JPH0711007B2 - Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering - Google Patents

Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering

Info

Publication number
JPH0711007B2
JPH0711007B2 JP63083901A JP8390188A JPH0711007B2 JP H0711007 B2 JPH0711007 B2 JP H0711007B2 JP 63083901 A JP63083901 A JP 63083901A JP 8390188 A JP8390188 A JP 8390188A JP H0711007 B2 JPH0711007 B2 JP H0711007B2
Authority
JP
Japan
Prior art keywords
powder
sio
mgo
iron
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63083901A
Other languages
Japanese (ja)
Other versions
JPH01255604A (en
Inventor
重彰 高城
一男 桜田
律男 岡部
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63083901A priority Critical patent/JPH0711007B2/en
Publication of JPH01255604A publication Critical patent/JPH01255604A/en
Publication of JPH0711007B2 publication Critical patent/JPH0711007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 焼結機械部品などの原料としての粉末冶金用鉄基混合粉
に関し、とくに焼結後の被削性・機械的性質の有利な改
善を図ることについての開発研究の成果を提案して、粉
末冶金の属する技術の分野における活用を目指すもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an iron-based mixed powder for powder metallurgy as a raw material for a sintered machine part, etc., and particularly aims to improve machinability and mechanical properties after sintering advantageously. It proposes the results of development research on this and aims to utilize it in the field of technology to which powder metallurgy belongs.

自動車、精密機械および家庭用電気器具などにおける使
用の度合いが近年来著しく増進しつつある焼結機械部品
は元来、切削加工を省略し得るところに特徴をそなえて
いたが、形状が複雑な場合や高い寸法精度が要求される
場合などにも適用されるに至って、焼結後に穴あけ、孔
繰りのほか、周面や端面の切削、その他溝切りなどの切
削加工が必要とされる。
Sintered machine parts, whose usage in automobiles, precision machinery, and household appliances have increased significantly in recent years, originally had a feature that cutting could be omitted, but when the shape was complicated. Since it has been applied to cases where high dimensional accuracy is required, it is necessary to perform drilling and boring after sintering, cutting of peripheral surfaces and end surfaces, and cutting such as grooving.

ところで焼結鋼材は、溶製鋼材とは違って内部に残存す
る空孔のため上記のような加工の際断続切削になること
に加えて、空孔が保温の役目を果たして熱伝導を阻み、
その結果切削工具の刃先温度が高くなることなどから、
切削工具の寿命が短縮されがちであり被削性の改善が要
望される所以であり、ここに機械的性質との両立がのぞ
まれるのはいうまでもない。
By the way, the sintered steel material, unlike the molten steel material, becomes an intermittent cutting during the above processing because of the holes that remain inside, and in addition, the holes serve as a heat retention and prevent heat conduction,
As a result, the cutting edge temperature of the cutting tool rises,
This is the reason why the cutting tool life tends to be shortened and the machinability is desired to be improved, and it goes without saying that compatibility with mechanical properties is desired here.

(従来の技術) 焼結鋼材の被削性を改善する方法としては、快削成分と
して古くから知られているS,Pb,SeおよびTeをはじめそ
れらの化合物たとえばTaS2,TaSe2,TiSe2およびMoSe2
などを添加する(特開昭48−80409号公報)、BaSO4,BaS
を添加する(特公昭46−39564号公報)、CaSまたはCaSO
4を添加する(特公昭52−16684号公報)ことなどがすで
に開示されている。
(Prior Art) As a method for improving the machinability of a sintered steel material, S, Pb, Se and Te, which have long been known as free-cutting components, and their compounds such as TaS 2 , TaSe 2 , TiSe 2 And MoSe 2
Etc. (JP-A-48-80409), BaSO 4 , BaS
(Japanese Patent Publication No. 46-39564), CaS or CaSO
It has already been disclosed that 4 is added (Japanese Patent Publication No. 52-16684).

(発明が解決しようとする課題) 快削成分のうちSは焼結鋼材に適用しようとすると焼結
の際雰囲気中の水素と化合して硫化水素を発生するた
め、焼結炉の炉内れんがや発熱体を損傷させるだけでな
く、焼結体の寸法が膨張気味になり、しかも機械的強度
の低下が著しいので好ましくない。
(Problems to be solved by the invention) Of the free-cutting components, when S is applied to sintered steel, it combines with hydrogen in the atmosphere during sintering to generate hydrogen sulfide. In addition to damaging the heating element and the heating element, the size of the sintered body tends to expand, and the mechanical strength significantly decreases, which is not preferable.

また同じくPbは、融点が330℃と低いだけでなく鉄中に
全く固溶しないので、焼結鋼材中に均一に分散させるこ
とが困難な上、焼結環境上公害の問題もあるので、これ
もまた好ましくない。
Similarly, since Pb has a low melting point of 330 ° C and does not form a solid solution in iron at all, it is difficult to disperse it uniformly in the sintered steel material, and there is a problem of pollution in the sintering environment. Is also unfavorable.

次にSeやTaSe2などもSと同様焼結中にセレン化水素を
発生させて炉内れんがや発熱体の損傷を招く不利があ
る。
Next, Se and TaSe 2, etc., like S, have the disadvantage that hydrogen selenide is generated during sintering and damages the bricks in the furnace and the heating element.

次にBaS,CaSは吸湿性があり、またBaSO4やCaSO4を用い
ても焼結中にBaSやCaSに変化して吸湿性を帯びるため、
焼結鋼が錆易いという欠点を招く不利がある。
Next, BaS and CaS have hygroscopicity, and even if BaSO 4 or CaSO 4 is used, it changes to BaS or CaS during sintering and becomes hygroscopic.
It has the disadvantage of causing rust in sintered steel.

上記のような問題を有利に解決して、焼結機械部品の機
械的性質を損うことなしに被削性を有利に改善し、あわ
せて焼結中における炉内れんがや発熱体の損傷のほか焼
結製品の錆発生の原因となることのない、粉末冶金用鉄
基混合粉を提案することがこの発明の目的である。
By advantageously solving the above problems, the machinability is advantageously improved without deteriorating the mechanical properties of the sintered mechanical parts, and at the same time, the in-furnace brick and the heating element are not damaged during sintering. Another object of the present invention is to propose an iron-based mixed powder for powder metallurgy that does not cause rusting of sintered products.

(課題を解決するための手段) さて発明者らは、上述した従来の問題を解決するため、
硫化物以外の種々の添加物について検討したところ、切
削性を改善するためには、MgO−SiO2系酸化物がきわめ
て大きな効力を有することを見い出した。そして、MgO
−SiO2系酸化物の中でも、タルクは入手しやすく、コス
ト的にも好適であることに注目するに至った。
(Means for Solving the Problem) In order to solve the above-mentioned conventional problems, the inventors have
As a result of studying various additives other than sulfides, it was found that MgO-SiO 2 system oxides have an extremely large effect to improve machinability. And MgO
Among the —SiO 2 -based oxides, it has come to the attention that talc is easy to obtain and suitable in terms of cost.

ところが、タルクの粉末を単に鉄系粉末に混合したのみ
では、焼結体の切削は容易になるが、機械的強度が、ど
うしても低下してしまうという問題に直面した。発明者
らが詳細にこの強度低下の原因を調査した結果、タンク
に含まれる結晶水が大きく悪影響していることを見出し
た。すなわち、タルクは一般に化学式3MgO・4SiO2・H2
Oで表わされるように、重量で(以下同様)約5%の結
晶水を含有しており、この結晶水は、焼結のための昇温
時、600〜1000℃付近で分解・離脱するが、この温度域
は、鉄粉が炭素源として添加された黒鉛と反応を始める
領域であり、結晶水の存在または離脱に起因して、炭素
の部分的なロスや、ガス発生による空孔の増加などがひ
きおこされると考えられ、結果的に焼結体強度が低下す
る。
However, if the powder of talc is simply mixed with the iron-based powder, the sintered body can be easily cut, but the mechanical strength is inevitably lowered. As a result of a detailed investigation by the inventors of the cause of this decrease in strength, it was found that the water of crystallization contained in the tank had a great adverse effect. That is, talc generally has a chemical formula of 3MgO / 4SiO 2 H 2
As represented by O, it contains about 5% by weight (same below) of water of crystallization, and this water of crystallization decomposes and desorbs at around 600 to 1000 ° C. when the temperature is raised for sintering. , This temperature range is an area where iron powder starts to react with graphite added as a carbon source, and due to the presence or absence of water of crystallization, a partial loss of carbon or an increase in vacancies due to gas generation. It is considered that the above causes, and as a result, the strength of the sintered body decreases.

このような弊害を防ぐため、発明者らが鋭意検討した結
果、タルクと同等のMgO/SiO2モル比程度のMgO−SiO2
合酸化物であっても、結晶水を持たない組成、すなわち
無水のタルクであれば、上記の問題が解決されることを
見出した。さらにはこの無水タルクの粒度を適正にする
ことによって、切削性改善添加物を加えても、ほとんど
焼結体の機械的特性が劣化しない条件を見出すに至っ
た。
In order to prevent such adverse effects, the inventors of the present invention have diligently studied, and even a MgO / SiO 2 composite oxide having a MgO / SiO 2 molar ratio of about the same as talc, a composition having no water of crystallization, that is, anhydrous It has been found that the above problems can be solved with talc. Furthermore, by adjusting the particle size of this anhydrous talc, it has been found that the mechanical properties of the sintered body are hardly deteriorated even when the machinability improving additive is added.

以上の知見に基づき上記の目的は次の事項を骨子とする
構成によって有利に成就される。
Based on the above findings, the above-mentioned object can be advantageously achieved by the structure having the following points as the main points.

1. モル比でMgO/SiO2の値が0.5以上1.0未満の範囲にあ
り、かつ結晶水を持たないMgO−SiO2系複合酸化物より
なる粉末を、鉄系原料粉末に0.1〜1.5wt%の割合で配合
した組成に成ることを特徴とする、焼結後の被削性と機
械的性質に優れる、粉末冶金用鉄基混合粉。
1. 0.1 to 1.5 wt% of a powder of MgO-SiO 2 composite oxide having a molar ratio of MgO / SiO 2 in the range of 0.5 or more and less than 1.0 and having no water of crystallization to an iron-based raw material powder. An iron-based mixed powder for powder metallurgy, which is excellent in machinability and mechanical properties after sintering, characterized in that it has a composition blended in the following ratio.

2. モル比でMgO/SiO2の値が0.5以上1.0未満の範囲にあ
り、かつ結晶水を持たないMgO−SiO2系複合酸化物より
なる平均粒径8〜20μmの粉末を、鉄系原料粉末に0.1
〜1.5wt%の割合で配合した組成に成ることを特徴とす
る、焼結後の被削性と機械的性質に優れる、粉末冶金用
鉄基混合粉。
2. An iron-based raw material is a powder of MgO / SiO 2 having a molar ratio of 0.5 to less than 1.0 and having an average particle size of 8 to 20 μm, which is made of a MgO-SiO 2 -based composite oxide having no crystallization water. 0.1 to powder
An iron-based mixed powder for powder metallurgy having excellent machinability and mechanical properties after sintering, characterized by having a composition blended at a ratio of up to 1.5 wt%.

3. モル比でMgO/SiO2の値が0.5以上1.0未満の範囲にあ
り、かつ結晶水を持たないMgO−SiO2系複合酸化物より
なる平均粒径8〜20μmの粉末を、合金成分粉末ととも
に、鉄系原料粉末の粒子表面へ,オイル結合と潤滑剤と
の混合加熱体を用いて、固着して成ることを特徴とす
る、焼結後の被削性と機械的性質に優れる、粉末冶金用
鉄基混合粉。
3. A powder having an average particle size of 8 to 20 μm, which is made of a MgO-SiO 2 composite oxide having a molar ratio of MgO / SiO 2 of 0.5 or more and less than 1.0 and having no water of crystallization, is used as an alloy component powder. In addition, the powder is excellent in machinability and mechanical properties after sintering, characterized by being adhered to the particle surface of the iron-based raw material powder by using a mixed heating body of an oil bond and a lubricant. Iron-based mixed powder for metallurgy.

4. モル比でMgO/SiO2の値が0.5以上1.0未満の範囲にあ
り、かつ結晶水を持たないMgO−SiO2系複合酸化物より
なる平均粒径8〜20μmの粉末と、ガラス粉末とを、鉄
系原料粉末に配合して成ることを特徴とする、焼結後の
被削性と機械的性質に優れる、粉末冶金用鉄基混合粉。
4. A powder having a molar ratio of MgO / SiO 2 of 0.5 or more and less than 1.0 and having an average particle size of 8 to 20 μm, which is made of a MgO-SiO 2 composite oxide having no water of crystallization, and a glass powder. An iron-based mixed powder for powder metallurgy, which is excellent in machinability and mechanical properties after sintering, characterized by being added to an iron-based raw material powder.

5. モル比でMgO/SiO2の値が0.5以上1.0未満の範囲にあ
り、かつ結晶水を持たないMgO−SiO2系複合酸化物より
なる平均粒径8〜20μmの粉末と、ガラス粉末とを、合
金成分粉末とともに、鉄系原料粉末の粒子面表へ、オイ
ル結合剤と潤滑剤との混合加熱体を用いて、固着してな
ることを特徴とする、焼結後の被削性と機械的性質に優
れる、粉末冶金用鉄基混合粉。
5. A powder having a molar ratio of MgO / SiO 2 in the range of 0.5 or more and less than 1.0 and having an average particle size of 8 to 20 μm, which is made of a MgO-SiO 2 composite oxide having no crystal water, and a glass powder With the alloy component powder, to the particle surface of the iron-based raw material powder, by using a mixed heating body of an oil binder and a lubricant, is adhered, the machinability after sintering, and Iron-based mixed powder for powder metallurgy with excellent mechanical properties.

以上のとおりである。That is all.

ところで溶製鋼材における被削性改善には次の3種に分
類される手法が知られている。
By the way, the methods classified into the following three types are known for improving machinability in molten steel.

(1) ぜい化作用‥‥‥添加成分S,P,N (2) 工具潤滑作用‥‥添加成分Pb,Bi (3) 工具保護作用‥‥添加成分Ca 実際には上掲各元素を単独で使用する場合の他、他の成
分と複合して使用することも多いがこれらの作用のう
ち、ぜい化作用による被削性改善法については、焼結鋼
材に適用したとき焼結鋼材の著しい強度低下をもたら
し、とくにP,Nは鉄粉粒子を硬化させて変形しにくくす
るので、原料粉の圧縮性の低下を来す点でも適合しない
のは明らかである。
(1) Embrittlement ..... Additive components S, P, N (2) Tool lubrication ..... Additive components Pb, Bi (3) Tool protection ... Additive component Ca Actually each of the above elements alone In addition to the case where it is used in the above, it is often used in combination with other components. Among these actions, the method of improving machinability by embrittlement action is It causes a marked decrease in strength, and especially P and N harden the iron powder particles to make them less likely to be deformed, so it is obvious that they are not suitable in terms of the decrease in compressibility of the raw material powder.

しかるにすでに触れたとおり焼結鋼材は溶製鋼材と比較
して熱伝導性が悪いので、切削速度の如何によって異な
るものの、切削時の刃先温度は溶製鋼材の場合よりも60
〜150℃程度高目となることから被削性改善法としては
工具潤滑作用さらには工具保護作用を示す添加成分が好
ましい。とは云えこれらの作用を目指した従来の添加成
分にはさきに述べた不利があり焼結鋼材の場合にはやは
り適合しない。
However, as already mentioned, sintered steel has poorer thermal conductivity than molten steel, so the cutting edge temperature during cutting is 60% higher than that of molten steel, although it depends on the cutting speed.
As the machinability-improving method, an additive component exhibiting a tool lubrication action and a tool protection action is preferable because it is about 150 ° C. higher. However, the conventional additive components aiming at these effects have the above-mentioned disadvantages and are not suitable in the case of sintered steel.

そこで発明者らは、焼結時にも焼結雰囲気に対し安定な
被削性改善添加物として種々の成分について検討した結
果、上記した無水のMgOとSiO2との複合酸化物粉末並び
にこれとガラス粉との混合粉が優れていることを見い出
したものである。
Therefore, the inventors examined various components as a machinability-improving additive that is stable to the sintering atmosphere even during sintering, and as a result, the above-mentioned anhydrous MgO and SiO 2 composite oxide powder, and this and glass It was found that the mixed powder with the powder is excellent.

(作 用) 前述したように焼結鋼材は、溶製鋼材よりも切削時に工
具の刃先温度が60〜150℃高くなることから切削工具の
短命化を招くが、上記組成のMgO−SiO2系複合酸化物を
添加すると、このMgO−SiO2系複合酸化物がFeと反応し
て、MgO−SiO2−FeO系の複合酸化物を生成し、比較的低
融点となるため切削温度において溶融し、これが切削時
に切削工具表面を保護、潤滑すると共に、切削工具と焼
結鋼とのCの拡散反応を阻止することによって切削工具
の組成変化を防ぐため、切削工具寿命の延長化が図られ
るものと推察される。
(Operation) As mentioned above, the sintered steel material causes the cutting tool to have a shorter life because the cutting edge temperature of the tool becomes 60 to 150 ° C higher during cutting than the molten steel material, but the MgO-SiO 2 system of the above composition is used. the addition of compound oxide, the MgO-SiO 2 composite oxide reacts with Fe, to produce a composite oxide of MgO-SiO 2 -FeO system, melted at a cutting temperature for a relatively low melting point , Which protects and lubricates the surface of the cutting tool during cutting, and also prevents the composition change of the cutting tool by preventing the diffusion reaction of C between the cutting tool and the sintered steel, thereby prolonging the life of the cutting tool. It is presumed that.

しかもMgO−SiO2系複合酸化物は、元来比較的軟かい
(モース硬さ1〜4)のに加え、減摩作用や潤滑作用に
富むため、鉄粉成形時には潤滑剤としても働き、鉄粉の
圧縮性の低下や焼結時における寸法変化などの悪影響が
少ないという利点もある。
Moreover, since the MgO-SiO 2 -based composite oxide is originally relatively soft (Mohs hardness of 1 to 4) and has a rich anti-friction and lubrication function, it also functions as a lubricant during iron powder molding, There is also an advantage that adverse effects such as reduction of powder compressibility and dimensional change during sintering are small.

かかるMgO−SiO2系複合酸化物のうち、MgO/SiO2のモル
比が0.75で、化学式3MgO・4SiO2・H2Oで表わされるタ
ルクはとくに入手が容易で、コスト的にも有利である。
ところがその反面、前述のように結晶水が焼結時に悪影
響を及ぼすので、結晶水をもたない無水のタルクを用い
る。
Among the MgO-SiO 2 composite oxides, talc represented by the chemical formula 3MgO · 4SiO 2 · H 2 O, which has a MgO / SiO 2 molar ratio of 0.75, is particularly easy to obtain and advantageous in terms of cost. .
On the other hand, however, as described above, since water of crystallization adversely affects sintering, anhydrous talc having no water of crystallization is used.

無水タルクを得るにはタルクを大気中1200℃程度で1時
間程度焼成すると良い。こうして結晶水は2wt%程度ま
で脱水されれば事実上へい害を伴うことはない。
To obtain anhydrous talc, it is advisable to bake talc in the air at about 1200 ° C. for about 1 hour. In this way, if the water of crystallization is dehydrated to about 2 wt%, there is virtually no harm.

この無水のタルクは、化学量論的には3MgO・4SiO2で、
モル比MgO/SiO2は0.75であるが、天然のタルクを原料と
することを考え、この組成のばらつきを見込むとモル比
でMgO/SiO2の値が0.5以上1.0未満の範囲をこの発明の適
合範囲とする。
This anhydrous talc is stoichiometrically 3MgO.4SiO 2 ,
The molar ratio MgO / SiO 2 is 0.75, but considering that natural talc is used as the raw material, and considering the variation in this composition, the value of the molar ratio MgO / SiO 2 is 0.5 or more and less than 1.0. Make it within the applicable range.

この範囲内で十分な効果があることは、のちの実施例で
実証する。なお、無水化したタルクは吸湿して結晶水を
再び持つようになりやすいので、無水タルク粉末や、そ
れを用いた混合粉末の貯蔵には、吸湿しないよう深冷分
離で得たN2等の不活性ガス中または除湿した空気中での
保管、加熱状態での保管等の注意が必要である。
A sufficient effect within this range will be demonstrated in later examples. Incidentally, since anhydrous talc tends to absorb moisture and have water of crystallization again, anhydrous talc powder or mixed powder using it is stored in a deep-separated N 2 or the like so as not to absorb moisture. Care must be taken in storage in inert gas or dehumidified air, storage in a heated state, etc.

つぎに、複合酸化物の粒度を、平均粒径で8〜20μmと
する必要のあることの理由について述べる。
Next, the reason why the average particle size of the composite oxide needs to be 8 to 20 μm will be described.

平均粒径は、たとえばマイクロトラック法によるメジア
ン径などを用いるが、これが8μmよりも細かすぎる
と、吸湿しやすく、結晶水が回復してしまって、焼結時
に機械的特性が劣化する。一方、平均粒径が20μmを超
えると、焼結体中に均一微細に分散しなくなるので、切
削性改善効果が減少するし、大きな介在物となるから、
焼結体の疲労強度の面からも好ましくない。したがっ
て、複合酸化物の粒度は、平均粒径で8〜20μmとす
る。
As the average particle diameter, for example, a median diameter according to the Microtrac method is used. If the average particle diameter is too finer than 8 μm, it easily absorbs moisture and crystal water recovers, resulting in deterioration of mechanical properties during sintering. On the other hand, if the average particle size exceeds 20 μm, it will not be uniformly and finely dispersed in the sintered body, so the machinability improvement effect will decrease and it will become a large inclusion.
It is not preferable in terms of fatigue strength of the sintered body. Therefore, the average particle size of the composite oxide is 8 to 20 μm.

またすでに述べた切削性改善用の複合酸化物粉末を鉄系
原料粉末に混合する際、偏析によって焼結体中に大きな
介在物が残って欠陥となることを防ぐためには、バイン
ダーを用いた偏析防止処理を施すことが有用である。す
なわち、オイル結合剤と潤滑剤との混合加熱体の利用で
あり、ここにオイル結合剤としては植物油または樹脂酸
であって、たとえば大豆油、米糠油、スピンドル油、オ
レイン酸であり、これら2種類以上が調合されたものも
含め、また潤滑剤としてはステアリン酸亜鉛などの金属
石鹸、ステアリン酸などの高級脂肪酸またはワックス粉
末など一般に用いられる粉末冶金用潤滑剤を指す。
When mixing the complex oxide powder for improving machinability described above with the iron-based raw material powder, in order to prevent large inclusions from remaining in the sintered body due to segregation and causing defects, segregation using a binder It is useful to apply preventive treatment. That is, it is the use of a mixed heating body of an oil binder and a lubricant, where the oil binder is vegetable oil or resin acid, such as soybean oil, rice bran oil, spindle oil, oleic acid. Including those prepared by mixing more than one kind, the lubricant refers to a commonly used lubricant for powder metallurgy such as metal soap such as zinc stearate, higher fatty acid such as stearic acid or wax powder.

混合加熱体というのは、潤滑剤とオイル結合剤とが加熱
されて一体化したものを指称する。
The mixed heating body refers to the one in which the lubricant and the oil binder are heated and integrated.

この混合加熱体により、添加酸化物粉末が原料鉄粉粒子
表面に良く分散して固着されるから、焼結体中に大きな
介在物となって、疲れ破壊の起点となるなどの弊害が避
けられ、機械的特性が向上する。
With this mixed heating body, the added oxide powder is well dispersed and fixed on the surface of the raw material iron powder particles, so that adverse effects such as large inclusions in the sintered body and the origin of fatigue fracture can be avoided. , The mechanical properties are improved.

またこの混合加熱体は、無水のMgO−SiO2系酸化物の一
部を被覆するから、吸湿により該酸化物が結晶水を回復
する問題の解決にも寄与する。
Further, since this mixed heating body covers a part of the anhydrous MgO—SiO 2 type oxide, it contributes to the solution of the problem that the oxide recovers water of crystallization due to moisture absorption.

さらに切削性改善用の添加粉末として、すでに述べたMg
O−SiO2系複合酸化物粉末に加えて、ガラス粉末をさら
に用いて一層の切削性向上効果が得られる。
Furthermore, as an additive powder for improving the machinability, the previously mentioned Mg
In addition to the O—SiO 2 composite oxide powder, glass powder is further used to further improve the machinability.

ここにガラス粉末とは、ソーダ石灰ガラス、ほうけい酸
ガラス、鉛ガラスなどの粉末をいう。ソーダ石灰ガラ
ス、ほうけい酸ガラス、鉛ガラスなどのいわゆるガラス
も、種類によって異なるが溶融温度が1350〜1800℃であ
り、溶融温度より低い温度で徐々に軟化しはじめるため
にMgO−SiO2系複合酸化物と同様に切削時にはガラスが
切削工具面に付着し、切削工具を保護、潤滑し、かつ切
削工具と焼結鋼との炭素の拡散反応を防止して切削工具
寿命を大幅に向上させるものと思われる。
Here, the glass powder refers to powder of soda lime glass, borosilicate glass, lead glass and the like. So-called glass such as soda lime glass, borosilicate glass, lead glass, etc. also has a melting temperature of 1350 to 1800 ° C depending on the type, but since it begins to soften gradually below the melting temperature, MgO-SiO 2 composite Like oxides, glass adheres to the cutting tool surface during cutting, protects and lubricates the cutting tool, and prevents the diffusion reaction of carbon between the cutting tool and the sintered steel to significantly improve the cutting tool life. I think that the.

またMgO−SiO2系複合酸化物粉末とガラス粉末とを同時
に添加することにより切削工具に付着する酸化物液相の
種類が多くなって、切削条件の広い範囲にわたり切削工
具の寿命を向上させることができる。
Further, by simultaneously adding MgO-SiO 2 -based composite oxide powder and glass powder, the number of types of oxide liquid phases adhering to the cutting tool is increased, and the life of the cutting tool is improved over a wide range of cutting conditions. You can

上述したとおり、MgO−SiO2系複合酸化物とガラスと
は、作用効果的に共通する面があるのでこれらを併用す
る場合は合計量においてMgO−SiO2系複合酸化物単独の
場合と同様に0.1wt%〜1.5wt%とする。
As described above, the MgO-SiO 2 -based composite oxide and the glass have a common face in terms of action and effect, so when these are used together, the total amount is the same as in the case of the MgO-SiO 2 -based composite oxide alone. 0.1 wt% to 1.5 wt%

以上の快削成分は、何れも焼結の際、熱的に安定なMgO
やSiO2等の酸化物を主成分としているため、焼結時に有
害なガスを発生することがなく、焼結炉の炉内れんがや
発熱体あるいは配管類を損傷させることはない。
All of the above free-cutting components are thermally stable MgO during sintering.
Since it contains oxides such as SiO 2 and SiO 2 as a main component, it does not generate harmful gas during sintering, and does not damage the bricks in the furnace of the sintering furnace, the heating element, or the pipes.

またこのような併用の場合でも複合酸化物およびガラス
粉末の偏析を、さきに触れたようにバインダーによって
防止することが有用である。
Even in the case of such combined use, it is useful to prevent the segregation of the composite oxide and the glass powder by the binder as mentioned above.

以上何れの場合にあっても複合酸化物粉末、またさらに
これとガラス粉末との混合粉末は、鉄系原料粉末との混
合物中に占める重量割合いにて0.1〜1.5wt%の範囲を必
要とし、また混合加熱体を用いるときその配合量につい
ては同様に0.1wt%〜1.5wt%が好ましい。
In any of the above cases, the composite oxide powder, and further, the mixed powder of this and the glass powder requires a range of 0.1 to 1.5 wt% in the weight ratio in the mixture with the iron-based raw material powder. When the mixed heating body is used, the blending amount is preferably 0.1 wt% to 1.5 wt%.

(実施例) 実施例1 重量割合で31.7%MgO−61.8%SiO2組成のタルク粉末D
に、さらに試薬のMgOまたはSiO2を種々の割合で混合し
て大気中1200℃で1時間焼結し、表1に示す組成になる
4種(記号A〜D)のMgO−SiO2系複合酸化物を準備しM
gO/SiO2モル比の影響を調べた。
(Example) Example 1 Talc powder D having a composition of 31.7% MgO-61.8% SiO 2 by weight.
In addition, MgO or SiO 2 as a reagent is mixed at various ratios and sintered at 1200 ° C. for 1 hour in the air, and four kinds of MgO-SiO 2 composites having the compositions shown in Table 1 (symbols A to D) are obtained. Prepare the oxide M
The effect of the gO / SiO 2 molar ratio was investigated.

これらのMgO−SiO2系複合酸化物を粉砕、空気分級し
て、平均粒径(マイクロトラック法によるメジアン径;
以下同様)11〜15μmとし、それぞれ、アトマイズ鉄粉
(−80メッシュ)に0.5wt%加えた。さらに天然黒鉛粉
を0.5wt%、電解Cu粉を2.0wt%添加して混合したのち固
体潤滑剤としてステアリン酸亜鉛を該混合物に対し1.0w
t%添加混合した。
These MgO-SiO 2 composite oxides were crushed and classified by air to obtain an average particle diameter (median diameter by Microtrac method;
The same shall apply hereinafter) 11 to 15 μm, and 0.5 wt% was added to each atomized iron powder (-80 mesh). Furthermore, 0.5 wt% of natural graphite powder and 2.0 wt% of electrolytic Cu powder were added and mixed, and then zinc stearate as a solid lubricant was added in an amount of 1.0 w
t% was added and mixed.

かような混合粉から、それぞれ圧粉密度6.9g/cm3のJSPM
標準引張試験用の試験片および切削試験用の内径20mm、
外径60mm、高さ30mmのリング試験片を作製し、ついで流
量4/minの分解アンモニアガス雰囲気中で600℃、30m
inの脱ろう後、1250℃で60minの焼結を施した。焼結し
た酸化物粉末が吸湿するのを防ぐため、上記のテストは
すべて1日のうちに行なった。
From such mixed powder, each of the JSPM with a green density of 6.9 g / cm 3
Test piece for standard tensile test and inner diameter 20 mm for cutting test,
A ring test piece with an outer diameter of 60 mm and a height of 30 mm was prepared, and then 600 ° C, 30 m in a decomposed ammonia gas atmosphere with a flow rate of 4 / min.
After dewaxing in, sintering was performed at 1250 ° C. for 60 minutes. All of the above tests were performed within one day to prevent the sintered oxide powder from absorbing moisture.

また、比較のため、 D:上記酸化物のかわりに、結晶水をもつ通常のタルク粉
末(MgO31.7%、SiO261.8%、Al2O30.2%、CaO0.2%、F
eO0.9%;MgO/SiO2モル比0.76)を平均粒径12μmとし
て、0.5%加えた場合と、 E:酸化物を添加しない場合と の試験も行なった。
For comparison, D: Ordinary talc powder with water of crystallization instead of the above oxides (MgO 31.7%, SiO 2 61.8%, Al 2 O 3 0.2%, CaO 0.2%, F
Tests were also conducted with an average particle size of 12 μm, eO 0.9%; MgO / SiO 2 molar ratio 0.76), with 0.5% addition and with E: no oxide addition.

かくして得られた各焼結体の引張強さならびに切削工具
の横逃面摩耗量および焼結体の表面粗さについて調べた
結果を、表2に示す。
Table 2 shows the results of examining the tensile strength of each of the thus obtained sintered bodies, the lateral flank wear amount of the cutting tool, and the surface roughness of the sintered body.

ここに横逃面摩耗量と表面粗さを調べた切削試験の切削
条件は次のとおりである。
The cutting conditions of the cutting test in which the amount of lateral flank wear and the surface roughness are examined are as follows.

切込み‥‥‥‥1.0mm 送り‥‥‥‥‥0.10mm/rev 切削速度‥‥‥200m/min 切削距離‥‥‥1272m 切削工具‥‥‥超硬JIS P10種 表2から、複合酸化物粉を加えた試料A〜Dは、加えな
いEにくらべ、工具摩耗量や表面粗さがいずれも改善さ
れているが、一方、強度は、Eにくらべ、この発明によ
るA〜Cは低下が少なく、好ましいのに反し、結晶水を
もつタルクを用いたDは相当低下した。
Depth of cut ‥‥‥‥‥‥‥‥‥‥‥‥‥ 0.10mm / rev Cutting speed ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ From Table 2, Samples A to D to which the complex oxide powder was added have improved tool wear amount and surface roughness as compared with E not added, while the strength is higher than that of E. Contrary to the favorable results of A to C according to (4), which is preferable, D of talc having water of crystallization was considerably decreased.

実施例2 実施例1のMgO−SiO2系酸化物粉末B(MgO/SiO2モル比
0.76、平均粒径12μm)を、切削性改善添加物として用
い、実施例1と同様の鉄粉、銅粉、潤滑剤の配合で、同
様の試験を行なったが、粉末Bの添加量を変化させ添加
量の影響を調べた。
MgO-SiO 2 system of Example 2 Example 1 oxide powder B (MgO / SiO 2 molar ratio
0.76, average particle size 12 μm) was used as a machinability improving additive, and the same test was performed with the same iron powder, copper powder, and lubricant as in Example 1, but the addition amount of powder B was changed. Then, the effect of the added amount was investigated.

結果を表3に示す。The results are shown in Table 3.

表3から明らかなように、切削性と強度とのかね合い
で、添加量0.1〜1.5wt%が必要である。
As is clear from Table 3, the addition amount is required to be 0.1 to 1.5 wt% because of the balance between machinability and strength.

実施例3 実施例1のMgO−SiO2系酸化物粉末B(MgO/SiO2モル比
0.76)を切削性改善添加物として用いたが、粉砕と空気
分級の選択により、平均粒径を変化させた。試験は実施
例1と同様に行なって粒度の影響を評価した。結果を表
4に示す。
MgO-SiO 2 system of Example 3 Example 1 oxide powder B (MgO / SiO 2 molar ratio
0.76) was used as a machinability improving additive, but the average particle size was changed by crushing and selecting air classification. The test was conducted in the same manner as in Example 1 to evaluate the effect of particle size. The results are shown in Table 4.

焼結体の強度の観点からは、平均粒径8〜20μmの範囲
が好結果を得ている。
From the viewpoint of the strength of the sintered body, good results have been obtained in the range of the average particle size of 8 to 20 μm.

実施例4 実施例1のMgO−SiO2系酸化物粉末B(MgO/SiO2モル比
0.76、平均粒系12μm)と併せて、73%SiO2−13%Na2O
−10%CaO−4%MgO組成のソーダガラス粉末(平均粒系
17μm)を、切削性改善添加物として用い、実施例1と
同様の鉄粉、銅粉、潤滑剤の配合で、同様の試験を行な
ったが、粉末Bの添加量は0.5%とし、ソーダガラス粉
末の添加量を変化させガラス複合添加の影響を調べた。
結果を表5に示す。
MgO-SiO 2 system of Example 4 Example 1 oxide powder B (MgO / SiO 2 molar ratio
0.76, average grain size 12 μm), 73% SiO 2 -13% Na 2 O
Soda glass powder with -10% CaO-4% MgO composition (average grain size)
(17 μm) as a machinability improving additive, and the same test as in Example 1 was conducted with the same iron powder, copper powder and lubricant, but the addition amount of powder B was 0.5% and soda glass was used. The effect of glass composite addition was investigated by changing the amount of powder added.
The results are shown in Table 5.

明らかに、MgO−SiO2系酸化物とガラスとの複合添加に
よって、一層の切削性改善がはかられている。ただし、
合計添加量が1.5%を超えると機械的強度の劣化が著し
い。
Obviously, the combined addition of MgO-SiO 2 based oxides and glass, are grave is further machinability improvement. However,
If the total amount added exceeds 1.5%, the mechanical strength deteriorates significantly.

実施例5 バインダー添加の影響を検討するため、実施例4におけ
るソーダガラス無添加の場合、およびソーダガラス0.5
%添加の場合と同一の条件の試験を標準とし、これら
に、それぞれ、混合粉末の状態でバインダー添加による
偏析防止処理を行ない、その効果をたしかめた。すなわ
ち、実施例4における、成形に供する混合粉末(鉄粉、
銅粉、黒鉛粉、切削性改善添加粉およびステアリン酸亜
鉛)に、さらにオレイン酸を0.3%添加し、混合し、105
℃に加熱し、冷却した。次に実施例1と同様に試験片を
作製し、焼結を施した。結果を表6に示す。
Example 5 In order to examine the effect of adding a binder, the case of adding no soda glass in Example 4 and 0.5 soda glass
As a standard, a test under the same conditions as in the case of addition of% was made standard, and each of them was subjected to segregation prevention treatment by addition of a binder in the state of mixed powder, and its effect was confirmed. That is, the mixed powder (iron powder,
Copper powder, graphite powder, machinability-improving powder and zinc stearate), 0.3% of oleic acid was further added and mixed.
Heated to ° C and cooled. Then, a test piece was prepared and sintered in the same manner as in Example 1. The results are shown in Table 6.

表6に示されたとおり、バインダー添加により、切削性
と機械的強度がともに改良され、好ましい実施態様であ
る。
As shown in Table 6, addition of the binder improves both machinability and mechanical strength, which is a preferred embodiment.

(発明の効果) 以上述べたように、この発明に従う粉末冶金用鉄基混合
粉は、焼結時における焼結炉内れんが及び発熱体の損傷
を起こすことなく、焼結後の寸法変化、機械的性質を従
来の鉄粉と同等に保ちながら、被削性に優れた焼結機械
部品を得ることができその効果は多大である。
(Effects of the Invention) As described above, the iron-based mixed powder for powder metallurgy according to the present invention does not cause damage to the brick and the heating element in the sintering furnace at the time of sintering, and the dimensional change after sintering and mechanical It is possible to obtain a sintered machine part having excellent machinability while maintaining the same mechanical properties as conventional iron powder, and the effect is great.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】モル比でMgO/SiO2の値が0.5以上1.0未満の
範囲にあり、かつ結晶水を持たないMgO−SiO2系複合酸
化物よりなる粉末を、鉄系原料粉末に0.1〜1.5wt%の割
合で配合した組成に成ることを特徴とする、焼結後の被
削性と機械的性質に優れる、粉末冶金用鉄基混合粉。
1. A powder of an MgO-SiO 2 composite oxide having a molar ratio of MgO / SiO 2 of 0.5 or more and less than 1.0 and having no water of crystallization is added to an iron-based raw material powder in an amount of 0.1 to An iron-based mixed powder for powder metallurgy, which has a composition blended at a ratio of 1.5 wt% and is excellent in machinability and mechanical properties after sintering.
【請求項2】モル比でMgO/SiO2の値が0.5以上1.0未満の
範囲にあり、かつ結晶水を持たないMgO−SiO2系複合酸
化物よりなる平均粒径8〜20μmの粉末を、鉄系原料粉
末に0.1〜1.5wt%の割合で配合した組成に成ることを特
徴とする、焼結後の被削性と機械的性質に優れる、粉末
冶金用鉄基混合粉。
2. A powder having a molar ratio of MgO / SiO 2 in the range of 0.5 or more and less than 1.0 and having an average particle size of 8 to 20 μm, which is made of a MgO—SiO 2 composite oxide having no water of crystallization, An iron-based mixed powder for powder metallurgy having excellent machinability after sintering and mechanical properties, characterized by having a composition of 0.1 to 1.5 wt% mixed with iron-based raw material powder.
【請求項3】モル比でMgO/SiO2の値が0.5以上1.0未満の
範囲にあり、かつ結晶水を持たないMgO−SiO2系複合酸
化物よりなる平均粒径8〜20μmの粉末を、合金成分粉
末とともに、鉄系原料粉末の粒子表面へ、オイル結合剤
と潤滑剤との混合加熱体を用いて、固着して成ることを
特徴とする、焼結後の被削性と機械的性質に優れる、粉
末冶金用鉄基混合粉。
3. A powder having a molar ratio of MgO / SiO 2 in the range of 0.5 or more and less than 1.0 and having an average particle size of 8 to 20 μm, which is made of a MgO—SiO 2 composite oxide having no water of crystallization, Machinability and mechanical properties after sintering, characterized by being adhered to the particle surface of the iron-based raw material powder together with the alloy component powder by using a mixed heating body of an oil binder and a lubricant. Excellent iron-based mixed powder for powder metallurgy.
【請求項4】モル比でMgO/SiO2の値が0.5以上1.0未満の
範囲にあり、かつ結晶水を持たないMgO−SiO2系複合酸
化物よりなる平均粒径8〜20μmの粉末と、ガラス粉末
とを、鉄系原料粉末に配合して成ることを特徴とする、
焼結後の被削性と機械的性質に優れる、粉末冶金用鉄基
混合粉。
Value of 4. The MgO / SiO 2 molar ratio is in the range of less than 0.5 and less than 1.0, and a powder having an average particle size of 8~20μm consisting MgO-SiO 2 composite oxide having no water of crystallization, A glass powder and an iron-based raw material powder, characterized by comprising,
Iron-based mixed powder for powder metallurgy that excels in machinability and mechanical properties after sintering.
【請求項5】モル比でMgO/SiO2の値が0.5以上1.0未満の
範囲にあり、かつ結晶水を持たないMgO−SiO2系複合酸
化物よりなる平均粒径8〜20μmの粉末と、ガラス粉末
とを、合金成分粉末とともに、鉄系原料粉末の粒子表面
へ、オイル結合剤と潤滑剤との混合加熱体を用いて、固
着してなることを特徴とする、焼結後の被削性と機械的
性質に優れる、粉末冶金用鉄基混合粉。
Value of 5. The MgO / SiO 2 molar ratio is in the range of less than 0.5 and less than 1.0, and a powder having an average particle size of 8~20μm consisting MgO-SiO 2 composite oxide having no water of crystallization, Glass powder and alloy component powder are adhered to the particle surface of the iron-based raw material powder by using a mixed heating body of an oil binder and a lubricant, and are machined after sintering. Iron-based mixed powder for powder metallurgy with excellent properties and mechanical properties.
JP63083901A 1988-04-05 1988-04-05 Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering Expired - Fee Related JPH0711007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63083901A JPH0711007B2 (en) 1988-04-05 1988-04-05 Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63083901A JPH0711007B2 (en) 1988-04-05 1988-04-05 Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering

Publications (2)

Publication Number Publication Date
JPH01255604A JPH01255604A (en) 1989-10-12
JPH0711007B2 true JPH0711007B2 (en) 1995-02-08

Family

ID=13815530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63083901A Expired - Fee Related JPH0711007B2 (en) 1988-04-05 1988-04-05 Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering

Country Status (1)

Country Link
JP (1) JPH0711007B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135566A (en) * 1987-09-30 1992-08-04 Kawasaki Steel Corporation Iron base powder mixture and method
JP2763826B2 (en) * 1990-10-18 1998-06-11 日立粉末冶金株式会社 Sintered alloy for valve seat
JP2009242887A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Iron-based powdery mixture
JP5733861B2 (en) 2008-12-22 2015-06-10 ホガナス アクチボラグ (パブル) Machinability improving composition
JP5696512B2 (en) * 2010-02-18 2015-04-08 Jfeスチール株式会社 Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
JP5741649B2 (en) * 2013-08-20 2015-07-01 Jfeスチール株式会社 Iron-based powder mixture
CN104772464B (en) * 2014-01-14 2017-03-01 朱晒红 The preparation method of orthopaedics implant
JP6007928B2 (en) * 2014-02-21 2016-10-19 Jfeスチール株式会社 Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP5962691B2 (en) * 2014-02-21 2016-08-03 Jfeスチール株式会社 Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
KR102543070B1 (en) 2015-02-03 2023-06-12 회가내스 아베 (피유비엘) Powdered metal compositions for easy machining
JP6480266B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy, method for producing the same, and sintered body
JP6480264B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder and sintered body for iron-based powder metallurgy
JP6480265B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy, method for producing the same, sintered body and method for producing the same
JP6392797B2 (en) * 2016-02-08 2018-09-19 住友電気工業株式会社 Iron-based powder for powder metallurgy and method for producing iron-based powder for powder metallurgy
US11591681B2 (en) * 2016-02-08 2023-02-28 Sumitomo Electric Industries, Ltd. Iron-based sintered body
JP2019125622A (en) * 2018-01-12 2019-07-25 トヨタ自動車株式会社 Method for manufacturing powder-compact magnetic core

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145353A (en) * 1983-12-30 1985-07-31 Dowa Teppun Kogyo Kk Manufacture of iron-base sintered body having superior machinability
JPH0826441B2 (en) * 1986-10-06 1996-03-13 勝美 山口 Free-cutting sintered material
JPH0210201A (en) * 1988-06-29 1990-01-16 Nippon Seiko Kk Gauging method and apparatus by two-wavelength interferometer

Also Published As

Publication number Publication date
JPH01255604A (en) 1989-10-12

Similar Documents

Publication Publication Date Title
JPH0711007B2 (en) Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering
KR101776670B1 (en) Mixed powder for powder metallurgy, method of manufacturing same, and method of manufacturing iron-based powder sintered body
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
JP2008169460A (en) Iron-based powder mixture, and methods for producing compact of iron-based powder and sintered compact of iron-based powder
KR102543070B1 (en) Powdered metal compositions for easy machining
JPH0711006B2 (en) Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP3469347B2 (en) Sintered material excellent in machinability and method for producing the same
JPH09279204A (en) Ferrous powdery mixture for powder metallurgy and production of sintered body using the same
KR100825566B1 (en) Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
JP2015172238A (en) Mixed powder for powder metallurgy, production method thereof and iron-based powder-made sintered body
JP4839275B2 (en) Mixed powder for powder metallurgy and sintered iron powder
JP5962691B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP2009242887A (en) Iron-based powdery mixture
JP6007928B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JPH09279203A (en) Ferrous powdery mixture for powder metallurgy
JP6493357B2 (en) Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body
JPH0689361B2 (en) High-strength iron-based powder with excellent machinability and method for producing the same
JP5310074B2 (en) Iron-based powder mixture for high-strength sintered parts of automobiles
JPH0745681B2 (en) Reduced iron powder with excellent machinability and mechanical properties after sintering
JP2009221576A (en) Iron-based powdery mixture
JP2011122198A (en) Mixed powder for powder metallurgy and sintered compact made of metal powder having excellent cuttability
KR100411283B1 (en) A method for manufacturing of hot metal desilicon material using hot-rolled mill oily sludge
TW201802261A (en) Powder metal composition for easy machining

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees