JPH0745681B2 - Reduced iron powder with excellent machinability and mechanical properties after sintering - Google Patents

Reduced iron powder with excellent machinability and mechanical properties after sintering

Info

Publication number
JPH0745681B2
JPH0745681B2 JP63038705A JP3870588A JPH0745681B2 JP H0745681 B2 JPH0745681 B2 JP H0745681B2 JP 63038705 A JP63038705 A JP 63038705A JP 3870588 A JP3870588 A JP 3870588A JP H0745681 B2 JPH0745681 B2 JP H0745681B2
Authority
JP
Japan
Prior art keywords
iron powder
powder
added
sintering
talc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63038705A
Other languages
Japanese (ja)
Other versions
JPS6479302A (en
Inventor
武雄 大村
一男 桜田
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63038705A priority Critical patent/JPH0745681B2/en
Publication of JPS6479302A publication Critical patent/JPS6479302A/en
Publication of JPH0745681B2 publication Critical patent/JPH0745681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、焼結機械部品などの原料としての鉄粉に関
し、特に焼結後の被削性・機械的性質の有利な改善を図
ったものである。
Description: TECHNICAL FIELD The present invention relates to an iron powder as a raw material for a sintered machine part, etc., and particularly aimed at an advantageous improvement in machinability and mechanical properties after sintering. It is a thing.

自動車・精密機械および家庭用電気器具などに使用され
る焼結機械部品は、成形、焼結によって所定の寸法、形
状に製造できるところに特長をそなえているため切削な
どの機械加工を行わないのが原則であった。
Sintered machine parts used for automobiles, precision machinery, and household appliances, etc. do not undergo machining such as cutting because they have the feature that they can be manufactured to a predetermined size and shape by molding and sintering. Was the principle.

しかし近年では、形状が複雑化してきたことや高い寸法
精度が要求されるようになってきたこともあって、焼結
後やむを得ず穴あけや端面切削、溝切りなどの切削加工
を行う場合が増加してきた。
However, in recent years, as the shape has become more complicated and high dimensional accuracy has come to be required, the number of cases in which cutting such as drilling, end face cutting, and grooving is unavoidably increased after sintering. It was

焼結鋼は、溶製鋼とは違って内部に空孔が残存するため
切削する際には断続切削となり、かつ空孔が保温材の役
目を果たして熱伝導性を劣化させるので切削温度が高く
なるなどのことから溶製鋼と比べて一般に工具寿命が短
いとされている。従って被削性の優れた焼結鋼が望まれ
ていた。
Unlike molten steel, voids remain inside sintered steel, which causes intermittent cutting when cutting, and the voids serve as a heat insulating material and deteriorate thermal conductivity, resulting in higher cutting temperatures. Therefore, it is generally said that the tool life is shorter than that of molten steel. Therefore, a sintered steel having excellent machinability has been desired.

(従来の技術) 焼結鋼の被削性を改善する方法としては、焼結原料粉
に、快削成分であるS,Pb,SeおよびTeならびにそれらの
化合物を添加する方法(特開昭48−80409号公報)や、B
aSO4,BaSを添加する方法(特公昭46−39564号公報)、C
aSやCaSO4を添加する方法(特公昭52−16684号公報)な
どが提案されている。
(Prior Art) As a method for improving the machinability of sintered steel, a method of adding S, Pb, Se and Te, which are free-cutting components, and their compounds to sintering raw material powder (Japanese Patent Laid-Open No. -80409) or B
Method of adding aSO 4 , BaS (Japanese Patent Publication No. 46-39564), C
A method of adding aS or CaSO 4 (Japanese Patent Publication No. 52-16684) has been proposed.

(発明が解決しようとする課題) 上に述べたところのうち例えばSについては、溶製鋼の
快削成分として広く知られているが、焼結鋼に対して必
ずしも適合するとは限らない。すなわちSの焼結原料粉
への添加は、焼結時にSが焼結雰囲気中の水素と反応し
て硫化水素を発生しがちであり、焼結炉のれんがや発熱
体を損傷させるばかりでなく、焼結後の寸法が膨張ぎみ
になり、しかも機械的性質の低下が著しい。
(Problems to be Solved by the Invention) Among the above-mentioned matters, S, for example, is widely known as a free-cutting component of molten steel, but is not necessarily compatible with sintered steel. That is, when S is added to the sintering raw material powder, S tends to react with hydrogen in the sintering atmosphere to generate hydrogen sulfide during sintering, which not only damages the brick and the heating element of the sintering furnace. In addition, the dimension after sintering becomes large and the mechanical properties are significantly deteriorated.

またPbは、融点が約330℃と極端に低く、しかも鉄中に
固溶しないため焼結鋼中に均一に分散させることが困難
であり、加えて焼結時にはPb公害の問題があるので好ま
しくない。
Further, Pb has an extremely low melting point of about 330 ° C., and since it does not form a solid solution in iron, it is difficult to uniformly disperse it in sintered steel, and in addition, there is a problem of Pb pollution during sintering, which is preferable. Absent.

その他Se,Teにあってもその化合物すなわちセレン化合
物、テルル化物は、Sと同様に焼結時にいずれも毒性を
有するセレン化水素、テルル化水素を発生させる。
In addition, even in Se and Te, the compounds thereof, that is, the selenium compound and the telluride, generate hydrogen selenide and hydrogen telluride which are both toxic during sintering, like S.

一方BaSO4やCaSO4は、焼結中にBaS,CaSに変化して焼結
後に吸湿性を持つようになることから、焼結鋼が発錆し
易くなるという問題点があった。
On the other hand, since BaSO 4 and CaSO 4 change into BaS and CaS during sintering and become hygroscopic after sintering, there is a problem that the sintered steel is easily rusted.

加えて、上記の添加物を仕上還元後の鉄粉に添加すると
鉄粉を成形した際の成形性(ラトラー値で与えられる)
が悪化し、焼結後の寸法変化が無添加のものと大きく異
なり、また引張強さ、衝撃値などの機械的性質が低下す
るのが常であった。そのため金型の変更をよぎなくさ
れ、また強度が要求される部品には適用し難かった。
In addition, when the above additives are added to the iron powder after finishing reduction, the formability of the iron powder when molded (given by the ratler value)
However, the dimensional change after sintering was significantly different from that without addition, and mechanical properties such as tensile strength and impact value were always deteriorated. Therefore, it is difficult to change the mold, and it is difficult to apply it to parts that require strength.

ところで焼結原料としての鉄粉には、いわゆる還元鉄粉
や電解鉄粉などの不定形状粉と、アトマイズ粉、カルボ
ニル粉のようなほぼ球状粉とがあり、それらのうち前者
に関してこの発明は、上記の問題点のとくに有利な解決
を図り、焼結時には無害であってしかも、焼結後の被削
性・機械的性質に優れる還元鉄粉を提案することを目的
とする。
By the way, iron powder as a sintering raw material, so-called reduced iron powder and irregular shaped powder such as electrolytic iron powder, and atomized powder, there are almost spherical powder such as carbonyl powder, among them, the present invention with respect to the former, It is an object of the present invention to solve the above problems in a particularly advantageous manner, and to propose a reduced iron powder that is harmless during sintering and is excellent in machinability and mechanical properties after sintering.

(課題を解決するための手段) 発明者らは、還元鉄粉の焼結時に弊害を伴うことのない
快削成分としてはMgO−SiO2系複合酸化物及びガラスが
有効であり、さらにこれらの快削成分を還元鉄粉の粒子
内に存在させることが焼結後の機械的性質の劣下を防止
するのに有効なことの知見を得た。
(Means for Solving the Problems) The inventors have found that MgO—SiO 2 -based composite oxides and glasses are effective as free-cutting components that do not cause adverse effects during sintering of reduced iron powder, and further It was found that the presence of the free-cutting component in the particles of the reduced iron powder is effective in preventing deterioration of mechanical properties after sintering.

この発明は、上記の知見に立脚するものである。すなわ
ちこの発明は粗還元とその後の仕上還元とを経て得られ
る還元鉄粉であって、 MgO−SiO2系複合酸化物粉及び/又はガラス粉よりなる
快削成分を還元鉄粉の粒内に存在する形態で還元鉄粉に
対し0.1〜1.5%の重量割合いにて含有することを特徴と
する焼結後の被削性・機械的性質に優れる還元鉄粉であ
る。
The present invention is based on the above findings. That is, the present invention is a reduced iron powder obtained through rough reduction and subsequent finish reduction, wherein a free-cutting component consisting of MgO-SiO 2 -based composite oxide powder and / or glass powder is incorporated into the particles of the reduced iron powder. It is a reduced iron powder having excellent machinability and mechanical properties after sintering, which is characterized by containing 0.1 to 1.5% by weight of the reduced iron powder in the existing form.

