JPH0689361B2 - High-strength iron-based powder with excellent machinability and method for producing the same - Google Patents

High-strength iron-based powder with excellent machinability and method for producing the same

Info

Publication number
JPH0689361B2
JPH0689361B2 JP62278798A JP27879887A JPH0689361B2 JP H0689361 B2 JPH0689361 B2 JP H0689361B2 JP 62278798 A JP62278798 A JP 62278798A JP 27879887 A JP27879887 A JP 27879887A JP H0689361 B2 JPH0689361 B2 JP H0689361B2
Authority
JP
Japan
Prior art keywords
based powder
iron
powder
sulfide
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62278798A
Other languages
Japanese (ja)
Other versions
JPH01123001A (en
Inventor
義孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62278798A priority Critical patent/JPH0689361B2/en
Publication of JPH01123001A publication Critical patent/JPH01123001A/en
Publication of JPH0689361B2 publication Critical patent/JPH0689361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は被削性に優れた高強度鉄系粉末およびその製造
方法に関する。本発明の高強度鉄系粉末は、原動機、変
速機等を構成する機械部品を焼結する際に使用する鉄系
粉末に利用することができる。
The present invention relates to a high-strength iron-based powder having excellent machinability and a method for producing the same. INDUSTRIAL APPLICABILITY The high-strength iron-based powder of the present invention can be used as an iron-based powder used when sintering mechanical parts constituting a prime mover, a transmission, and the like.

[従来の技術] 鉄系粉末を圧縮成形して形成した圧粉体を焼結して形成
した焼結部品は、焼結されているので高強度である。こ
のような高強度を得ることができる焼結部品を製造する
鉄系粉末として、近年、特開昭58−130249号公報にかか
る粉末が開発されている。
[Prior Art] A sintered part formed by sintering a green compact formed by compression molding of iron-based powder has high strength because it is sintered. As an iron-based powder for producing a sintered part capable of obtaining such high strength, a powder according to Japanese Patent Laid-Open No. 58-130249 has been developed in recent years.

このように高強度の焼結部品で、高強度の他に被削性の
向上を達成できれば、適用部品の用途の拡大が大幅に広
がり、また生産コスト低減の可能性が大きい。
If high-strength sintered parts can improve machinability in addition to high strength, the application of the applied parts will be greatly expanded and the production cost will be reduced.

ところが、焼結部品は一般的に溶鋼材に比較して被削性
が悪いといわれている。即ち、焼結部品では、強度が高
くなると溶鋼材に比較して被削性の低下が大きい。この
ように被削性が低下すると、切削加工コストが大幅に上
昇し、焼結部品の有する価格上のメリットを損うことと
なる。
However, sintered parts are generally said to have poor machinability compared to molten steel. That is, in the case of a sintered part, when the strength is increased, the machinability is greatly reduced as compared with the molten steel material. When the machinability is lowered as described above, the cutting cost is significantly increased, and the price advantage of the sintered part is impaired.

そこで近年、種々の鉄系粉末が開発されているが、良好
な被削性を兼ね備えた高強度焼結部品を提供するには未
だ不充分である。
Therefore, in recent years, various iron-based powders have been developed, but they are still insufficient to provide high-strength sintered parts having good machinability.

そのため、焼結部品を形成する高強度鉄系粉末では、焼
結部品を高強度化させるとともに焼結部品の被削性を良
好ならしめ得る鉄系粉末の開発が進められている。
Therefore, as for the high-strength iron-based powder that forms the sintered part, the development of iron-based powder that enhances the strength of the sintered part and that has good machinability of the sintered part is under way.

[発明が解決しようとする問題点] 本発明は上記した実情に鑑みなされたものであり、第1
の発明の目的は、焼結部品を高強度化させるとともに焼
結部品の被削性を良好ならしめ得る性質をもつ高強度鉄
系粉末を提供することにある。又第2の発明の目的は、
焼結部品を高強度化させるとともに焼結部品の被削性を
良好ならしめ得る性質をもつ高強度鉄系粉末を製造し得
る製造方法を提供することにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances.
SUMMARY OF THE INVENTION It is an object of the invention to provide a high strength iron-based powder which has the property of increasing the strength of a sintered part and making the machinability of the sintered part good. The object of the second invention is to
It is an object of the present invention to provide a manufacturing method capable of manufacturing a high-strength iron-based powder having the property of increasing the strength of a sintered part and making the machinability of the sintered part good.

[問題点を解決するための手段] 第1の発明に係る被削性に優れた高強度鉄系粉末は、重
量比でモリブデンが0.5〜1.5%、マンガン0.05〜0.8
%、不可避の不純物、残部実質的に鉄からなる高強度鉄
系粉末粒子と、鉄系粉末粒子に拡散を伴って少なくとも
部分的に溶着された硫化物系粉末粒子とで構成されてい
ることを特徴とするものである。
[Means for Solving Problems] The high-strength iron-based powder excellent in machinability according to the first invention contains 0.5 to 1.5% by weight of molybdenum and 0.05 to 0.8 of manganese.
%, Unavoidable impurities, the balance being high-strength iron-based powder particles consisting essentially of iron, and sulfide-based powder particles that are at least partially welded to the iron-based powder particles with diffusion. It is a feature.

硫化物系粉末粒子は硫化銅(Cu2S)を主成分とすること
が好ましい。後述するように、硫化銅の銅が基地に固溶
し、基地を強化するに有利等の理由である。
The sulfide-based powder particles preferably contain copper sulfide (Cu 2 S) as a main component. As will be described later, the reason is that copper of copper sulfide forms a solid solution in the matrix and is advantageous for strengthening the matrix.

本発明に係る被削性に優れた高強度鉄系粉末の製造方法
は、重量比でモリブデンが0.5〜1.5%、マンガン0.05〜
0.8%、不可避の不純物、残部実質的に鉄からなる高強
度鉄系粉末粒子と、硫化物系粉末粒子とを混合して混合
粉末を形成する混合工程と、 混合粉末を還元性雰囲気で加熱して、高強度鉄系粉末粒
子と硫化物系粉末粒子とを拡散を伴って少なくとも部分
溶着させる溶着工程と、からなることを特徴とするもの
である。
The method for producing a high-strength iron-based powder having excellent machinability according to the present invention, molybdenum is 0.5 to 1.5% by weight, and manganese is 0.05 to 0.05%.
0.8%, unavoidable impurities, the balance consisting of high-strength iron-based powder particles consisting essentially of iron, and sulfide-based powder particles to form a mixed powder; and a mixed powder heated in a reducing atmosphere. And a welding step of at least partially welding the high-strength iron-based powder particles and the sulfide-based powder particles with diffusion.

ここで硫化物系粉末粒子は硫化銅(Cu2S)を主成分とす
ることが好ましい。
Here, the sulfide-based powder particles preferably contain copper sulfide (Cu 2 S) as a main component.

溶着処理、溶着時間は組成に応じて適宜変更されるが、
例えば、温度は750〜1000℃、時間は5〜60分間とする
ことができる。溶着前の鉄系粉末粒子の大きさ、溶着前
の硫化物系粉末粒子の大きさは適宜選択されるが、鉄系
粉末粒子の大きさは300μ以下とすることができ、硫化
物系粉末の大きさは100μ以下とすることができる。
The welding treatment and the welding time are appropriately changed according to the composition,
For example, the temperature can be 750 to 1000 ° C. and the time can be 5 to 60 minutes. The size of the iron-based powder particles before welding, the size of the sulfide-based powder particles before welding is appropriately selected, the size of the iron-based powder particles can be 300μ or less, of the sulfide-based powder The size can be 100 μ or less.

次に組成の限定理由について説明する。Next, the reasons for limiting the composition will be described.

モリブデンは基地に固溶して基地を強化し、強度を向上
する作用を果すが、0.5%未満では焼結部品の所望の強
度が得られず、1.5%を超えても添加の割には焼結部品
の強度が向上しない。そのため、モリブデンは0.5〜1.5
%とした。
Molybdenum forms a solid solution in the matrix, strengthens the matrix, and acts to improve the strength, but if it is less than 0.5%, the desired strength of the sintered part cannot be obtained, and if it exceeds 1.5%, it is burned for the addition. The strength of the connecting parts does not improve. Therefore, molybdenum is 0.5-1.5
%.

マンガンは基地に固溶し焼入れ性の向上と焼結部品の強
度の向上を図ることができるとともに、硫化銅(Cu2S)
の硫黄(S)と結びついて硫化マンガン(MnS)となり
被削性を向上させるとともに、硫化物生成による強度低
下をできるだけ最小限に抑える作用を果す。
Manganese forms a solid solution in the matrix to improve the hardenability and the strength of the sintered parts, and also copper sulfide (Cu 2 S)
Manganese sulfide (MnS) combines with the sulfur (S) to improve machinability and minimizes the decrease in strength due to sulfide formation.

ここで、マンガンの含有量は、0.05〜0.8%である。即
ち、焼結後において硫化物を形成するに必要なマンガン
量をα%とすると、α%と、マトリックスを形成する鉄
への固溶を目的とした量0.05〜0.25%との和であること
が好ましい。即ち、鉄系粉末に含まれるマンガンは、
(0.05+α)%〜(0.25+α)%が望ましい。ここで、
α%は、(1.5×S)%とするこができる。
Here, the content of manganese is 0.05 to 0.8%. That is, assuming that the amount of manganese necessary for forming sulfides after sintering is α%, it is the sum of α% and the amount of 0.05 to 0.25% intended for solid solution in iron forming the matrix. Is preferred. That is, manganese contained in the iron-based powder,
(0.05 + α)% to (0.25 + α)% is desirable. here,
α% can be (1.5 × S)%.

硫化銅(Cu2S)は焼結過程において銅(Cu)と硫黄
(S)に分解し、硫黄はマンガンと結びつき硫化マンガ
ン(MnS)となり、銅は基地に固溶しマトリックスを強
化し、強度を向上させる。硫化銅(Cu2S)は混合粉末全
体を100%としたとき、0.5〜2.0%であることが望まし
い。即ち、0.5%未満では硫化マンガン(MnS)の生成量
が少なく、一方、2.0%を超えると硫化マンガン(MnS)
が多量となり強度を低下させる傾向が見られるためであ
る。なお、炭素は0.1%以下が望ましい。
Copper sulfide (Cu 2 S) decomposes into copper (Cu) and sulfur (S) during the sintering process, sulfur combines with manganese to form manganese sulfide (MnS), and copper solid-dissolves in the matrix to strengthen the matrix and strengthen it. Improve. Copper sulfide (Cu 2 S) is preferably 0.5 to 2.0% when the entire mixed powder is 100%. That is, less than 0.5% produces less manganese sulfide (MnS), while more than 2.0% produces manganese sulfide (MnS).
This is because there is a tendency for the amount to increase and the strength to decrease. The carbon content is preferably 0.1% or less.

[実施例] (実施例1) まず、重量比でモリブデン0.7%、マンガン0.45%、不
可避の不純物、残部が実質的に鉄からなるFe−Mo−Mn系
の鉄系粉末を水噴霧法により製造した。水噴霧法により
製造した鉄系粉末は、60メッシュアンダー(250μ以
下)である。そしてこのように形成した鉄系粉末と硫化
物系粉末粒子としての硫化銅(Cu2S)とを秤量して混合
し、これにより混合粉末を形成した。ここで、混合粉末
全体を重量比で100%としたとき、鉄系粉末は99%、硫
化銅(Cu2S)粉末は1%とした。混合はV型混合機によ
り20分間行った。
[Examples] (Example 1) First, a Fe-Mo-Mn-based iron-based powder containing 0.7% by weight of molybdenum, 0.45% by weight of manganese, unavoidable impurities, and the balance substantially consisting of iron was produced by a water atomization method. did. The iron-based powder produced by the water spray method has 60 mesh under (250 μ or less). Then, the iron-based powder thus formed and copper sulfide (Cu 2 S) as sulfide-based powder particles were weighed and mixed, thereby forming a mixed powder. Here, when the total weight of the mixed powder was 100%, the iron-based powder was 99% and the copper sulfide (Cu 2 S) powder was 1%. Mixing was performed for 20 minutes with a V-type mixer.

次に上記した混合粉末を、窒素−10%水素(露点−30℃
以下)雰囲気中で900℃で20分間加熱保持することによ
り、鉄系粉末の粒子の表面に硫化銅粉末の粒子を拡散付
着し、これにより鉄系粉末の粒子の表面に硫化銅粉末の
粒子を溶着した。その後徐冷を行った。このようにして
得られた粉末は凝集体状である。このようにして得られ
た凝集体状の粉末をハンマーミルにより解砕し、−60メ
ッシュアンダーで選別した。このようにして得られた粉
末の組成は、重量比でモリブデン0.69%、マンガン0.44
%、銅0.78%、硫黄0.16%、不可避の不純物、残部鉄で
あった。
Next, the mixed powder described above was mixed with nitrogen-10% hydrogen (dew point -30 ° C).
(Below) By heating and holding at 900 ℃ in the atmosphere for 20 minutes, the particles of copper sulfide powder are diffused and adhered to the surface of the iron-based powder particles. Welded. After that, slow cooling was performed. The powder thus obtained is in the form of agglomerates. The agglomerated powder thus obtained was crushed by a hammer mill and selected with -60 mesh under. The composition of the powder thus obtained is 0.69% by weight of molybdenum and 0.44% by weight of manganese.
%, Copper 0.78%, sulfur 0.16%, inevitable impurities, balance iron.

(実施例2) 次に実施例2の場合を説明する。実施例2では、重量比
でモリブデン0.7%、マンガン0.33%、不可避の不純
物、残部実質的に鉄よりなるFe−Mo−Mn系の鉄系粉末と
硫化銅(Cu2S)粉末とをV型ミキサーにて20分間均一に
混合し、混合粉末を形成した。ここで鉄系粉末は水噴霧
法により製造されており、−60メッシュアンダーであ
る。硫化銅(Cu2S)粉末は−250メッシュアンダーであ
る。ここで、混合粉末全体を重量比で100%としたと
き、鉄系粉末は99.4%、硫化銅(Cu2S)粉末は0.6%と
した。
Example 2 Next, the case of Example 2 will be described. In Example 2, 0.7% by weight of molybdenum, 0.33% by weight of manganese, unavoidable impurities, and the balance being Fe-Mo-Mn-based iron-based powder and copper sulfide (Cu 2 S) powder were V-type. The mixture was uniformly mixed for 20 minutes with a mixer to form a mixed powder. Here, the iron-based powder is manufactured by the water atomization method and has -60 mesh under. Copper sulfide (Cu 2 S) powder is -250 mesh under. Here, when the total weight of the mixed powder was 100%, the iron-based powder was 99.4% and the copper sulfide (Cu 2 S) powder was 0.6%.

次に、上記したように製造した混合粉末を窒素−10%水
素(露点−30℃以下)雰囲気の加熱処理炉にて15分間90
0℃にて加熱保持し、加熱保持後、徐冷した。これによ
り鉄系粉末の粒子の硫化銅を拡散付着させ、これにより
鉄系粉末の粒子の表面に硫化銅粉末の粒子を溶着した。
このように形成された粉末は凝集体状である。そして上
記した粉末を粉末粉砕機により解砕した後、実施例1の
場合と同様に−6−メッシュにて選別した。
Next, the mixed powder manufactured as described above is heated for 90 minutes in a heat treatment furnace in a nitrogen-10% hydrogen (dew point -30 ° C or lower) atmosphere.
It was heated and held at 0 ° C., and after heating and holding, it was gradually cooled. Thereby, the copper sulfide particles of the iron-based powder were diffused and adhered, and thereby the particles of the copper sulfide powder were welded to the surfaces of the particles of the iron-based powder.
The powder thus formed is in the form of agglomerates. Then, after the above powder was crushed by a powder crusher, it was selected by -6-mesh as in the case of Example 1.

得られた粉末を化学分析したところ、重量比でモリブデ
ン0.7%、マンガン0.31%、銅0.47%、硫黄0.10%、不
可避の不純物、残部実質的に鉄の組成であった。
Chemical analysis of the obtained powder revealed that the composition was 0.7% by weight of molybdenum, 0.31% of manganese, 0.47% of copper, 0.10% of sulfur, unavoidable impurities, and the balance being substantially iron.

(実施例3) 次に実施例3について説明する。実施例3では、重量比
で、モリブデン0.7%、マンガン0.7%、不可避の不純
物、残部実質的に鉄よりなるFe−Mo−Mn系の鉄系粉末を
用いた。この鉄系粉末は水噴霧法により製造されてい
る。そしてこの鉄系粉末と硫化銅粉末とをV型ミキサー
にて20分間均一に混合し、混合粉末を形成した。ここで
鉄系粉末は−60メッシュアンダーであり、硫化銅粉末は
−250メッシュアンダーである。ここで、混合粉末全体
を重量比で100%としたとき、鉄系粉末は98.2%、硫化
銅(Cu2S)粉末は1.8%とした。
Example 3 Next, Example 3 will be described. In Example 3, an Fe-Mo-Mn-based iron-based powder composed of 0.7% by weight of molybdenum, 0.7% by weight of manganese, unavoidable impurities, and the balance substantially iron was used. This iron-based powder is manufactured by the water atomization method. Then, the iron-based powder and the copper sulfide powder were uniformly mixed with a V-type mixer for 20 minutes to form a mixed powder. Here, the iron-based powder is -60 mesh under and the copper sulfide powder is -250 mesh under. Here, when the total weight of the mixed powder was 100%, the iron-based powder was 98.2% and the copper sulfide (Cu 2 S) powder was 1.8%.

