an iron-based sintered alloy inside,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. And the balance has a composition consisting of Fe and inevitable impurities,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. Further, an iron-based sintered alloy having high surface density and high surface hardness, wherein Na is contained in an average concentration of 0.0001 to 1% by mass, and the balance is composed of Fe and inevitable impurities.
鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにKおよびNaの合計が平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有することを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。
An iron-based sintered alloy composed of an iron-based sintered alloy surface layer and an iron-based sintered alloy inside,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. And the balance has a composition consisting of Fe and inevitable impurities,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. Furthermore, the iron-based sintered bond having high surface density and high surface hardness, characterized in that the total concentration of K and Na is 0.0001 to 1% by mass in average concentration, and the balance is composed of Fe and inevitable impurities. Money.
鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、さらにKが平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有することを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。
An iron-based sintered alloy composed of an iron-based sintered alloy surface layer and an iron-based sintered alloy inside,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. Further, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S are contained in a total amount of 0.1 to 3% by mass, with the balance being Fe and inevitable impurities. Having a composition,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. In addition, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S are contained in a total of 0.1 to 3% by mass, and K is 0 in average concentration. An iron-based sintered alloy having high surface density and high surface hardness, characterized by containing 0.0001 to 1% by mass and the balance being composed of Fe and inevitable impurities.
鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、さらにNaが平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有することを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。
An iron-based sintered alloy composed of an iron-based sintered alloy surface layer and an iron-based sintered alloy inside,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. Further, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S are contained in a total amount of 0.1 to 3% by mass, with the balance being Fe and inevitable impurities. Having a composition,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. Further, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S are contained in a total amount of 0.1 to 3% by mass, and Na is an average concentration of 0. An iron-based sintered alloy having high surface density and high surface hardness, characterized by containing 0.0001 to 1% by mass and the balance being composed of Fe and inevitable impurities.
鉄基焼結合金表層部と鉄基焼結合金内部とで構成されている鉄基焼結合金であって、
前記鉄基焼結合金内部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、残部がFeおよび不可避不純物からなる組成を有し、
前記鉄基焼結合金表層部は、C:0.1〜0.9質量%、Mo,Ni,CrおよびCuの内の1種または2種以上を合計で0.1〜10質量%を含有し、さらにMn,Si,V,Nb,W,Al,Ti,CaおよびSの内の1種または2種以上を合計で0.1〜3質量%を含有し、さらにKおよびNaの内の1種または2種の合計が平均濃度で0.0001〜1質量%含有し、残部がFeおよび不可避不純物からなる組成を有することを特徴とする表面緻密性および表面硬度の高い鉄基焼結合金。
An iron-based sintered alloy composed of an iron-based sintered alloy surface layer and an iron-based sintered alloy inside,
The iron-based sintered alloy contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr and Cu contain 0.1 to 10% by mass in total. Further, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca and S are contained in a total amount of 0.1 to 3% by mass, with the balance being Fe and inevitable impurities. Having a composition,
The iron-based sintered alloy surface layer portion contains C: 0.1 to 0.9% by mass, and one or more of Mo, Ni, Cr, and Cu contain 0.1 to 10% by mass in total. Further, one or more of Mn, Si, V, Nb, W, Al, Ti, Ca, and S are contained in a total amount of 0.1 to 3% by mass. An iron-based sintered alloy having a high surface density and high surface hardness, characterized in that the total of one or two types is contained in an average concentration of 0.0001 to 1% by mass, and the balance is composed of Fe and inevitable impurities. .
前記鉄基焼結合金表層部の開放気孔率は5%以下であることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11または12記載の表面緻密性および表面硬度の高い鉄基焼結合金。The open porosity of the iron-based sintered alloy surface layer portion is 5% or less, 13. The method according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12. An iron-based sintered alloy with high surface density and surface hardness. 請求項1、2、3、4、5、6、7、8、9、10、11、12または13記載の表面緻密性および表面硬度の高い鉄基焼結合金からなることを特徴とする機械部品。A machine comprising an iron-based sintered alloy having high surface density and high surface hardness according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13. parts. 前記機械部品はスプロケットであることを特徴とする請求項14記載の機械部品。The machine part according to claim 14, wherein the machine part is a sprocket. 前記機械部品は歯車であることを特徴とする請求項14記載の機械部品。The machine part according to claim 14, wherein the machine part is a gear. 前記機械部品はローターであることを特徴とする請求項14記載の機械部品。The machine part according to claim 14, wherein the machine part is a rotor. 前記機械部品はインナーレースであることを特徴とする請求項14記載の機械部品。The machine part according to claim 14, wherein the machine part is an inner race. 前記機械部品はアウターレースであることを特徴とする請求項14記載の機械部品。The machine part according to claim 14, wherein the machine part is an outer race. 成形金型のキャビティ内面に潤滑剤としての硫酸カリウム、亜硫酸カリウム、チオ硫酸カリウム、ドデシル硫酸カリウム、ドデシルベンゼン硫酸カリウム、食用青色1号およびアスコルビン酸硫酸エステルカリウムの内の1種または2種以上からなる硫酸カリウム塩の膜を形成したのち、鉄基焼結合金原料粉末を成形金型のキャビティに充填しプレス成形することにより表面にKを含む圧粉体を作製し、得られた圧粉体を燒結することを特徴とする請求項1、4、7または10記載の表面緻密性および表面硬度の高い鉄基焼結合金の製造方法。From one or more of potassium sulfate, potassium sulfite, potassium thiosulfate, potassium dodecyl sulfate, potassium dodecylbenzene sulfate, edible blue No. 1 and potassium ascorbate sulfate as a lubricant on the inner surface of the mold cavity After forming a potassium sulfate salt film, a powder compact containing K on the surface was prepared by filling the iron-based sintered alloy raw material powder into the mold cavity and press-molding. The method for producing an iron-based sintered alloy having high surface density and high surface hardness according to claim 1, 4, 7, or 10. 成形金型のキャビティ内面に潤滑剤としての硫酸ナトリウム、亜硫酸ナトリウム、チオ硫酸ナトリウム、ドデシル硫酸ナトリウム、ドデシルベンゼン硫酸ナトリウム、食用黄色5号およびアスコルビン酸硫酸エステルナトリウムの内の1種または2種以上からなる硫酸ナトリウム塩の膜を形成したのち、鉄基焼結合金原料粉末を成形金型のキャビティに充填しプレス成形することにより表面にNaを含む圧粉体を作製し、得られた圧粉体を燒結することを特徴とする請求項2、5、8または11記載の表面緻密性および表面硬度の高い鉄基焼結合金の製造方法。From one or more of sodium sulfate, sodium sulfite, sodium thiosulfate, sodium dodecyl sulfate, sodium dodecylbenzene sulfate, edible yellow No. 5 and sodium ascorbate sulfate on the inner surface of the mold cavity After forming a sodium sulfate salt film, the green compact containing Na was formed on the surface by filling the iron-based sintered alloy raw material powder into the mold cavity and press-molding. The method for producing an iron-based sintered alloy having a high surface density and high surface hardness according to claim 2, 5, 8, or 11. 成形金型のキャビティ内面に潤滑剤としての前記硫酸カリウム塩と硫酸ナトリウム塩からなる混合膜を形成したのち、鉄基焼結合金原料粉末を成形金型のキャビティに充填しプレス成形することにより表面にKおよびNaを含む圧粉体を作製し、得られた圧粉体を燒結することを特徴とする請求項3、6、9または12記載の表面緻密性および表面硬度の高い鉄基焼結合金の製造方法。After forming the mixed film of potassium sulfate and sodium sulfate as a lubricant on the inner surface of the cavity of the molding die, the iron-based sintered alloy raw material powder is filled into the cavity of the molding die and press molded. 13. An iron-based baked bond with high surface density and high surface hardness according to claim 3, wherein a green compact containing K and Na is prepared and the obtained green compact is sintered. Gold manufacturing method.
JP2003183803A 2003-06-27 2003-06-27 Iron based sintered alloy having high surface denseness and surface hardness and its production method Withdrawn JP2005015866A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2003183803A JP2005015866A (en) 2003-06-27 2003-06-27 Iron based sintered alloy having high surface denseness and surface hardness and its production method
CA2526886A CA2526886C (en) 2003-06-27 2004-06-24 Iron base sintered alloy having highly densified and hardened surface, and producing method thereof
US10/557,663 US20070081913A1 (en) 2003-06-27 2004-06-24 Iron base sintered alloy having highly densified and hardened surface, and producing method thereof
RU2005132968/02A RU2352670C2 (en) 2003-06-27 2004-06-24 Sintered alloy on basis of iron with high area seal and high surface hardness (versions), and method of its manufacturing (versions)
BRPI0411913-4B1A BRPI0411913B1 (en) 2003-06-27 2004-06-24 Iron base sintered alloy with highly hardened and hardened surface, and method of production thereof
CN2004800181675A CN1813076B (en) 2003-06-27 2004-06-24 Iron base sintered alloy exhibiting high surface densification and high surface hardness, and method for production thereof
PCT/JP2004/008880 WO2005001150A1 (en) 2003-06-27 2004-06-24 Iron base sintered alloy exhibiting high surface densification and high surface hardness, and method for production thereof
ES04746349.2T ES2474159T3 (en) 2003-06-27 2004-06-24 Sintered iron-based alloy that shows high surface densification and high surface hardness, and method for its production
EP04746349.2A EP1640469B1 (en) 2003-06-27 2004-06-24 Iron base sintered alloy exhibiting high surface densification and high surface hardness, and method for production thereof
KR1020057020802A KR101146957B1 (en) 2003-06-27 2004-06-24 Iron base sintered alloy exhibiting high surface densification and high surface hardness, and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183803A JP2005015866A (en) 2003-06-27 2003-06-27 Iron based sintered alloy having high surface denseness and surface hardness and its production method

Publications (1)

Publication Number Publication Date
JP2005015866A true JP2005015866A (en) 2005-01-20

Family

ID=34183753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183803A Withdrawn JP2005015866A (en) 2003-06-27 2003-06-27 Iron based sintered alloy having high surface denseness and surface hardness and its production method

Country Status (1)

Country Link
JP (1) JP2005015866A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105429A1 (en) * 2006-02-15 2007-09-20 Jfe Steel Corporation Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
RU2665651C2 (en) * 2016-12-08 2018-09-03 Сергей Михайлович Романов Romanit-fuvlhch friction composite material and method of production thereof
WO2020009235A1 (en) * 2018-07-05 2020-01-09 日立化成株式会社 Iron-based sintered member, iron-based powder mixture, and method for manufacturing iron-based sintered member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105429A1 (en) * 2006-02-15 2007-09-20 Jfe Steel Corporation Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
KR101101734B1 (en) 2006-02-15 2012-01-05 제이에프이 스틸 가부시키가이샤 Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
RU2665651C2 (en) * 2016-12-08 2018-09-03 Сергей Михайлович Романов Romanit-fuvlhch friction composite material and method of production thereof
WO2020009235A1 (en) * 2018-07-05 2020-01-09 日立化成株式会社 Iron-based sintered member, iron-based powder mixture, and method for manufacturing iron-based sintered member
JPWO2020009235A1 (en) * 2018-07-05 2021-08-02 昭和電工マテリアルズ株式会社 Method for manufacturing iron-based sintered member, iron-based powder mixture, and iron-based sintered member
JP7322880B2 (en) 2018-07-05 2023-08-08 株式会社レゾナック Iron-based sintered member, iron-based powder mixture, and method for producing iron-based sintered member

Similar Documents

Publication Publication Date Title
US5754937A (en) Hi-density forming process
JP5992402B2 (en) Manufacturing method of nitrided sintered component
TW201116351A (en) Metal powder composition
JP2010202980A (en) Sintered metal parts and method for manufacturing the same
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP7141827B2 (en) Powder metal composition for simple machining
JP2005133168A (en) Method for manufacturing compound soft magnetic material having excellent magnetic characteristic, high strength and low core loss
KR101146957B1 (en) Iron base sintered alloy exhibiting high surface densification and high surface hardness, and method for production thereof
JP2011094187A (en) Method for producing high strength iron based sintered compact
JPWO2018216461A1 (en) Manufacturing method of sintered member
JP2005015866A (en) Iron based sintered alloy having high surface denseness and surface hardness and its production method
KR101064429B1 (en) Iron-based powder composition including a silane lubricant
US4474732A (en) Fully dense wear resistant alloy
TW200426226A (en) Powder metal composition and method for producing components thereof
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP2005281732A (en) Soft magnetic sintered alloy having superior surface denseness and accuracy of dimension, and manufacturing method therefor
TW201127521A (en) Method of preparing iron-based components
JP2005015865A (en) Iron based sintered alloy having high surface denseness and surface hardness and its production method
JP2005248304A (en) Stainless steel sintered alloy having excellent surface denseness, surface hardness and corrosion resistance and its production method
JP2006299364A (en) Fe-BASED SINTERED ALLOY
JP3841455B2 (en) Method for producing high density sintered stainless steel
JP2005240153A (en) Sintered alloy of stainless steel having superior surface compactness, surface hardness and corrosion resistance, and manufacturing method therefor
JPS6046170B2 (en) Copper alloy used for liquid phase sintering of iron powder
WO2020241087A1 (en) Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy
JP2005264169A (en) Soft magnetic sintered alloy having excellent surface denseness and dimensional accuracy and production method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905