この発明でMgO−SiO2系複合酸化物粉とは、MgO/SiO2
ル比が0.5〜5.0のものをいい、タルク、蛇文岩などが有
利に適合する。
In the present invention, the MgO-SiO 2 -based composite oxide powder has a MgO / SiO 2 molar ratio of 0.5 to 5.0, and talc, serpentine, etc. are advantageously suitable.

またガラス粉とは、ソーダ石灰ガラス、ほうけい酸ガラ
ス、鉛ガラスなどの粉をいう。
The glass powder refers to powder of soda lime glass, borosilicate glass, lead glass and the like.

この発明では、還元鉄粉の中にその粒内に存在する形態
で特定量の快削成分を含有することが重要である。第1
図(a),(b)にてこの発明の還元鉄粉を模式で示
し、図中1は粒子、2は快削成分を表し、同図(a)で
は仕上還元前に、また同図(b)には粗還元前に、それ
ぞれ原料の還元鉄粉に快削成分を添加し、粒子1の凹部
及び/又は高温の粗還元条件下に相互癒合する微細粒
1′の粒間にて、それぞれ快削成分2くわえこまれた状
態を示した。
In the present invention, it is important that the reduced iron powder contains a specific amount of the free-cutting component in the form existing in the grain. First
The reduced iron powder of the present invention is schematically shown in FIGS. (A) and (b). In the figure, 1 represents particles, 2 represents free-cutting components, and in FIG. In b), prior to the rough reduction, free-cutting components are added to the respective raw material reduced iron powders, and between the concave portions of the particles 1 and / or between the fine particles 1 ′ which mutually coalesce under high temperature rough reducing conditions, The free-cutting component 2 was added to each.

この発明では、かかる第1図(a),(b)に示す形態
のことを、“快削成分を還元鉄粉の粒内に存在する形
態”というのである。
In the present invention, the form shown in FIGS. 1 (a) and 1 (b) is referred to as "form in which free-cutting components are present in the grains of reduced iron powder".

(作 用) MgO−SiO2系複合酸化物は、第2図にMgOとSiO2との平衡
状態図を示すように、MgOが35重量%(以下単に%で示
す)程度で急激に融点が低下しているところに特徴があ
り、そのため製鋼炉などでは古くからマグネシアれんが
と珪石れんがとの積み合わせは禁物とされてきた。その
理由は、珪石れんがが30%を超えると1543℃の液相を生
じるからである。
(Created for) MgO-SiO 2 composite oxide, as shown in the equilibrium diagram of the MgO and SiO 2 in FIG. 2, MgO is (shown below simply%) 35 wt% rapidly melting point degree It is characterized by the fact that it is decreasing, and for that reason, stacking magnesia bricks and silica bricks has been prohibited for many years in steelmaking furnaces. The reason is that if the silica brick exceeds 30%, a liquid phase of 1543 ° C is generated.

前述したように焼結鋼の切削時に局部的に到達する温度
は溶製鋼に比べて高い。そのためこの発明においては、
1543℃の液相が出る組成のMgO−SiO2系複合酸化物粉を
焼結鋼に含有させておくことによって切削時には切削工
具面に1543℃の液相が出現して切削工具に付着し、刃先
きの保護、潤滑を司ると同時に切削工具の寿命が大幅に
向上するものと考えられる。
As described above, the temperature locally reached during cutting of sintered steel is higher than that of molten steel. Therefore, in this invention,
By including MgO-SiO 2 -based composite oxide powder with a composition that produces a liquid phase of 1543 ° C in sintered steel, a liquid phase of 1543 ° C appears on the cutting tool surface during cutting and adheres to the cutting tool. It is thought that the life of the cutting tool will be greatly improved at the same time as it controls the cutting edge and lubricates it.

またソーダ石灰ガラス、ほうけい酸ガラス、鉛ガラスな
どのいわゆるガラスも、種類によって異なるが溶融温度
が1350〜1800℃であり、溶融温度前には徐々に軟化しは
じめるためにMgO−SiO2系複合酸化物と同様に切削時に
はガラスが切削工具面に付着し、切削工具を保護、潤滑
し、かつ切削工具と焼結鋼との炭素の拡散反応を防止し
て切削工具寿命を大幅に向上させるものと思われる。
In addition, so-called glass such as soda lime glass, borosilicate glass, lead glass, etc. also has a melting temperature of 1350 to 1800 ° C depending on the type, but since it gradually begins to soften before the melting temperature, MgO-SiO 2 composite Similar to oxides, glass adheres to the cutting tool surface during cutting, protects and lubricates the cutting tool, and prevents the diffusion reaction of carbon between the cutting tool and sintered steel, greatly improving the cutting tool life. I think that the.

またMgO−SiO2系複合酸化物粉とガラス粉とを同時に添
加することにより切削工具に付着する酸化物液相の種類
が多くなり、切削条件の広い範囲にわたって切削工具の
寿命を向上させることができる。
Further, by simultaneously adding MgO-SiO 2 -based composite oxide powder and glass powder, the number of types of oxide liquid phase adhering to the cutting tool increases, and it is possible to improve the life of the cutting tool over a wide range of cutting conditions. it can.

上述したとおり、MgO−SiO2系複合酸化物とガラスと
は、作用効果について同じであり、同効物質である。
As described above, the MgO—SiO 2 composite oxide and glass have the same action and effect and are the same effect substance.

以上の快削成分は、何れも焼結の際、熱的に安定なMgO
やSiO2等の酸化物を主成分としているため、焼結時に有
害なガスを発生することがなく、焼結炉の炉内れんがや
発熱体あるいは配管類を損傷させることはない。そのた
め焼結後の寸法変化にも全く影響しない。
All of the above free-cutting components are thermally stable MgO during sintering.
Since it contains oxides such as SiO 2 and SiO 2 as a main component, it does not generate harmful gas during sintering, and does not damage the bricks in the furnace of the sintering furnace, the heating element, or the pipes. Therefore, it does not affect the dimensional change after sintering at all.

焼結時に無害で焼結後の寸法に悪影響をもたらさない快
削成分であるMgO−SiO2系複合酸化物粉及びガラス粉で
あっても、アトマイズ鉄粉であれ還元鉄粉であれ仕上還
元後の鉄粉に添加すると鉄粉の成形性が悪化し、かつ焼
結後の引張強さ、伸び、衝撃値などの機械的性質の低下
を招いてしまう。これはアトマイズ鉄粉の場合は鉄粉粒
子形状が比較的球状で表面の凹凸がないため、第3図
(a)に示すように鉄粉粒子表面に添加物が付着し、成
形した際の鉄粉粒子同士の直接接触を妨害し、添加物が
切欠きの役目を果たすために鉄粉の成形性及び焼結後の
機械的性質が低下するのであり、還元鉄粉の場合は、第
3図(b)に示すようにアトマイズ鉄粉よりも表面の凹
凸が多く全体に不規則な形状をしているため、一部の添
加物は表面の凹部に入りこむとしても、残りは凹部以外
の鉄粉粒子表面に付着したままとなって、これもまた成
形した際の鉄粉粒子同士の直接接触を妨害し、鉄粉の成
形性及び焼結後の機械的性質が低下するのである。
Even if MgO-SiO 2 composite oxide powder and glass powder, which are free-cutting components that are harmless during sintering and do not adversely affect the dimensions after sintering, even after atomization iron powder or reduced iron powder, finish reduction When added to the iron powder, the formability of the iron powder deteriorates, and mechanical properties such as tensile strength, elongation and impact value after sintering are deteriorated. This is because in the case of atomized iron powder, the shape of the iron powder particles is relatively spherical and there is no unevenness on the surface. Therefore, as shown in FIG. Since the direct contact between powder particles is obstructed and the additive acts as a notch, the formability of iron powder and the mechanical properties after sintering are reduced. In the case of reduced iron powder, Fig. 3 As shown in (b), since there are more irregularities on the surface than the atomized iron powder and it has an irregular shape as a whole, even if some additives enter the recesses on the surface, the rest are iron powder other than the recesses. The particles remain attached to the surface of the particles, which also hinders direct contact between the iron powder particles during molding, resulting in deterioration of the moldability of the iron powder and mechanical properties after sintering.

アトマイズ鉄粉では、仕上還元前の鉄粉に添加する方法
又は特公昭52−36750号公報に記載のように溶融金属中
に添加物を混合して霧化、冷却、凝固させて複合粉末を
製造する方法や特開昭61−17703号公報のように噴霧媒
に添加物を混合して噴霧する方法でも被削性に優れた鉄
粉の製造が可能であるが、これらについても以下の問題
点がある。すなわち仕上還元前の鉄粉に添加する方法
は、第3図(c)に示すように比較的球状な鉄粉粒子表
面に付着した添加物は鉄粉粒子との冶金的結合力がない
ために仕上還元後の磁選でそのほとんどが容易に除去さ
れてしまうために添加物を添加しても仕上還元後の鉄粉
には添加物が残らないので被削性改善の効果がない。ま
た、溶融金属又は噴霧媒中に添加する方法では第3図
(d)に示すように添加物が一部は鉄粉粒子内部に包含
され、また一部は鉄粉粒子表面に強固に付着する。鉄粉
粒子表面に強固に付着した添加物はその後の磁選でも除
去されずに鉄粉粒子表面に残り、鉄粉を成形した際の鉄
粉粒子同士の直接接触を妨害するため鉄粉の成形性及び
焼結後の機械的性質が低下する。
In atomized iron powder, a method of adding to the iron powder before finish reduction or as described in JP-B-52-36750, the additives are mixed in the molten metal and atomized, cooled, and solidified to produce a composite powder. It is also possible to produce iron powder excellent in machinability by the method described above or the method of mixing additives with a spray medium and spraying as in JP-A-61-17703, but these also have the following problems. There is. That is, the method of adding to the iron powder before finish reduction is that the additive adhered to the surface of the relatively spherical iron powder particles has no metallurgical binding force with the iron powder particles as shown in FIG. 3 (c). Since most of them are easily removed by magnetic separation after finish reduction, even if additives are added, no additive remains in the iron powder after finish reduction, so that there is no effect of improving machinability. In addition, in the method of adding to the molten metal or the spray medium, as shown in FIG. 3 (d), some of the additives are included inside the iron powder particles, and some of them are firmly attached to the surface of the iron powder particles. . Additives firmly attached to the surface of the iron powder particles are not removed by the subsequent magnetic separation and remain on the surface of the iron powder particles, which interferes with the direct contact between the iron powder particles when the iron powder is molded. And the mechanical properties after sintering are reduced.

これらに対してこの発明では、還元鉄粉の粗還元前又は
仕上還元前に添加物を添加する。そうすることによって
たとえば粗還元前添加では第1図(b)に示したように
酸化鉄表面に付着した添加物は粗還元時に酸化鉄が焼結
することにより添加物が鉄粉粒間に閉じこめられる。一
方鉄粉粒間に閉じこめられずに表面に付着した添加物
は、酸化鉄粉と冶金的に付着したものではないので容易
に後工程の磁選により除去される。従って鉄粉粒子表面
には添加物がなく、還元鉄粉の粒内に酸化物が存在する
鉄粉ができる。これは鉄粉を成形した際の鉄粉粒子同士
の直接接触を妨害することがないため鉄粉の成形性及び
焼結後の機械的性質を低下させることがない。また、仕
上還元前の還元鉄粉に添加物を添加すると第1図(a)
に示したように添加物は鉄粉粒子表面の凹部と平滑な部
分とに付着するが、平滑な部分に付着した添加物は仕上
還元後の磁選により除去される。そのため鉄粉を成形し
た際の鉄粉粒子同士の直接接触を妨害せず、したがって
鉄粉の成形性及び焼結後の機械的性質を添加させない鉄
粉ができるのである。
On the other hand, in the present invention, the additive is added before the crude reduction or finish reduction of the reduced iron powder. By doing so, for example, in the addition before rough reduction, as shown in FIG. 1 (b), the additive adhered to the surface of the iron oxide is confined between the iron powder particles due to the sintering of the iron oxide during the rough reduction. To be On the other hand, the additive that is not confined between the iron powder particles and adheres to the surface is not metallurgically adhered to the iron oxide powder, and thus is easily removed by the magnetic separation in the subsequent step. Therefore, there is no additive on the surface of the iron powder particles, and an iron powder in which an oxide exists in the particles of the reduced iron powder is formed. This does not hinder the direct contact between the iron powder particles when the iron powder is molded, and thus does not deteriorate the moldability of the iron powder and the mechanical properties after sintering. Moreover, when additives are added to the reduced iron powder before finish reduction, FIG. 1 (a)
As shown in, the additive adheres to the concave portion and the smooth portion on the surface of the iron powder particles, but the additive adhered to the smooth portion is removed by magnetic separation after finish reduction. Therefore, it is possible to obtain an iron powder that does not interfere with the direct contact between the iron powder particles when the iron powder is molded, and thus does not add the moldability of the iron powder and the mechanical properties after sintering.

以下に限定理由を説明する。The reasons for limitation will be described below.

MgO−SiO2系複合酸化物粉及びガラス粉を単独または両
方を添加するいずれの場合でも0.1%に満たないとその
効果がほとんどなく、一方1.5%を超えると鉄粉の圧縮
性が極端に悪くなるので0.1〜1.5%とした。
In either case of adding MgO-SiO 2 composite oxide powder and glass powder alone or both, if less than 0.1%, there is almost no effect, while if it exceeds 1.5%, the compressibility of iron powder is extremely poor. Therefore, it was set to 0.1 to 1.5%.

MgO−SiO2系複合酸化物粉においてMgO/SiO2モル比が0.5
に満たないと第2図の平衡状態図からも予測されるよう
に、1543℃の液相量が少なくなるので切削時に切削工具
に付着して切削工具を保護、潤滑する効果及び切削工具
と焼結鋼との炭素の拡散反応を防止する効果が低減し、
切削工具の寿命が短くなっていまうのでMgO/SiO2モル比
を0.5〜5.0程度とするのが好ましい。
MgO / SiO 2 molar ratio in the MgO-SiO 2 composite oxide powder 0.5
As shown in the equilibrium diagram of Fig.2, the amount of liquid phase at 1543 ℃ decreases, so the effect of sticking to the cutting tool during cutting, protecting and lubricating the cutting tool, and The effect of preventing the carbon diffusion reaction with the binding steel is reduced,
Since the life of the cutting tool is shortened, it is preferable to set the MgO / SiO 2 molar ratio to about 0.5 to 5.0.

MgO−SiO2系複合酸化物粉又はガラス粉の粒度は、鉄粉
の粒内に存在するためには細かい程好ましいが、325メ
ッシュ(0.044mm)以下であれば十分である。
The particle size of the MgO-SiO 2 -based composite oxide powder or glass powder is preferably as fine as possible in order to be present in the particles of iron powder, but 325 mesh (0.044 mm) or less is sufficient.

(実施例) 実施例1 ミルスケールに325メッシュ以下のタルク粉(33%MgO−
60%SiO2)をそれぞれ0.1%、0.5%、1.0%及び1.5%添
加して1150℃、44時間コークス中で粗還元し、100メッ
シュ以下に粉砕、磁選後900℃、1時間の仕上還元を施
し、磁選して鉄粉とした。
(Example) Example 1 Talc powder (33% MgO-) having 325 mesh or less on a mill scale.
60% SiO 2 ) was added 0.1%, 0.5%, 1.0% and 1.5% respectively, and coarse reduction was performed in coke at 1150 ° C. for 44 hours, then crushed to 100 mesh or less, and 900 ° C. for 1 hour after magnetic reduction. The iron powder was applied and magnetically selected.

それとは別にミルスケールを1150℃、44時間コークス中
で粗還元し、得られた粉砕粉を磁選後、325メッシュ以
下のタルク粉をそれぞれ0.1%、0.5%、1.0%、1.5%及
び2.0%添加した後900℃、1時間の仕上還元を施し、磁
選して鉄粉とした。
Separately, mill scale was roughly reduced in coke at 1150 ° C. for 44 hours, the obtained pulverized powder was magnetically separated, and 0.1%, 0.5%, 1.0%, 1.5% and 2.0% of talc powder of 325 mesh or less were added, respectively. After that, finish reduction was performed at 900 ° C. for 1 hour, and magnetic separation was performed to obtain iron powder.

また、比較例としてミルスケールに上記と同条件で粗還
元、磁選、仕上還元、磁選を施し、得られた鉄粉にタル
ク粉をそれぞれ0.1%、0.5%、1.0%、1.5%及び2.0%
添加した。
Further, as a comparative example, rough reduction, magnetic separation, finish reduction, and magnetic separation were performed on a mill scale under the same conditions as above, and 0.1%, 0.5%, 1.0%, 1.5% and 2.0% of talc powder were respectively added to the obtained iron powder.
Was added.

これらのタルク入り鉄粉及びタルク無添加の鉄粉に電解
銅粉を2%、天然黒鉛粉を0.5%内枠で、固体潤滑剤と
してステアリン酸亜鉛を外枠で1%それぞれ添加した。
これらの鉄粉を成形圧力5t/cm2で成形した際の圧粉体特
性を第4図に示す。
To these iron powders containing talc and iron powders without talc, 2% of electrolytic copper powder, 0.5% of natural graphite powder were added in the inner frame, and 1% of zinc stearate as a solid lubricant was added in the outer frame.
Fig. 4 shows the properties of the green compact when these iron powders were compacted at a compacting pressure of 5 t / cm 2 .

同図から明らかなようにどの添加位置でもタルク添加量
とともに圧粉密度及び抜出力は低下する。ラトラー値に
ついては、タルク添加量とともに上昇する(悪化する)
傾向であるが、この発明である、粗還元前及び仕上還元
前の鉄粉にタルク粉を添加したものは、仕上還元後添加
に比べてわずかに悪化するだけである。この理由は後述
する。
As is apparent from the figure, the powder density and the ejection force decrease with the addition amount of talc at any addition position. The ratler value increases (becomes worse) with the amount of talc added
Although there is a tendency, the talc powder added to the iron powder before the crude reduction and before the finish reduction, which is the present invention, is only slightly worse than the addition after the finish reduction. The reason for this will be described later.

第5図に、前記混合粉を圧粉密度6.8g/cm3でJSPM標準の
引張試験片及びシャルピー衝撃試験片を成形し、流量4
/minの分解アンモニアガス雰囲気中で600℃、30分間
の脱ろう後、1130℃で30分間の焼結を行い、寸法変化、
引張強さ、伸び及び衝撃値を測定した結果を示す。な
お、寸法変化は焼結前後のシャルピー衝撃試験片の長さ
方向で測定した。
In Fig. 5, the mixed powder was molded into a JSPM standard tensile test piece and a Charpy impact test piece with a green density of 6.8 g / cm 3 , and a flow rate of 4
After dewaxing at 600 ° C for 30 minutes in a decomposed ammonia gas atmosphere of / min, sinter at 1130 ° C for 30 minutes to change the dimensions,
The results of measuring tensile strength, elongation and impact value are shown. The dimensional change was measured in the length direction of the Charpy impact test piece before and after sintering.

同図から明らかなように、寸法変化はどの添加位置でも
タルク添加量によらずほぼ一定である。引張強さについ
ては仕上還元後添加のものがタルク添加量とともに大き
く低下しているのに対し、この発明の粗還元前添加及び
仕上げ還元前添加ではほとんど低下しなかった。これは
ラトラー値がそうであったのと同様に仕上還元後にタル
ク粉を添加するとタルクが鉄粉粒子表面に付着すること
で鉄粉粒子同士の直接接触を妨げるために引張強さが低
下し、一方、粗還元前又は仕上還元前に添加するとタル
クが鉄粉粒子間に存在または鉄粉粒子表面の凹部に存在
する状態となって鉄粉粒子間の直接接触を妨げないため
に引張強さの低下が少ないのである。伸び及び衝撃値が
粗還元前及び仕上還元前にタルクを添加した鉄粉におい
て特性の低下が少ないのも同様の理由によるものであ
る。
As is clear from the figure, the dimensional change is almost constant regardless of the addition amount of talc at any addition position. Regarding the tensile strength, those added after finishing reduction significantly decreased with the addition amount of talc, whereas the additions before rough reduction and addition before finish reduction of the present invention hardly decreased. This is similar to the Ratler value was that when talc powder was added after finish reduction, talc adhered to the surface of the iron powder particles to prevent direct contact between the iron powder particles, resulting in a decrease in tensile strength, On the other hand, if talc is added between the iron powder particles or present in the recesses on the surface of the iron powder particles when added before rough reduction or finish reduction, it does not interfere with the direct contact between the iron powder particles. The decrease is small. For the same reason, the elongation and impact value of the iron powder to which talc was added before rough reduction and finish reduction did not deteriorate much.

第6図に内径20mm、外径60mm、高さ30mmの切削試験片を
前述の引張試験と同条件で成形、焼結し、その後3個接
続して切削試験を行い、切削工具の横逃面摩耗量及び表
面粗さ(平均粗さRa)を測定した結果を示す。ここで切
削条件は次のとおりであった。
In Fig. 6, cutting test pieces with an inner diameter of 20 mm, an outer diameter of 60 mm, and a height of 30 mm were molded and sintered under the same conditions as the above-mentioned tensile test, and then three were connected to perform a cutting test. The result of having measured the amount of abrasion and surface roughness (average roughness Ra) is shown. Here, the cutting conditions were as follows.

切込み ……1.0mm 送り ……0.1mm/rev. 切削速度 ……200m/min 切削距離 1272m 切削工具 ……超硬JIS P10種 第6図からどの添加位置でもタルク添加量とともに横逃
面摩耗量が低下していることがわかる。これは切削工具
の摩耗量がタルク添加量のみに影響され、添加位置によ
る差はないためである。表面粗さも同様の傾向である。
Depth: 1.0 mm Feed: 0.1 mm / rev. Cutting speed: 200 m / min Cutting distance: 1272 m Cutting tool: Carbide JIS P10 class From Fig. 6, the amount of talc addition and the amount of lateral flank wear can be seen at any addition position. You can see that it is decreasing. This is because the wear amount of the cutting tool is affected only by the addition amount of talc, and there is no difference depending on the addition position. The surface roughness has a similar tendency.

タルク添加量は、圧粉体特性、焼結体特性及び横逃面摩
耗量から判断して0.1〜1.5%が好ましいことがわかっ
た。
It was found that the amount of talc added is preferably 0.1 to 1.5%, judging from the properties of the green compact, the properties of the sintered body and the amount of lateral flank wear.

一方、比較例としてアトマイズ鉄粉でもタルク粉添加位
置をアトマイズ時、仕上還元前および仕上還元後とに、
それぞれ分け、タルク添加量をそれぞれ0.1%、0.5%、
1.0%、1.5%及び2.0%に調整して添加した。なお、仕
上還元前及び仕上還元後に添加する場合にはタルクは任
意の量を添加可能であるが、アトマイズ時に添加する場
合は、任意の量の添加が困難なため、水中に分散させる
タルク生粉の量を変化して2種類のタルク添加アトマイ
ズ粉をペンシルジェット方式により水圧150kg/cm2、流
量230/minで製造し、その2種及び無添加のアトマイ
ズ生粉を適量混合することによって添加量をそれぞれ0.
1%、0.5%、1.0%、1.5%及び2.0%に調整したもので
ある。仕上還元はすべて950℃、1時間行い、磁選はア
トマイズ後及び仕上還元後に実施した。
On the other hand, even as a comparative example, atomized iron powder at the time of atomizing the talc powder addition position, before finish reduction and after finish reduction,
Divide each, the amount of talc added is 0.1%, 0.5%,
It was adjusted to 1.0%, 1.5% and 2.0% and added. It should be noted that talc can be added in any amount when added before and after finish reduction, but when added during atomization, it is difficult to add any amount, so talc raw powder dispersed in water The amount of talc-added atomized powder is changed by the pencil jet method at a water pressure of 150 kg / cm 2 and a flow rate of 230 / min. 0 for each.
It is adjusted to 1%, 0.5%, 1.0%, 1.5% and 2.0%. All finish reductions were performed at 950 ° C. for 1 hour, and magnetic separation was performed after atomization and finish reduction.

得られた鉄粉に前記した還元鉄粉同様、電解銅粉を2
%、天然黒鉛粉を0.5%内枠で、ステアリン酸亜鉛を1
%外枠でそれぞれ添加した。成形圧力5t/cm2の圧粉体特
性を第7図に示す。同図から明らかなようにアトマイズ
時及び仕上還元後添加ではタルク添加量とともに圧粉密
度が低下するが、仕上還元前添加ではそれほど低下しな
い。これは仕上還元前に添加する場合は、アトマイズ鉄
粉が比較的球状なので還元鉄粉のように凹部にくわえこ
むことがなく、仕上還元後の磁選によりタルクが大部分
除去されるために圧粉密度がさほど低下しないのであ
る。抜出力の値については、大きくばらついているが、
アトマイズ時及び仕上還元後添加ではタルク添加量とと
もに低下する傾向があるが、仕上還元前添加では添加し
たタルクが大部分仕上還元後の磁選により除去されるの
であまり変化はない。
In the same way as the reduced iron powder mentioned above, the electrolytic copper powder is added to the obtained iron powder.
%, Natural graphite powder 0.5% in the inner frame, zinc stearate 1
% Each was added in the outer frame. Fig. 7 shows the characteristics of the green compact at a molding pressure of 5 t / cm 2 . As is clear from the figure, the powder density decreases with the amount of talc added at the time of atomization and addition after finish reduction, but not so much with the addition before finish reduction. This is because when added before finish reduction, atomized iron powder is relatively spherical, so it does not fit into the recess like reduced iron powder, and most of the talc is removed by magnetic separation after finish reduction. The density does not drop so much. The output value varies widely,
At the time of atomization and after the addition of finish reduction, it tends to decrease with the addition amount of talc, but in the addition before the finish reduction, the added talc is mostly removed by magnetic separation after the finish reduction, so there is not much change.

第8図は還元鉄粉と同条件で焼結した焼結体特性を示し
たものである。同図から明らかなように寸法変化はどの
添加位置でもタルク添加量によらずほぼ一定である。引
張強さについては、仕上還元前に添加する場合がタルク
添加量とともにあまり低下しないのは前述の理由によ
る。アトマイズ時及び仕上還元後に添加する場合にはタ
ルク添加量とともに低下している。伸び及び衝撃値に関
しても同様の傾向であった。
FIG. 8 shows the characteristics of a sintered body obtained by sintering the reduced iron powder under the same conditions. As is clear from the figure, the dimensional change is almost constant regardless of the addition amount of talc at any addition position. Regarding the tensile strength, when it is added before finish reduction, it does not decrease much with the addition amount of talc for the reason described above. When added during atomization and after finish reduction, it decreases with the amount of talc added. The same tendency was observed for elongation and impact value.

第9図に切削試験を行った結果を示す。同図から明らか
なように仕上還元前に添加する場合は、引張強さと同じ
ようにタルクが仕上還元後の磁選で大部分除去されるた
め横逃面摩耗量は低下しない。
FIG. 9 shows the result of the cutting test. As is clear from the figure, when added before finish reduction, talc is largely removed by magnetic separation after finish reduction as in the case of tensile strength, so the amount of lateral flank wear does not decrease.

以上述べたようにアトマイズ鉄粉では、アトマイズ時に
添加すると粒子内部及び粒子表面にタルクが強固に付着
し、粒子表面に強固に付着したタルクはアトマイズ後の
磁選でも仕上還元後の磁選でも除去されず、鉄粉粒子同
士の直接接触を妨害するため強度が低下する。また、仕
上還元前に添加するとアトマイズ鉄粉は還元鉄粉のよう
な不規則形状ではなく、球形に近いため仕上還元後の磁
選によってタルクが大部分除去されるので添加効果がな
い。仕上還元後に添加すると還元鉄粉と同様に鉄粉粒子
表面にタルクが付着して鉄粉粒子同士の直接接触を妨げ
るので強度が低下して好ましくない。
As described above, in the atomized iron powder, talc is strongly adhered to the inside of the particle and the particle surface when added during atomization, and talc firmly adhered to the particle surface is not removed by the magnetic separation after atomization or the magnetic separation after finish reduction. Since the direct contact between the iron powder particles is hindered, the strength is reduced. Further, if added before finish reduction, atomized iron powder does not have an irregular shape like reduced iron powder, but since it is close to a spherical shape, most of talc is removed by magnetic separation after finish reduction, so there is no addition effect. If added after finishing reduction, talc adheres to the surface of the iron powder particles as in the case of the reduced iron powder and prevents direct contact between the iron powder particles.

実施例2 33%MgO−60%SiO2組成のタルク(滑石)に試薬のMgOま
たはSiO2を種々添加して焼成し、表1に示す組成のMgO
−SiO2系複合酸化物粉を準備した。
Example 2 MgO having a composition shown in Table 1 was fired by adding various reagents MgO or SiO 2 to talc (talc) having a composition of 33% MgO-60% SiO 2.
—SiO 2 -based composite oxide powder was prepared.

このMgO−SiO2系複合酸化物粉をミルスケールにそれぞ
れ0.1%、0.3%、0.5%、0.75%、1.0%、1.3%、1.6%
及び2.0%添加し、実施例1と同条件で粗還元、仕上還
元を施して還元鉄粉を得た。これらの鉄粉に電解銅粉を
2%及び天然黒鉛粉を0.5%内枠で、ステアリン酸亜鉛
を外枠で1%それぞれ添加した。
This MgO-SiO 2 composite oxide powder is mill scale 0.1%, 0.3%, 0.5%, 0.75%, 1.0%, 1.3%, 1.6%, respectively.
And 2.0% were added, and crude reduction and finish reduction were performed under the same conditions as in Example 1 to obtain reduced iron powder. To these iron powders, 2% of electrolytic copper powder and 0.5% of natural graphite powder were added in an inner frame, and zinc stearate was added in an outer frame of 1%.

成形圧力5t/cm2で成形した圧粉体特性を第10図に示す。
同図からMgO−SiO2系複合酸化物粉の添加量とともに圧
粉密度、抜出力が低下し、ラトラー値は悪化することが
わかる。
Fig. 10 shows the characteristics of the green compact molded at a molding pressure of 5 t / cm 2 .
From the figure, it can be seen that the powder density and the ejection force decrease with the addition amount of the MgO-SiO 2 composite oxide powder, and the Ratler value deteriorates.

次に実施例1と同じ条件で焼結を行い、焼結後寸法変
化、引張強さ、伸び及び衝撃値について測定した。それ
らの結果を第11図に示す。同図から寸法変化は添加量と
ともにほとんど変化しないが、引張強さ、伸び及び衝撃
値は、添加量とともに低下し、添加量が1.5%を超える
と急激に低下していることがわかる。
Next, sintering was performed under the same conditions as in Example 1, and after sintering, dimensional change, tensile strength, elongation and impact value were measured. The results are shown in FIG. From the figure, it is understood that the dimensional change hardly changes with the addition amount, but the tensile strength, the elongation and the impact value decrease with the addition amount, and sharply decrease when the addition amount exceeds 1.5%.

第12図に切削試験後の切削工具の横逃面摩耗量、表面粗
さと、MgO−SiO2系複合酸化物粉添加量との関係を示
す。同図から明らかなように横逃面摩耗量及び表面粗さ
はMgO−SiO2系複合酸化物粉添加量とともに低下してい
る。
Horizontal逃面wear amount of the cutting tool after the cutting test in FIG. 12, and the surface roughness, showing the relationship between MgO-SiO 2 composite oxide powder amount. Obviously lateral逃面wear amount and surface roughness as the figure is decreased with MgO-SiO 2 composite oxide powder amount.

実施例3 33%MgO−60%SiO2組成のタルクに試薬のMgOまたはSiO2
を種々添加して焼成し、表2に示す組成のMgO−SiO2
複合酸化物粉を準備した。
Example 3 Talc having a composition of 33% MgO-60% SiO 2 and reagent MgO or SiO 2
Was added and fired to prepare MgO—SiO 2 composite oxide powder having the composition shown in Table 2.

これらのMgO−SiO2系複合酸化物粉を325メッシュ以下に
粉砕し、ミルスケールにそれぞれ0.75%添加してコーク
ス中で1150℃、44時間の粗還元を行った後、100メッシ
ュ以下に粉砕、磁選した。さらにH2中にて900℃、1時
間の仕上還元を施し解砕後再度磁選した(実施例A〜
D、比較例E,F)。比較例として同一のミルスケールを
同条件で粗還元、粉砕、磁選、仕上還元、解砕、磁選を
行ったMgO−SiO2無添加の還元鉄粉も準備した(比較例
G)。なお、いずれの鉄粉も見掛け密度を2.5g/cm3にな
るようにした。
These MgO-SiO 2 -based composite oxide powders were pulverized to 325 mesh or less, and 0.75% each was added to the mill scale to perform crude reduction at 1150 ° C for 44 hours, and then pulverized to 100 mesh or less, Magnetically selected. Further, the product was subjected to finish reduction in H 2 at 900 ° C. for 1 hour, crushed, and then magnetically selected again (Examples A to
D, Comparative Examples E, F). As a comparative example, a reduced iron powder containing no MgO—SiO 2 added was also prepared by performing rough reduction, pulverization, magnetic separation, finish reduction, crushing, and magnetic separation on the same mill scale under the same conditions (Comparative Example G). The apparent density of each iron powder was adjusted to 2.5 g / cm 3 .

これらの鉄粉に電解銅粉を2%、天然黒鉛粉を0.5%混
合し、さらにこの混合粉に対し固体潤滑剤としてステア
リン酸亜鉛を外枠で1.0%混合した。成形圧力5t/cm2
成形した時の圧粉体特性を表3に示す。
2% of electrolytic copper powder and 0.5% of natural graphite powder were mixed with these iron powders, and 1.0% of zinc stearate as a solid lubricant was mixed with the mixed powder in the outer frame. Table 3 shows the properties of the green compact when molded at a molding pressure of 5 t / cm 2 .

同表から明らかなように、ミルスケールに添加物を入れ
た記号A〜Fはいずれも無添加の記号Gよりも圧粉密度
が0.06〜0.10g/cm3低下している。抜出力及びラトラー
値に関してはGと同等の値である。
As is clear from the table, all of the symbols A to F in which the additive was added to the mill scale had the green compact density lower by 0.06 to 0.10 g / cm 3 than the symbol G without the additive. The output and the ratler value are the same as G.

その後圧粉密度6.8g/cm3のJSPM標準の引張試験片及び内
径20mm、外径60mm、高さ30mmの切削試験用リング試験片
を成形し、流量4/minの分解アンモニアガス雰囲気中
で600℃、30分間の脱ろう後、1130℃で30分間の焼結を
行い、焼結後の寸法変化、引張強さ、伸び、衝撃値さら
には切削試験後の切削工具の横逃面摩耗量、表面粗さを
測定した。ここで切削試験の切削条件は次のとおりであ
った。
After that, a tensile test piece of the JISPM standard with a powder density of 6.8 g / cm 3 and a ring test piece for cutting test with an inner diameter of 20 mm, an outer diameter of 60 mm and a height of 30 mm were molded, and 600 mm in a decomposed ammonia gas atmosphere with a flow rate of 4 / min. After dewaxing at 30 ° C for 30 minutes, sintering at 1130 ° C for 30 minutes, dimensional change after sintering, tensile strength, elongation, impact value, and lateral flank wear amount of the cutting tool after cutting test, The surface roughness was measured. Here, the cutting conditions of the cutting test were as follows.

切込み ……1.0mm 送り ……0.1mm/rev. 切削速度 ……200m/min 切削距離 ……1272m 切削工具 ……超硬JIS P10種 焼結後の寸法変化、引張強さ、伸び及び衝撃値を第12図
に示す。実施例A〜D、比較例E,Fの寸法変化、引張強
さ、伸び及び衝撃値とも無添加(比較例G)と変わらず
また、MgO/SiO2モル比とも変化せず一定である。
Depth …… 1.0mm Feed …… 0.1mm / rev. Cutting speed …… 200m / min Cutting distance …… 1272m Cutting tool …… Cemented Carbide JIS P10 Class Dimensional change after sintering, tensile strength, elongation and impact value It is shown in FIG. The dimensional changes, tensile strengths, elongations and impact values of Examples A to D and Comparative Examples E and F are the same as those of the additive-free (Comparative Example G), and the MgO / SiO 2 molar ratio is unchanged.

MgO−SiO2モル比と切削試験後の切削工具の横逃面摩耗
量、表面粗さとの関係を第13図に示す。同図から明らか
なように横逃面摩耗量はMgO−SiO2系複合酸化物を添加
することによって格段に向上し、特にMgO/SiO2モル比が
0.5〜5.0のものが優れている。表面粗さについても同様
である。
Horizontal逃面wear amount of the cutting tool after the cutting test with MgO-SiO 2 molar ratio, the relationship between the surface roughness shown in FIG. 13. As is clear from the figure, the amount of lateral flank wear is significantly improved by adding the MgO-SiO 2 composite oxide, and in particular the MgO / SiO 2 molar ratio is
Those of 0.5 to 5.0 are excellent. The same applies to the surface roughness.

実施例4 ミルスケールに325メッシュ以下のタルク粉を0.55%添
加して1150℃、44時間コークス中で粗還元し粉砕後、90
0℃、1時間の仕上還元を施して鉄粉とした。
Example 4 0.55% of talc powder of 325 mesh or less was added to a mill scale, and coarse reduction was performed in a coke at 1150 ° C. for 44 hours, followed by crushing.
Finishing reduction was performed at 0 ° C. for 1 hour to obtain iron powder.

これとは別に、ミルスケールに粗還元を施した後タルク
を0.55%添加した鉄粉及びミルスケールに粗還元・仕上
還元を施した後タルクを0.55%添加した鉄粉も準備し
た。
Separately from this, an iron powder in which 0.55% of talc was added after rough reduction was applied to the mill scale and an iron powder in which 0.55% of talc was added after rough reduction and finish reduction were performed on the mill scale were also prepared.

比較例として水中に325メッシュ以下のタルク粉を分散
させてペンシルジェット方式により水圧150kg/cm2、流
量230/minで水アトマイズし、100メッシュに分級し乾
燥後950℃で1時間の仕上還元を施した。得られた鉄粉
のSi及びMgの分析量がそれぞれ0.17%と0.056%であっ
たので、アトマイズ鉄粉にタルクを任意量添加してSi、
Mgを分析した結果と比較して、タルクを0.54〜0.56%含
んだ鉄粉と予想された。また、通常の方法で水アトマイ
ズし仕上還元前、後に325メッシュ以下のタルク粉をそ
れぞれ0.55%添加した鉄粉も準備した。タルク粉を添加
しない鉄粉も準備した。
As a comparative example, talc powder of 325 mesh or less is dispersed in water, water atomized with a pencil jet method at a water pressure of 150 kg / cm 2 , and a flow rate of 230 / min, classified to 100 mesh, dried and then subjected to a finishing reduction at 950 ° C for 1 hour. gave. Since the analyzed amounts of Si and Mg of the obtained iron powder were 0.17% and 0.056%, respectively, by adding an arbitrary amount of talc to the atomized iron powder, Si,
It was expected that the iron powder contained 0.54 to 0.56% of talc in comparison with the results of Mg analysis. Further, iron powder was prepared by atomizing water by a usual method and adding 0.55% of talc powder of 325 mesh or less before and after finish reduction, respectively. An iron powder without addition of talc powder was also prepared.

これらの鉄粉に電解銅粉を2%及び天然黒鉛粉を0.5%
内枠で、ステアリン酸亜鉛を外枠で1%添加した。
2% electrolytic copper powder and 0.5% natural graphite powder to these iron powders
In the inner frame, zinc stearate was added 1% in the outer frame.

圧形成力5t/cm2での圧粉体特性を表4に示す。Table 4 shows the properties of the green compact at a pressure forming force of 5 t / cm 2 .

同表から明らかなように、還元鉄粉では、実施例である
粗還元前及び仕上還元後にタルク粉を添加したものが無
添加の鉄粉と比較して圧縮性は若干劣るもののラトラー
値は0.7%台と無添加とほぼ同一の値を示した。アトマ
イズ鉄粉では、アトマイズ時及び仕上還元後に添加した
ものはラトラー値が1%を超えるまでに悪化していて、
一方仕上還元前に添加したものは、仕上還元後の磁選に
より添加したタルク粉が除去されたため無添加の鉄粉と
ほぼ同じラトラー値を示した。
As is clear from the table, in the reduced iron powder, the ratler value of the one to which the talc powder was added before the rough reduction and after the finish reduction which are examples is slightly incompressible as compared with the iron powder without the additive, but is 0.7. The values were almost the same as those in the% range and no addition. In atomized iron powder, those added during atomization and after finish reduction deteriorated until the ratler value exceeded 1%,
On the other hand, the one added before the finishing reduction showed almost the same ratler value as the iron powder without addition because the added talc powder was removed by the magnetic separation after the finishing reduction.

次に圧粉密度6.8g/cm3の圧粉体を分解アンモニアガス中
で1130℃、30分間の焼結を行った。表5に焼結後の寸法
変化、引張強さ、伸び、衝撃値、さらに切削試験後の切
削工具の横逃面摩耗量及び表面粗さを示す。
Next, a green compact having a green compact density of 6.8 g / cm 3 was sintered in decomposed ammonia gas at 1130 ° C. for 30 minutes. Table 5 shows the dimensional change after sintering, tensile strength, elongation, impact value, and the lateral flank wear amount and surface roughness of the cutting tool after the cutting test.

同表より明らかなように、還元鉄粉において、実施例の
粗還元前及び仕上還元前添加が、無添加の鉄粉と同じ強
度レベルでありながら、工具摩耗量が少ない。従ってこ
の発明の鉄粉は、成形性及び焼結後の被削性を低下させ
ずに被削性を改善できることがわかる。
As is clear from the table, in the reduced iron powder, the amount of tool wear is small even though the addition before rough reduction and the addition before finish reduction of the example have the same strength level as the iron powder without addition. Therefore, it is understood that the iron powder of the present invention can improve the machinability without lowering the formability and the machinability after sintering.

一方仕上還元後に添加したものは、鉄粉同士の直接接触
を妨害されているために強度が低く、工具摩耗量も小さ
い。また、アトマイズ鉄粉において、アトマイズ時と、
仕上還元後に添加した鉄粉の強度が低く、工具摩耗量が
少ない。仕上還元前に添加した鉄粉は、無添加粉と同等
の強度であり、工具摩耗量であった。これはアトマイズ
鉄粉の仕上還元前にタルク粉を添加すると仕上還元後の
磁選でタルク粉のほとんどが除去されるからである。
On the other hand, the one added after finishing reduction has low strength because the direct contact between the iron powders is disturbed, and the tool wear amount is also small. In atomized iron powder, when atomizing,
The iron powder added after finishing reduction has low strength and less tool wear. The iron powder added before finish reduction had the same strength as the additive-free powder and the amount of tool wear. This is because if talc powder is added before the finish reduction of atomized iron powder, most of the talc powder is removed by magnetic separation after finish reduction.

実施例5 33%MgO−60%SiO2組成のタルク粉をミルスケールに0.7
5%添加した。これとは別に73%SiO2−13%Na2O−10%C
aO−4%MgO組成のソーダガラス粉をミルスケールに0.7
5%添加した。これらの原料粉をコークス中で1150℃、4
4時間の粗還元をした後、100メッシュ以下に粉砕し、磁
選した。さらにH2中にて900℃、1時間の仕上還元を施
し、解砕後再度磁選した。比較例として何も添加しない
同一のミルスケールを同条件で粗還元、粉砕、磁選、仕
上還元、解砕、磁選を行って実施例と見掛け密度をほぼ
等しくした還元鉄粉を準備した。これらの3種類の鉄粉
に電解銅粉を2%、天然黒鉛粉を0.5%混合し、さらに
この混合物に対して固体潤滑剤としてステアリン酸亜鉛
を外枠で1.0%混合した。
Example 5 A talc powder having a composition of 33% MgO-60% SiO 2 was added to a mill scale at 0.7.
5% was added. Separately, 73% SiO 2 -13% Na 2 O-10% C
aO-4% MgO composition soda glass powder on a mill scale 0.7
5% was added. These raw powders were placed in coke at 1150 ℃, 4
After rough reduction for 4 hours, it was ground to 100 mesh or less and magnetically selected. Further, finish reduction was performed in H 2 at 900 ° C. for 1 hour, and after crushing, magnetic separation was performed again. As a comparative example, the same mill scale to which nothing was added was subjected to rough reduction, pulverization, magnetic separation, finish reduction, crushing, and magnetic separation under the same conditions to prepare a reduced iron powder having an apparent density almost equal to that of the example. 2% of electrolytic copper powder and 0.5% of natural graphite powder were mixed with these three kinds of iron powders, and 1.0% of zinc stearate as a solid lubricant was mixed with this mixture in the outer frame.

成形圧力5t/cm2の圧粉体特性を表6に示す。Table 6 shows the properties of the green compact at a molding pressure of 5 t / cm 2 .

実施例は若干圧粉密度が低いが、抜出力及びラトラー値
は同等である。
In the example, the green compact density is slightly low, but the ejection force and the ratler value are the same.

その後圧粉密度6.8g/cm3のJSPM標準の引張試験片、シャ
ルピー衝撃試験片、及び内径20mm、外径60mm、高さ30mm
の切削試験用リング試験片を成形し、流量4/minの分
解アンモニアガス雰囲気中で600℃、30分間の脱ろう
後、1130℃で30分間の焼結を行い、焼結後の寸法変化、
引張強さ、伸び、衝撃値及び切削試験後の切削工具の横
逃面摩耗量、表面粗さを測定した。ここで切削試験の条
件は次のとおりである。
After that, the tensile test piece and Charpy impact test piece of the JSPM standard with a powder density of 6.8 g / cm 3 and an inner diameter of 20 mm, an outer diameter of 60 mm and a height of 30 mm
The ring test piece for cutting test was molded, dewaxed at 600 ° C for 30 minutes in a decomposed ammonia gas atmosphere at a flow rate of 4 / min, and then sintered at 1130 ° C for 30 minutes to change the dimensions after sintering.
The tensile strength, the elongation, the impact value, the lateral flank wear amount of the cutting tool after the cutting test, and the surface roughness were measured. Here, the conditions of the cutting test are as follows.

切込み ……1.0mm 送り ……0.1mm/rev. 切削速度 ……200m/min 切削距離 ……1272m 切削工具 ……超硬JIS P10種 以上の結果を表7に示す。Depth …… 1.0mm feed …… 0.1mm / rev. Cutting speed …… 200m / min Cutting distance …… 1272m Cutting tool …… Cemented Carbide JIS P10 The above results are shown in Table 7.

実施例は引張強さ及び衝撃値は無添加のものとほぼ同等
であるが横逃面摩耗量がほぼ半減されているのがわか
る。また表面粗さも改善されている。
It can be seen that in the examples, the tensile strength and the impact value are almost the same as those without addition, but the lateral flank wear amount is almost halved. The surface roughness is also improved.

実施例6 実施例2で使用した表1の記号AのMgO−SiO2系複合酸
化物粉及び73%SiO2−13%Na2O−10%CaO−4%MgO組成
のソーダガラス粉を1対1で混合し、この混合粉をミル
スケールに0.75%添加した。比較例として実施例2の比
較例Gの還元鉄粉を用意した。
Example 6 The MgO—SiO 2 -based composite oxide powder represented by the symbol A in Table 1 and 73% SiO 2 -13% Na 2 O-10% CaO-4% MgO composition soda glass powder used in Example 2 were used. Mix 1: 1 and add 0.75% of this mixed powder to the mill scale. As a comparative example, the reduced iron powder of Comparative Example G of Example 2 was prepared.

これらの鉄粉に電解銅粉を2%、天然黒鉛粉を0.5%内
枠で、ステアリン酸亜鉛を外枠で1%添加した。成形圧
力5t/cm2の圧粉体特性を表8に示す。
To these iron powders, 2% of electrolytic copper powder, 0.5% of natural graphite powder was added in the inner frame, and 1% of zinc stearate was added in the outer frame. Table 8 shows the properties of the green compact at a molding pressure of 5 t / cm 2 .

実施例は鉄粉粒子中に添加物を含んでいるため圧粉密度
が比較例よりも低い。表9に焼結後の寸法変化、引張強
さ、伸び及び衝撃値を示す。
In the example, the powder density is lower than that of the comparative example because the iron powder particles contain the additive. Table 9 shows the dimensional change, tensile strength, elongation and impact value after sintering.

同表から、実施例と比較例とでは焼結後の機械的性質の
差はほとんどないと言える。
From the table, it can be said that there is almost no difference in mechanical properties after sintering between the example and the comparative example.

第13図に切削速度50,75,100,150及び200m/minと変化さ
せて切削後の切削工具の横逃面摩耗量、表面粗さについ
て調べた結果を示す。同図から明らかなように横逃面摩
耗量はいずれの切削速度においても実施例は比較例より
も少なが量を示していて、MgO−SiO2系複合酸化物粉と
ソーダガラス粉との複合添加ぎ広い切削条件にわたって
効果的であることを示している。表面粗さに関し、比較
例は切削速度が増加するとともに表面粗さが減少してい
て、これは溶製鋼でも言われているとおりである。実施
例は切削速度150m/minで極大を示している。この理由に
ついては切削時の切削工具への付着物が影響しているも
のと思われる。
Fig. 13 shows the results of examining the lateral flank wear amount and surface roughness of the cutting tool after cutting while changing the cutting speed to 50, 75, 100, 150 and 200 m / min. As is clear from the figure, the lateral flank wear amount shows a smaller amount at any cutting speed than the comparative example, and the composite of MgO-SiO 2 -based complex oxide powder and soda glass powder is shown. It shows that the additive is effective over a wide range of cutting conditions. Regarding the surface roughness, in the comparative example, the cutting speed increased and the surface roughness decreased, which is the same as what is said for the molten steel. The example shows a maximum at a cutting speed of 150 m / min. The reason for this seems to be that the deposits on the cutting tool during cutting have an effect.

(発明の効果) この発明の鉄粉を用いることによって、焼結時における
焼結炉内れんが及び発熱体の損傷を起こすことなく、焼
結後の寸法変化、機械的性質を従来の鉄粉と同等に保ち
ながら、被削性に優れた焼結機械部品を得ることができ
その効果は多大である。
(Effects of the Invention) By using the iron powder of the present invention, the dimensional change and mechanical properties after sintering can be made to be the same as those of the conventional iron powder without causing damage to the brick in the sintering furnace and the heating element during sintering. It is possible to obtain a sintered machine part having excellent machinability while maintaining the same level, and the effect is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の還元鉄粉の模式図、 第2図は、MgO−SiO2系の平衡状態図、 第3図は、比較例の鉄粉の模式図、 第4図は、還元鉄粉におけるタルク添加量と、圧粉体の
圧粉密度、抜出力及びラトラー値との関係を示すグラ
フ、 第5図は、還元鉄粉におけるタルク添加量と、焼結体の
寸法変化、引張強さ、伸び及び衝撃値との関係を示すグ
ラフ、 第6図は、還元鉄粉におけるタルク添加量と、切削試験
後の横逃面摩耗量、表面粗さとの関係を示すグラフ、 第7図は、アトマイズ鉄粉におけるタルク添加量と、圧
粉体の密度、抜出力及びラトラー値との関係を示すグラ
フ、 第8図、アトマイズ鉄粉におけるタルク添加量と、焼結
体の寸法変化、引張強さ、伸び及び衝撃値との関係を示
すグラフ、 第9図は、アトマイズ鉄粉におけるタルク添加量と、切
削試験後の横逃面摩耗量、表面粗さとの関係を示すグラ
フ、 第10図は、MgO−SiO2系複合酸化物粉の添加量と圧粉密
度、抜出力及びラトラー値との関係を示したグラフ、 第11図は、MgO−SiO2系複合酸化物粉の添加量と寸法変
化、引張強さ、伸び及び衝撃値との関係を示すグラフ、 第12図は、MgO−SiO2系複合酸化物粉の添加量と横逃面
摩耗量、表面粗さとの関係を示したグラフ、 第13図は、MgO/SiO2モル比と、寸法変化、引張強さ、伸
び及び衝撃値との関係を示すグラフ、 第14図は、MgO/SiO2モル比と、切削試験後の横逃面摩耗
量、表面粗さとの関係を示すグラフ、 第15図は、切削試験後の横逃面摩耗量、表面粗さとの関
係示すグラフである。 1……粒子、2……快削成分
FIG. 1 is a schematic diagram of reduced iron powder of the present invention, FIG. 2 is an equilibrium diagram of MgO—SiO 2 system, FIG. 3 is a schematic diagram of iron powder of a comparative example, and FIG. 4 is reduction. Fig. 5 is a graph showing the relationship between the talc addition amount in the iron powder, the green compact density of the green compact, the ejection force and the ratler value. Fig. 5 shows the talc addition amount in the reduced iron powder, the dimensional change of the sintered body, and the tensile strength. FIG. 7 is a graph showing the relationship between strength, elongation, and impact value, and FIG. 6 is a graph showing the relationship between the amount of talc added in the reduced iron powder, the lateral flank wear amount after the cutting test, and the surface roughness, FIG. Is a graph showing the relationship between the amount of talc added in atomized iron powder and the density, ejection force and ratler value of the green compact, FIG. 8, talc addition amount in atomized iron powder, dimensional change of sintered body, and tensile strength. Fig. 9 is a graph showing the relationship between strength, elongation and impact value. Fig. 9 shows talc in atomized iron powder. A graph showing the relationship between the addition amount, the lateral flank wear amount after the cutting test, and the surface roughness, FIG. 10 shows the addition amount of the MgO-SiO 2 -based complex oxide powder and the green compact density, the ejection force and the ratler value. Fig. 11 is a graph showing the relationship with Fig. 11, Fig. 11 is a graph showing the relationship between the amount of MgO-SiO 2 composite oxide powder added and dimensional change, tensile strength, elongation and impact value, and Fig. 12 is MgO. A graph showing the relationship between the amount of addition of -SiO 2 -based complex oxide powder and the amount of lateral flank wear, surface roughness, Fig. 13 shows the MgO / SiO 2 molar ratio and dimensional change, tensile strength, elongation and Graph showing the relationship with the impact value, FIG. 14 is a graph showing the relationship between the MgO / SiO 2 molar ratio and the lateral flank wear amount after the cutting test, and the surface roughness, and FIG. 15 is a graph showing the relationship after the cutting test. 6 is a graph showing the relationship between the amount of lateral flank wear and surface roughness. 1 ... particle, 2 ... free-cutting component

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】粗還元とその後の仕上還元とを経て得られ
る還元鉄粉であって、 MgO−SiO2系複合酸化物粉及び/又はガラス粉よりなる
快削成分を還元鉄粉の粒内に存在する形態で還元鉄粉に
対し0.1〜1.5%の重量割合いにて含有すること を特徴とする焼結後の被削性・機械的性質に優れる還元
鉄粉。
1. A reduced iron powder obtained by rough reduction and subsequent finish reduction, wherein a free-cutting component consisting of MgO—SiO 2 -based composite oxide powder and / or glass powder is incorporated into the reduced iron powder. The reduced iron powder having excellent machinability and mechanical properties after sintering, characterized in that it is contained in the form of 0.1 to 1.5% by weight relative to the reduced iron powder.
JP63038705A 1987-06-18 1988-02-23 Reduced iron powder with excellent machinability and mechanical properties after sintering Expired - Lifetime JPH0745681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038705A JPH0745681B2 (en) 1987-06-18 1988-02-23 Reduced iron powder with excellent machinability and mechanical properties after sintering

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-150314 1987-06-18
JP15031487 1987-06-18
JP63038705A JPH0745681B2 (en) 1987-06-18 1988-02-23 Reduced iron powder with excellent machinability and mechanical properties after sintering

Publications (2)

Publication Number Publication Date
JPS6479302A JPS6479302A (en) 1989-03-24
JPH0745681B2 true JPH0745681B2 (en) 1995-05-17

Family

ID=26377984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038705A Expired - Lifetime JPH0745681B2 (en) 1987-06-18 1988-02-23 Reduced iron powder with excellent machinability and mechanical properties after sintering

Country Status (1)

Country Link
JP (1) JPH0745681B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006356A (en) * 2019-06-28 2021-01-21 株式会社ダイヤメット Cutting tool and material for use in formation of surface protection coating thereof
EP3305928B1 (en) * 2016-02-08 2023-08-02 Sumitomo Electric Industries, Ltd. Powder for powder metallurgy, and method for manufacturing powder for powder metallurgy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160151837A1 (en) * 2013-07-18 2016-06-02 Jfe Steel Corporation Mixed powder for powder metallurgy, method of manufacturing same, and method of manufacturing iron-based powder sintered body
JP6007928B2 (en) * 2014-02-21 2016-10-19 Jfeスチール株式会社 Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881712A (en) * 1972-02-05 1973-11-01
JPS56136953A (en) * 1980-03-26 1981-10-26 Kobe Steel Ltd Manufacture of metal sintered body
JPS60145353A (en) * 1983-12-30 1985-07-31 Dowa Teppun Kogyo Kk Manufacture of iron-base sintered body having superior machinability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3305928B1 (en) * 2016-02-08 2023-08-02 Sumitomo Electric Industries, Ltd. Powder for powder metallurgy, and method for manufacturing powder for powder metallurgy
JP2021006356A (en) * 2019-06-28 2021-01-21 株式会社ダイヤメット Cutting tool and material for use in formation of surface protection coating thereof

Also Published As

Publication number Publication date
JPS6479302A (en) 1989-03-24

Similar Documents

Publication Publication Date Title
KR101776670B1 (en) Mixed powder for powder metallurgy, method of manufacturing same, and method of manufacturing iron-based powder sintered body
JP4412133B2 (en) Iron-based mixed powder for powder metallurgy
CN104561794B (en) A kind of speed changer lubricating oil pump rotor powdered metallurgical material and its using method
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
US4415528A (en) Method of forming shaped metal alloy parts from metal or compound particles of the metal alloy components and compositions
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP3449110B2 (en) Iron-based mixed powder for powder metallurgy and method for producing sintered body using the same
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP2010236061A (en) Iron based mixed powder for sintered member excellent in machinability
JP5962787B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JPH01255604A (en) Ferrous mixed powder for powder metallurgy having excellent machinability and mechanical property after sintering
JPH0711006B2 (en) Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering
JP5772998B2 (en) Iron-based mixed powder for sintered parts with excellent machinability
JPH0745681B2 (en) Reduced iron powder with excellent machinability and mechanical properties after sintering
JP4640162B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JPS63500107A (en) Sintered alloy based on high speed steel
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JPH09279203A (en) Ferrous powdery mixture for powder metallurgy
JP6493357B2 (en) Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body
CA2319830A1 (en) Iron-based powder blend for use in powder metallurgy
JP2688729B2 (en) Aluminum corrosion resistant material
JPH08231277A (en) Mud material for closing tap hole of blast furnace
CN111344090B (en) Mixed powder for powder metallurgy
EP1066128B1 (en) Metal powders obtained from residue of material removal processes on iron parts produced by chill casting
JPS6060978A (en) Nozzle composition for continuous casting