次に、上記した混合粉末を、窒素−10%水素(露点−30
℃以下)雰囲気の加熱処理炉にて、15分間900℃にて加
熱保持し、その後、徐冷処理を施した。これにより鉄系
粉末の表面に微細な硫化銅粉末を拡散付着し、これによ
り鉄系粉末の粒子の表面に硫化銅粉末の粒子を溶着し、
以て凝集体状の粉末を形成した。次に凝集体状の粉末を
粉砕機により解砕し、実施例1、実施例2の場合と同様
に、−60メッシュアンダーにて選別した。このようにし
て形成した粉末を化学分析したところ、実施例3に係る
鉄系粉末の組成は、重量比で、モリブデン0.69%、マン
ガン0.68%、銅1.42%、硫黄0.30%、不可避の不純物、
残部実質的に鉄であった。
Next, the above-mentioned mixed powder was mixed with nitrogen-10% hydrogen (dew point -30
In a heat treatment furnace having an atmosphere of (° C. or less), it was heated and held at 900 ° C. for 15 minutes, and then gradually cooled. By this, fine copper sulfide powder is diffused and adhered to the surface of the iron-based powder, whereby the particles of the copper sulfide powder are welded to the surface of the particles of the iron-based powder,
This formed an agglomerate powder. Next, the powder in the form of agglomerates was crushed by a crusher and selected with -60 mesh under as in the case of Example 1 and Example 2. When the powder thus formed was subjected to chemical analysis, the composition of the iron-based powder according to Example 3 was, by weight ratio, molybdenum 0.69%, manganese 0.68%, copper 1.42%, sulfur 0.30%, unavoidable impurities,
The balance was essentially iron.

(比較例) 更に、比較例1として、市販の拡散合金鋼粉末(ディス
タロイAB、ヘガネス社)を用いた。この粉末は、重量比
でニッケル1.8%、モリブデン0.5%、銅1.5%、不可避
の不純物、残部実質的に鉄の組成である。比較例1の拡
散合金鋼粉末は−60メッシュアンダーにて選別されたも
のである。
(Comparative Example) Further, as Comparative Example 1, a commercially available diffusion alloy steel powder (Distaloy AB, manufactured by Heganes) was used. This powder has a composition of nickel 1.8%, molybdenum 0.5%, copper 1.5%, inevitable impurities, and the balance substantially iron by weight. The diffusion alloy steel powder of Comparative Example 1 was selected with -60 mesh under.

また比較例2として、市販のディスタロイAB粉末と硫黄
粉末とをV型ミキサーで均一に混合した混合粉末を用い
た。この比較例2の混合粉末では、硫黄粉末はディスタ
ロイAB粉末に溶着していない。比較例2では、混合粉末
全体を重量比で100%としたとき、市販のディスタロイA
B粉末を99.7%、硫黄粉末を0.3%とした。
As Comparative Example 2, a mixed powder obtained by uniformly mixing a commercially available Distaloy AB powder and a sulfur powder with a V-type mixer was used. In the mixed powder of Comparative Example 2, the sulfur powder is not welded to the Distaloy AB powder. In Comparative Example 2, when the total weight of the mixed powder was 100%, the commercially available Distaloy A was used.
The B powder was 99.7% and the sulfur powder was 0.3%.

(試験例) 次に上記した本実施例1、実施例2、実施例3に係る鉄
系粉末で圧粉体を形成し、圧粉体を焼結して焼結部品と
しての試験片を形成した。比較例1、比較例2に係る粉
末でも、同様にして試験片を形成した。
(Test Example) Next, a green compact is formed from the iron-based powder according to the first, second and third embodiments described above, and the green compact is sintered to form a test piece as a sintered part. did. Test pieces were formed in the same manner with the powders according to Comparative Example 1 and Comparative Example 2.

試験片となる圧体体を形成するにあたっては、次のよう
にした。即ち、圧粉体全体を100%としたとき、0.55%
の黒鉛粉(人造黒鉛)と潤滑用の金属石けん0.7%とを
ボールミルにて20分間混合した後、1立方センチメート
ルあたり密度6.80gの圧粉体を成形した。焼結条件は、
分解アンモニア雰囲気(露点−30℃以下)の焼結炉によ
り、1165℃にて30分間加熱して行った。実施例1、実施
例2、実施例3、比較例1、比較例2の焼結部品として
の試験片の化学分析値を第1表に示す。
The formation of the pressure body as the test piece was performed as follows. That is, when the whole green compact is 100%, 0.55%
The graphite powder (artificial graphite) of Example 1 and 0.7% of metal soap for lubrication were mixed in a ball mill for 20 minutes, and then a green compact having a density of 6.80 g per cubic centimeter was formed. The sintering conditions are
It was heated at 1165 ° C. for 30 minutes in a sintering furnace in a decomposed ammonia atmosphere (dew point −30 ° C. or lower). Table 1 shows the chemical analysis values of the test pieces as the sintered parts of Example 1, Example 2, Example 3, Comparative Example 1, and Comparative Example 2.

上記のように焼結して形成した試験片について、真空焼
入れ処理を行った。真空焼入れ処理は、焼結部品である
試験片を860℃に加熱保持した後、80℃のオイルに浸漬
してオイル焼入れを行った。焼入れ後の焼き戻しは、大
気中にて190℃で60分間加熱保持して行った。
Vacuum quenching was performed on the test piece formed by sintering as described above. In the vacuum quenching treatment, a test piece, which is a sintered part, was heated and held at 860 ° C. and then immersed in oil at 80 ° C. for oil quenching. The tempering after quenching was performed by heating and holding at 190 ° C. for 60 minutes in the atmosphere.

上記した実施例1、実施例2、実施例3の焼入れ処理し
た試験片について、また、比較例1、比較例2の試験片
について、万能引張り試験機により引張り試験を行っ
た。そして、引張り最大荷重を破断面の面積で除した値
を引張り強さとした。
Tensile tests were conducted on the quench-treated test pieces of Examples 1, 2 and 3 and the test pieces of Comparative Examples 1 and 2 using a universal tensile tester. The value obtained by dividing the maximum tensile load by the area of the fracture surface was defined as the tensile strength.

また被削性を調べるために、穴開け加工テストを実施し
た。穴開け加工テストで用いたドリルは、SKH−9、径7
mmを用い、回転数220rpm、送り速度0.4mm/rev、切削油
使用の条件にて、試験片(厚み10mm)の穴開けを行っ
た。そして、1本のドリルにて穴開けした穴の数により
被削性を比較した。
In addition, a drilling test was conducted to check machinability. The drill used in the drilling test is SKH-9, diameter 7
A test piece (thickness: 10 mm) was punched under the conditions of a rotation speed of 220 rpm, a feed rate of 0.4 mm / rev, and a cutting oil used. Then, machinability was compared by the number of holes drilled with one drill.

上記した実施例1、実施例2、実施例3の試験片、ま
た、比較例1、比較例2の試験片について、引張り強さ
および被削性の試験結果を第1図に示す。第1図に示す
ように、引張り強さでは、実施例1、実施例2、実施例
3は市販されている高強度焼結材料(比較例1)とほぼ
同等の強度を示した。また実施例1、実施例2、実施例
3は、比較例2に比べて引張り強度が格段に優れてい
る。ここで比較例2では強度が低下している理由は、硫
黄を添加しているからである。
FIG. 1 shows the test results of the tensile strength and machinability of the test pieces of Examples 1, 2 and 3 described above and the test pieces of Comparative Example 1 and Comparative Example 2. As shown in FIG. 1, in terms of tensile strength, Example 1, Example 2 and Example 3 showed almost the same strength as the commercially available high strength sintered material (Comparative Example 1). In addition, the tensile strengths of Examples 1, 2 and 3 are far superior to those of Comparative Example 2. Here, in Comparative Example 2, the reason why the strength is lowered is that sulfur is added.

一方、被削性試験では、実施例1、実施例2、実施例3
の穴開け数は、比較例1に比べて4倍以上の数である。
On the other hand, in the machinability test, Example 1, Example 2, and Example 3
The number of punched holes is 4 times or more compared to Comparative Example 1.

即ち、実施例1、実施例2、実施例3では、比較例1に
対して引張り強度は同程度であるものの被削性が格段に
優れている。ここで、硫黄含有量が同程度の実施例2と
比較例2とを比較する。実施例2では穴開け数が比較例
2の2倍となっており、実施例2の方が比較例2に比べ
て被削性が格段に優れている。その理由は以下のようで
あると推察される。即ち、実施例1、実施例2、実施例
3では硫黄が多量に含有されているにもかかわらず、強
度が高いのは、実施例1〜実施例3では硫化マンガン
(MnS)が拡散付着に起因して微細化しているのに対し
て、比較例2では鉄系粉末に単に硫黄粉末を添加しただ
けなので、硫黄が凝集し、そのため硫黄が粗大化してい
る。故に、比較例2では、鉄を含有する銅硫化物が凝集
し粗大化し、そのため、粗大化した硫化物と、粗大化し
た硫化物が昇準した跡で形成された粗大気孔の発生と、
硫化物の偏析の発生が大きいためであると推察される。
That is, in Example 1, Example 2, and Example 3, the machinability was remarkably excellent, although the tensile strength was about the same as that of Comparative Example 1. Here, Example 2 and Comparative Example 2 having the same sulfur content are compared. In Example 2, the number of drilled holes is twice as large as that in Comparative Example 2, and Example 2 is significantly superior in machinability as compared with Comparative Example 2. The reason is presumed to be as follows. That is, in Examples 1, 2 and 3, although the sulfur is contained in a large amount, manganese sulfide (MnS) is diffused and adhered in Examples 1 to 3 because the strength is high. In comparison example 2, the iron-based powder is simply added with the sulfur powder, whereas the sulfur is aggregated and the sulfur is coarsened. Therefore, in Comparative Example 2, the copper sulfide containing iron aggregated and coarsened, so that the coarsened sulfide and the generation of coarse air holes formed in the traces of the elevated coarsened sulfide,
It is presumed that this is because the segregation of sulfide is large.

比較例1の被削性が悪いのは硫化物がないことをそのま
ま反映している。
The poor machinability of Comparative Example 1 directly reflects the absence of sulfide.

[発明の効果] 以上説明したように本発明に係る高強度鉄系粉末を用い
て焼結部品を形成すれば、第1図の試験結果から明らか
なように、焼結部品の強度を確保できるとともに、焼結
部品の被削性を向上させることができる。
[Effects of the Invention] As described above, by forming a sintered part using the high-strength iron-based powder according to the present invention, as is apparent from the test results of FIG. 1, the strength of the sintered part can be secured. At the same time, the machinability of the sintered part can be improved.

また、本発明に係る製造方法によれば、被削性に優れた
高強度鉄系粉末を簡便に製造することができる。
Moreover, according to the manufacturing method of the present invention, it is possible to easily manufacture a high-strength iron-based powder having excellent machinability.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例および比較例の引張り強さと被削性を
示すグラフである。
FIG. 1 is a graph showing the tensile strength and machinability of Examples and Comparative Examples.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量比でモリブデンが0.5〜1.5%、マンガ
ン0.05〜0.8%、不可避の不純物、残部実質的に鉄から
なる高強度鉄系粉末粒子と、該鉄系粉末粒子に拡散を伴
って少なくとも部分的に溶着された硫化物系粉末粒子と
で構成されていることを特徴とする被削性に優れた高強
度鉄系粉末。
1. A high-strength iron-based powder particle consisting of 0.5-1.5% by weight of molybdenum, 0.05-0.8% of manganese, unavoidable impurities, and the balance substantially iron, together with diffusion of the iron-based powder particle. A high-strength iron-based powder excellent in machinability, characterized in that it is composed of at least partially welded sulfide-based powder particles.
【請求項2】硫化物系粉末粒子は、硫化銅を主成分とす
る特許請求の範囲第1項記載の被削性に優れた高強度鉄
系粉末。
2. A high-strength iron-based powder excellent in machinability according to claim 1, wherein the sulfide-based powder particles have copper sulfide as a main component.
【請求項3】重量比でモリブデン0.5〜1.5%、マンガン
が0.05〜0.8%、不可避の不純物、残部実質的に鉄から
なる高強度鉄系粉末粒子と、硫化物系粉末粒子とを混合
して混合粉末を形成する混合工程と、 該混合粉末を還元性雰囲気で加熱して、該高強度鉄系粉
末粒子と該硫化物系粉末粒子とを拡散を伴って少なくと
も部分溶着させる溶着工程と、からなることを特徴とす
る被削性に優れた高強度鉄系粉末の製造方法。
3. High-strength iron-based powder particles consisting of 0.5-1.5% by weight of molybdenum, 0.05-0.8% of manganese, unavoidable impurities, and the balance essentially iron, and sulfide-based powder particles are mixed. A mixing step of forming a mixed powder; and a welding step of heating the mixed powder in a reducing atmosphere to at least partially weld the high-strength iron-based powder particles and the sulfide-based powder particles with diffusion. And a method for producing a high-strength iron-based powder having excellent machinability.
【請求項4】硫化物系粉末粒子は、硫化銅を主成分とす
る特許請求の範囲第3項記載の被削性に優れた高強度鉄
系粉末の製造方法。
4. The method for producing a high-strength iron-based powder excellent in machinability according to claim 3, wherein the sulfide-based powder particles have copper sulfide as a main component.
JP62278798A 1987-11-04 1987-11-04 High-strength iron-based powder with excellent machinability and method for producing the same Expired - Fee Related JPH0689361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62278798A JPH0689361B2 (en) 1987-11-04 1987-11-04 High-strength iron-based powder with excellent machinability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278798A JPH0689361B2 (en) 1987-11-04 1987-11-04 High-strength iron-based powder with excellent machinability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01123001A JPH01123001A (en) 1989-05-16
JPH0689361B2 true JPH0689361B2 (en) 1994-11-09

Family

ID=17602321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278798A Expired - Fee Related JPH0689361B2 (en) 1987-11-04 1987-11-04 High-strength iron-based powder with excellent machinability and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0689361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722021B1 (en) * 2017-12-05 2022-09-28 JFE Steel Corporation Partially diffusion-alloyed steel powder

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651420B2 (en) * 2000-08-31 2005-05-25 Jfeスチール株式会社 Alloy steel powder for powder metallurgy
JP5167875B2 (en) * 2008-03-12 2013-03-21 トヨタ自動車株式会社 Sintered connecting rod and manufacturing method thereof
US8448439B2 (en) 2009-01-30 2013-05-28 Hitachi-Ge Nuclear Energy, Ltd. Electric power plant, and method for running electric power plant
JP4898854B2 (en) * 2009-01-30 2012-03-21 株式会社日立製作所 Power plant
CN111432957B (en) * 2017-12-05 2022-03-29 杰富意钢铁株式会社 Alloy steel powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828342B2 (en) * 1976-07-26 1983-06-15 三菱マテリアル株式会社 Valve seat for internal combustion engines with excellent heat and wear resistance and machinability
JPS5319110A (en) * 1976-08-06 1978-02-22 Mitsubishi Metal Corp Abrasion resisting combined material
JPS5836667B2 (en) * 1976-10-05 1983-08-10 住友電気工業株式会社 Sintered alloy with excellent wear resistance
JPS54104420A (en) * 1978-02-06 1979-08-16 Riken Piston Ring Ind Co Ltd Sintered material for valve seat and production thereof
JPS5837158A (en) * 1981-08-27 1983-03-04 Toyota Motor Corp Wear resistant sintered alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722021B1 (en) * 2017-12-05 2022-09-28 JFE Steel Corporation Partially diffusion-alloyed steel powder

Also Published As

Publication number Publication date
JPH01123001A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
CN1104510C (en) Powdered metallurgy valve-seat insert piece
EP0331679B1 (en) High density sintered ferrous alloys
JP2687125B2 (en) Sintered metal compact used for engine valve parts and its manufacturing method.
KR100245511B1 (en) Sintered iron-based powder of improving the machinability and article made thereby
US8287615B2 (en) High-strength composition iron powder and sintered part made therefrom
JPH0745683B2 (en) Composite steel powder with excellent compressibility and homogeneity
CN107921531A (en) The manufacture method of mixed powder for powder metallurgy, the manufacture method of sintered body and sintered body
CN107008907B (en) Iron-based sintered sliding member and method for producing same
US4123265A (en) Method of producing ferrous sintered alloy of improved wear resistance
JP3177482B2 (en) Low alloy steel powder for sinter hardening
JPH0689361B2 (en) High-strength iron-based powder with excellent machinability and method for producing the same
JP4839275B2 (en) Mixed powder for powder metallurgy and sintered iron powder
JPH07300656A (en) Sintered bearing alloy for high temperature use and its production
JP2018123428A (en) Iron-based powdery mixture for powder metallurgy and production method therefor, and sintered compact excellent in tensile strength and shock resistance
US4702772A (en) Sintered alloy
JPH07166278A (en) Coppery sliding material and production thereof
US6967001B2 (en) Method for sintering a carbon steel part using a hydrocolloid binder as carbon source
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
US3120699A (en) Method for producing sintered ferrous article
US4603028A (en) Method of manufacturing sintered components
JP3303030B2 (en) Connecting rod excellent in fatigue strength and toughness and method for manufacturing the same
JP4367133B2 (en) Iron-based powder mixture for high-strength sintered parts
JPH0689363B2 (en) High strength alloy steel powder for powder metallurgy
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JP2017101331A (en) Iron-based sintered slide member and production method therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees