JP2010236061A - Iron based mixed powder for sintered member excellent in machinability - Google Patents

Iron based mixed powder for sintered member excellent in machinability Download PDF

Info

Publication number
JP2010236061A
JP2010236061A JP2009087882A JP2009087882A JP2010236061A JP 2010236061 A JP2010236061 A JP 2010236061A JP 2009087882 A JP2009087882 A JP 2009087882A JP 2009087882 A JP2009087882 A JP 2009087882A JP 2010236061 A JP2010236061 A JP 2010236061A
Authority
JP
Japan
Prior art keywords
powder
iron
cutting
based mixed
sintered member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009087882A
Other languages
Japanese (ja)
Inventor
Yukiko Ozaki
由紀子 尾▲崎▼
Katsunori Takahashi
克則 高橋
Hisahiro Matsunaga
久宏 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009087882A priority Critical patent/JP2010236061A/en
Publication of JP2010236061A publication Critical patent/JP2010236061A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide iron based mixed powder suitable to obtain a sintered member excellent in machinability. <P>SOLUTION: Oxide powder of a SiO<SB>2</SB>-CaO-MgO system is mixed into iron based powder at a rate of 0.01-1.0 pts.mass to the iron based powder: 100 pts.mass. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、切削性に優れる焼結部材の用途に供して好適な、快削性焼結部材用の鉄基混合粉末に関するものである。   The present invention relates to an iron-based mixed powder for a free-cutting sintered member suitable for use in a sintered member having excellent machinability.

粉末冶金技術は、複雑な形状の機械部品を、極めて高い寸法精度を維持しつつ生産できるので、その機械部品の製造コストを大幅に低減することが可能である。そのために、粉末冶金技術を用いて製造した各種の機械部品が多方面に利用されている。さらに最近では、機械部品の小型化あるいは軽量化の要求が高まっており、小型軽量かつ十分な強度を有する機械部品を製造するための粉末冶金用原料粉が種々検討されている。   Since powder metallurgy technology can produce machine parts of complicated shapes while maintaining extremely high dimensional accuracy, it is possible to greatly reduce the manufacturing costs of the machine parts. Therefore, various machine parts manufactured using powder metallurgy technology are used in various fields. Furthermore, recently, there is an increasing demand for downsizing or weight reduction of machine parts, and various powders for powder metallurgy for producing machine parts having a small size, light weight and sufficient strength have been studied.

例えば、特許文献1、2および3には、鉄粉あるいは合金鋼粉の表面に合金用粉末を付着させた粉末冶金用原料粉が提案されている。このように鉄成分を主体とする粉末(以下、鉄基粉末という)は、通常、副原料粉末、例えば銅粉、黒鉛粉、リン化鉄粉、硫酸マンガン粉等、および潤滑剤、例えばステアリン酸亜鉛、ステアリン酸アルミニウム等を添加して使用される。   For example, Patent Documents 1, 2, and 3 propose raw material powder for powder metallurgy in which an alloy powder is adhered to the surface of iron powder or alloy steel powder. As described above, powders mainly composed of iron components (hereinafter referred to as iron-based powders) are usually auxiliary material powders such as copper powder, graphite powder, iron phosphide powder, manganese sulfate powder, and lubricants such as stearic acid. Zinc, aluminum stearate, etc. are added and used.

以上の原材料を混合して得られた粉末を、焼結時の収縮等を考慮した部品形状の金型に充填し、加圧成形した後、還元雰囲気中で焼結されて機械部品となる。
この焼結工程においては、加熱とともに粉末冶金用原料粉間の相互に熱拡散が進行して材料強度が増大する。この時、熱拡散による不均一な収縮が起きるため、一般に、焼結後の材料は切削加工によって所望の寸法に整える。また、横穴や斜めの穴等加圧成形で付与することが困難な構造についても、焼結後のドリル加工やボーリング加工を施して所望の寸法に整えている。
The powder obtained by mixing the above raw materials is filled into a part-shaped mold in consideration of shrinkage during sintering and the like, and after pressure molding, it is sintered in a reducing atmosphere to form a machine part.
In this sintering process, thermal diffusion between the raw powders for powder metallurgy proceeds with heating, and the material strength increases. At this time, non-uniform shrinkage due to thermal diffusion occurs, so that the material after sintering is generally adjusted to a desired size by cutting. Also, structures that are difficult to be applied by pressure molding such as horizontal holes and oblique holes are adjusted to a desired dimension by performing drilling or boring after sintering.

上記した焼結材は、材料内部に多数の気孔が存在し、かつ、金属組織が不均質であるため、硬さが不均一となり、切削加工をする時の切削工具に伝わる衝撃が断続的となる。また、材料内部の気孔が熱を伝達しにくいため、切削時に発生する摩擦熱がこもり易く、切削工具の寿命が他の鉄系材料の加工に比べて短く、鉄系焼結部品の製造コストを押し上げる主要因となっている。   The above-mentioned sintered material has a large number of pores inside the material, and the metal structure is inhomogeneous, so the hardness is inhomogeneous, and the impact transmitted to the cutting tool during cutting is intermittent. Become. In addition, since the pores inside the material are difficult to transfer heat, the frictional heat generated during cutting tends to be trapped, and the life of the cutting tool is shorter than that of other ferrous materials, which reduces the manufacturing cost of ferrous sintered parts. This is the main factor pushing up.

これに対して、粉末冶金用の鉄基粉末混合物に快削成分(例えばS、MnS等)を添加することによって、焼結部品の切削性が改善されることは従来から知られている。快削成分は、切り屑を容易に破断させる効果、あるいは切削工具に薄い構成刃先を形成して、切削工具(特にすくい面)の潤滑性を高める効果を有しているが、焼結時に焼結炉内をSで汚染する、また、焼結部品の外観不良を生じさせ、発錆を加速する等の結果、部品外観を損なうという問題があった。   On the other hand, it is conventionally known that the machinability of sintered parts is improved by adding a free-cutting component (for example, S, MnS, etc.) to an iron-based powder mixture for powder metallurgy. The free-cutting component has the effect of easily breaking the chips or forming a thin cutting edge on the cutting tool to increase the lubricity of the cutting tool (especially the rake face). As a result of contaminating the inside of the sintering furnace with S, causing appearance defects of the sintered parts, accelerating rusting, and the like, there is a problem that the parts appearance is impaired.

特開平01−219101号公報JP-A-01-219101 特開平02−217403号公報JP 02-217403 A 特開平03−162502号公報Japanese Patent Laid-Open No. 03-162502

本発明は、上記の問題を有利に解決するもので、成形体の焼結に際し、焼結炉の炉内環境に悪影響を及ぼすことなく、しかも、切削性に優れ、外観の良好な焼結部品を製造するのに好適な焼結部材用の鉄基粉末混合物を提案することを目的とする。   The present invention advantageously solves the above-described problems, and does not adversely affect the in-furnace environment of the sintering furnace when the molded body is sintered, and has excellent machinability and good appearance. It is an object of the present invention to propose an iron-based powder mixture for a sintered member suitable for producing the above.

発明者らは、切削性に優れ、また外観の良好な焼結部品用の鉄基混合粉末について鋭意検討を重ねた。その結果、酸化物の粉末、とりわけSiO2-CaO-MgO系酸化物粉末の微粒子を混合させることが有用であるとの知見を得た。さらに、上記SiO2-CaO-MgO系酸化物粉末は、MgOの一部をAl2O3および/またはTiO2で置換できることも分かった。
本発明はこれらの知見に基づいてなされたものである。
The inventors have made extensive studies on iron-based mixed powders for sintered parts having excellent machinability and good appearance. As a result, it has been found that it is useful to mix oxide powder, especially fine particles of SiO 2 —CaO—MgO-based oxide powder. Furthermore, it was also found that the SiO 2 —CaO—MgO-based oxide powder can partially replace MgO with Al 2 O 3 and / or TiO 2 .
The present invention has been made based on these findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)焼結部材用の鉄基粉末に、SiO2-CaO-MgO系の酸化物粉末を該鉄基粉末:100質量部に対して、0.01〜1.0質量部の割合で配合したことを特徴とする快削性焼結部材用の鉄基混合粉末。
That is, the gist configuration of the present invention is as follows.
(1) A SiO 2 —CaO—MgO-based oxide powder is blended in an iron-based powder for a sintered member at a ratio of 0.01 to 1.0 part by mass with respect to 100 parts by mass of the iron-based powder. An iron-based mixed powder for a free-cutting sintered member.

(2)前記酸化物粉末がMgOの一部をAl2O3および/またはTiO2で置換してなることを特徴とする前記(1)に記載の快削性焼結部材用の鉄基混合粉末。 (2) The iron-based mixture for a free-cutting sintered member according to (1), wherein the oxide powder is obtained by substituting a part of MgO with Al 2 O 3 and / or TiO 2. Powder.

(3)前記酸化物粉末の融点が1000〜1800℃の範囲であることを特徴とする前記(1)または(2)に記載の快削性焼結部材用の鉄基混合粉末。   (3) The iron-based mixed powder for a free-cutting sintered member according to (1) or (2), wherein the oxide powder has a melting point in the range of 1000 to 1800 ° C.

(4)前記酸化物粉末の平均粒径が0.5〜10μmであることを特徴とする前記(1)〜(3)のいずれかに快削性焼結部材用の鉄基混合粉末。   (4) The iron-based mixed powder for a free-cutting sintered member according to any one of (1) to (3), wherein an average particle diameter of the oxide powder is 0.5 to 10 μm.

(5)前記鉄基混合粉末中に、さらに潤滑剤および/または結合剤を含有させたことを特徴とする前記(1)〜(4)のいずれかに記載の快削性焼結部材用の鉄基混合粉末。   (5) The free-cutting sintered member according to any one of (1) to (4), wherein the iron-based mixed powder further contains a lubricant and / or a binder. Iron-based mixed powder.

(6)前記潤滑剤または結合剤が、ステアリン酸亜鉛、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸モノアミド、およびエチレンビスステアロアミドのうちから選んだ1種または2種以上であることを特徴とする前記(1)〜(5)のいずれかに記載の快削性焼結部材用の鉄基混合粉末。   (6) The lubricant or binder is one or more selected from zinc stearate, lithium stearate, calcium stearate, stearic acid monoamide, and ethylene bisstearamide. The iron-based mixed powder for a free-cutting sintered member according to any one of (1) to (5).

(7)前記鉄基粉末として用いる鉄粉または鉄合金粉が、アトマイズ粉および/または還元粉であることを特徴とする前記(1)〜(6)のいずれかに記載の快削性焼結部材用の鉄基混合粉末。   (7) The free-cutting sintering according to any one of (1) to (6), wherein the iron powder or iron alloy powder used as the iron-based powder is atomized powder and / or reduced powder Iron-based mixed powder for parts.

本発明によれば、切削時における工具磨耗が抑制され、切削性に優れた焼結体を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the tool abrasion at the time of cutting is suppressed, and the sintered compact excellent in machinability can be obtained.

以下、本発明を具体的に説明する。
本発明において、鉄基粉末としては、アトマイズ鉄粉や還元鉄粉などの純鉄粉、または部分拡散合金化鋼粉および完全合金化鋼粉、さらには完全合金化鋼粉に合金成分を部分拡散させたハイブリッド鋼粉などが例示される。
本発明は、かかる鉄基粉末に、切削性を高めるためのSiO2-CaO-MgO系酸化物粉末を混合したことを特徴とするものである。
The present invention will be specifically described below.
In the present invention, as iron-based powder, pure iron powder such as atomized iron powder and reduced iron powder, or partially diffused alloyed steel powder and fully alloyed steel powder, and further partially diffused alloy components in fully alloyed steel powder. The hybrid steel powder etc. which were made to be illustrated are illustrated.
The present invention is characterized in that the iron-based powder is mixed with a SiO 2 —CaO—MgO-based oxide powder for improving the machinability.

上記した鉄粉や合金粉の製造方法には、種々の種類があるが、その成形性や成形体の特性、焼結体の特性等を考慮すると、水アトマイズ鉄粉、還元鉄粉を使用することが特に好適である。これらの鉄粉は粒子表面に凹凸が存在し、加圧成形をすると、これらが絡み合うので成形体および焼結体の強度が高くなる。   There are various types of methods for producing the iron powder and alloy powder described above, but considering the moldability, characteristics of the molded body, characteristics of the sintered body, etc., water atomized iron powder and reduced iron powder are used. It is particularly preferred. These iron powders have irregularities on the surface of the particles, and when pressed, they are entangled and the strength of the molded body and sintered body is increased.

また、本発明においては、上記した鉄基粉末中に、SiO2-CaO-MgO系酸化物粉末を、鉄基粉末:100質量部に対して、0.01〜1.0質量部の割合で混合することが重要である。というのは、酸化物粉末の混合割合が0.01質量部未満の場合には、鉄基粉末の流動性に改善効果が見られない。一方、1.0質量部を超えた場合には、加圧成形した圧粉体の成形密度を低下させるとともに、焼結体の密度も低下させ、その結果、焼結体の強度を落とすことになるからである。なお、SiO2-CaO-MgO系の配合比は特に限定されないが、mass%で、SiO2:40〜55%、CaO:30〜50%、およびMgO:0〜20%程度とするのが好ましい。
さらに、酸化物粉末のMgOの一部をAl2O3および/またはTiO2で置換することもできる。この場合の置換量は、酸化物粉末:100質量部に対して、0.1〜25質量部程度とするのがよい。
In the present invention, in the iron-based powder, the SiO 2 —CaO—MgO-based oxide powder may be mixed at a ratio of 0.01 to 1.0 part by mass with respect to 100 parts by mass of the iron-based powder. is important. This is because when the mixing ratio of the oxide powder is less than 0.01 parts by mass, no improvement effect is observed in the fluidity of the iron-based powder. On the other hand, when the amount exceeds 1.0 part by mass, the density of the green compact that has been press-formed is reduced, and the density of the sintered body is also reduced, resulting in a decrease in strength of the sintered body. It is. The mixing ratio of the SiO 2 —CaO—MgO system is not particularly limited, but is preferably mass%, SiO 2 : 40 to 55%, CaO: 30 to 50%, and MgO: about 0 to 20%. .
Furthermore, a part of MgO of the oxide powder can be replaced with Al 2 O 3 and / or TiO 2 . The amount of substitution in this case is preferably about 0.1 to 25 parts by mass with respect to 100 parts by mass of the oxide powder.

上記した酸化物粉末は、鉄粉の流動性を改善する効果を有する微細な粉末であり、その融点が1000〜1800℃のものを使用することが好ましい。
この融点範囲では、鉄基粉末を成形した後に焼結する際、酸化物が融解して鉄粉と反応し、より低融点の粗大な酸化物に成長するおそれが少ない。また、一般には、原子間の凝集力が弾性的性質を決める傾向にあり、原子間の凝集力が比較的低い低融点の物質は、弾性係数も低い傾向にある。それゆえ、酸化物の融点としては比較的低温に属している上記した酸化物粉末は、酸化物の中では弾性係数が低いものと考えられる。このことより、焼結体の切削時において、上記した酸化物粉末は、その切削面上で容易に変形できるため、切削工具と被削材の切削面の間に拡がって工具の磨耗を抑制し、切削性改善効果を有することができる。
The oxide powder described above is a fine powder having an effect of improving the fluidity of iron powder, and it is preferable to use a powder having a melting point of 1000 to 1800 ° C.
In this melting point range, when the iron-based powder is molded and then sintered, the oxide is less likely to melt and react with the iron powder to grow into a coarser oxide having a lower melting point. In general, the cohesive force between atoms tends to determine elastic properties, and a low-melting substance having a relatively low cohesive force between atoms tends to have a low elastic modulus. Therefore, it is considered that the above-described oxide powder belonging to a relatively low temperature as the melting point of the oxide has a low elastic modulus among the oxides. As a result, when the sintered body is cut, the oxide powder described above can be easily deformed on the cutting surface, so that it spreads between the cutting tool and the cutting surface of the work material and suppresses wear of the tool. , It can have an effect of improving machinability.

つまり、融点が1000℃未満の場合、酸化物が焼結中に融解し凝集してしまうため、焼結体の強度が低下するおそれが生じる。一方、融点が1800℃を越えると、弾性係数が上昇するために、酸化物が工具表面に拡がりにくくなり、工具の磨耗を加速させるおそれが生じる。   That is, when the melting point is less than 1000 ° C., the oxide melts and aggregates during the sintering, which may reduce the strength of the sintered body. On the other hand, when the melting point exceeds 1800 ° C., the elastic modulus increases, so that it becomes difficult for the oxide to spread on the tool surface, and the tool wear may be accelerated.

酸化物粉末の平均粒径は、レーザー回折法による測定での50%累積透過分布d50の値が0.5〜10μmの範囲となることが好ましい。
というのは、一般に、粉末粒子の表面に細かな凹凸があると、粒子間の接触面積が小さくなるため粒子間付着力が小さくなり、粉末の凝集状態が解消することが知られている。鉄粉にも凹凸が存在するが、その表面粗度は、算術平均粗さRaで10μm程度であり、粉末の凝集状態が解消するには十分な凹凸とはいえない。
The average particle diameter of the oxide powder is preferably a value of 50% cumulative transmission distribution d 50 of at measurement by a laser diffraction method is in the range of 0.5 to 10 [mu] m.
This is because it is generally known that if there are fine irregularities on the surface of the powder particles, the contact area between the particles becomes small, the adhesion between particles becomes small, and the agglomerated state of the powder is eliminated. The iron powder also has irregularities, but the surface roughness is about 10 μm in terms of arithmetic average roughness Ra, which is not sufficient to eliminate the powder aggregation state.

つまり、酸化物粉末の平均粒径が0.5μmに満たないと、鉄粉表面の凸凹や鉄粉表面に存在する潤滑剤等に埋没するおそれがある。また、酸化物粉末が凝集したまま鉄粉の表面に付くおそれもある。
一方、平均粒径が10μmを超えると、はじめから鉄粉表面に存在する凸凹の曲率と同等となり、粒子を付着させる意義が薄れ、さらに、酸化物粉末は、焼結時に分解することなくそのまま焼結体中に存在する。そのため、酸化物粉末の粒径が大きすぎると焼結体の強度低下を招く。なお、好ましくは、1〜5μmの範囲である。
In other words, if the average particle size of the oxide powder is less than 0.5 μm, there is a risk of being buried in the unevenness of the iron powder surface or the lubricant present on the iron powder surface. Moreover, there exists a possibility that the oxide powder may adhere to the surface of the iron powder with aggregation.
On the other hand, when the average particle size exceeds 10 μm, it becomes equivalent to the curvature of the unevenness present on the iron powder surface from the beginning, and the significance of attaching the particles is diminished. Furthermore, the oxide powder is sintered as it is without being decomposed during sintering. Present in the body. Therefore, when the particle size of the oxide powder is too large, the strength of the sintered body is reduced. In addition, Preferably, it is the range of 1-5 micrometers.

本発明に使用する潤滑剤および結合剤の種類は、加熱して溶融するもの、もしくは加熱して固化するもの等、従来公知の潤滑剤および結合剤がいずれも使用できるが、固化した後で潤滑性を有するものが好ましい。その理由は、粉体粒子間の摩擦力を低下させ、粉体の流動性を向上させ、加圧成形初期の粒子再配列を促すためである。
具体的には、金属石鹸、アミドワックス、ポリアミド、ポリエチレン、酸化ポリエチレン等を使用する。特に、ステアリン酸亜鉛、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸モノアミド、およびエチレンビスステアロアミド等が好ましく、これらの潤滑剤および結合剤は単体で使用しても良いし、2種以上を混合して使用しても良い。
The lubricant and binder used in the present invention may be any of conventionally known lubricants and binders, such as those that melt by heating or those that solidify by heating. Those having properties are preferred. This is because the frictional force between the powder particles is reduced, the fluidity of the powder is improved, and the particle rearrangement at the initial stage of pressure molding is promoted.
Specifically, metal soap, amide wax, polyamide, polyethylene, polyethylene oxide or the like is used. Particularly preferred are zinc stearate, lithium stearate, calcium stearate, stearic acid monoamide, and ethylene bisstearamide. These lubricants and binders may be used alone or in combination of two or more. May be used.

上記した潤滑剤および結合剤は、その融点以上で溶融し、混合槽内にある原料粉体の各粒子表面を濡らす。水アトマイズ鉄粉や還元鉄粉は、表面に凹凸が存在するので、その凹凸に局所的に結合剤が溜まる傾向がある。そのため、鉄基粉末表面の潤滑剤および結合剤の分布は均一ではない。
潤滑剤および結合剤の分布を均一にするためには、鉄基粉末表面と潤滑剤および結合剤との濡れ性を改善する必要がある。そこで、鉄基粉末表面と潤滑剤および結合剤との濡れ性を改善するために、濡れ改善剤を使用することが好ましい。
The above-described lubricant and binder melt at the melting point or higher, and wet the surface of each particle of the raw material powder in the mixing tank. Since water atomized iron powder and reduced iron powder have irregularities on the surface, the binder tends to accumulate locally on the irregularities. Therefore, the distribution of the lubricant and binder on the surface of the iron-based powder is not uniform.
In order to make the distribution of the lubricant and the binder uniform, it is necessary to improve the wettability between the iron-based powder surface and the lubricant and the binder. Therefore, in order to improve the wettability between the iron-based powder surface and the lubricant and binder, it is preferable to use a wetting improver.

濡れ改善剤を使用する場合には、潤滑剤および結合剤、鉄粉、その他の合金成分を加熱混合する前に、予め鉄基粉末の表面を濡れ改善剤で被覆しておく必要がある。濡れ改善剤として、シランカップリング剤を用いる場合には、混合槽に鉄粉を装入し、そこにシランカップリング剤を投入して1〜10分程度室温で撹拌すればよい。その後、上記した潤滑剤および結合剤、その他の合金成分を投入して加熱混合する。
なお、濡れ改善剤の混合量は、特に限定はないが、鉄基粉末に対し0.01〜0.1mass%程度が好ましい。
When the wetting improver is used, it is necessary to coat the surface of the iron-based powder with the wetting improver in advance before the lubricant and binder, iron powder, and other alloy components are heated and mixed. When a silane coupling agent is used as the wetting improver, iron powder is charged into a mixing tank, and the silane coupling agent is charged therein and stirred at room temperature for about 1 to 10 minutes. Thereafter, the above-described lubricant, binder, and other alloy components are added and mixed by heating.
The mixing amount of the wetting improver is not particularly limited but is preferably about 0.01 to 0.1 mass% with respect to the iron-based powder.

以下、本発明の製造工程について、その一例を具体的に説明する。
本発明では、機械撹拌式混合機を用いて、鉄粉と黒鉛、Cu粉、Ni粉等の各種合金成分、潤滑剤および結合剤を混合して作製する切削性に優れた焼結部材用の鉄基混合粉末の製造過程で、酸化物粒子を同時に添加混合して製造する。
Hereinafter, an example of the manufacturing process of the present invention will be specifically described.
In the present invention, for a sintered member excellent in machinability, which is prepared by mixing various alloy components such as iron powder and graphite, Cu powder, Ni powder, lubricant and binder using a mechanical stirring mixer. In the process of producing the iron-based mixed powder, oxide particles are added and mixed at the same time.

また、本発明では、機械撹拌式混合機の一種である高速ミキサーを用いて、鉄粉と黒鉛、Cu粉、Ni粉等の各種合金成分、および結合剤を加熱混合し、さらに、この混合粉末の成形性を確保するために、潤滑剤を添加して作製する切削性に優れた焼結部材用の鉄基混合粉末の製造過程で、最後の潤滑剤を添加混合する際に、切削性改善粒子である酸化物粒子を同時に添加混合して製造することもできる。   In the present invention, a high-speed mixer, which is a kind of mechanically stirred mixer, is used to heat and mix iron powder and various alloy components such as graphite, Cu powder, and Ni powder, and a binder. In order to ensure the moldability of the powder, the addition of a lubricant improves the machinability when the final lubricant is added and mixed in the manufacturing process of an iron-based mixed powder for sintered parts with excellent machinability. It can also be produced by simultaneously adding and mixing oxide particles as particles.

その手順は、まず、高速ミキサーに所定量の鉄粉を装入し、ここに、黒鉛、Cu粉等の合金成分と結合剤を添加する。これらの原料を投入した後、加熱混合を開始する。高速ミキサーにおける回転翼の回転数は、その混合槽の大きさ、回転翼の形状によって異なるが、一般には、回転翼先端の周速で1〜10m/秒程度である。ついで、混合槽内の温度が結合剤の融点以上になるまで加熱混合し、融点以上の温度で1〜30分程度混合する。混合終了後、混合槽内を冷却する。この冷却過程で結合剤が固化するが、その際に、合金成分等の副原料が鉄粉の表面に付着する。   First, a predetermined amount of iron powder is charged into a high-speed mixer, and alloy components such as graphite and Cu powder and a binder are added thereto. After adding these raw materials, heating and mixing are started. The rotational speed of the rotary blade in the high-speed mixer varies depending on the size of the mixing tank and the shape of the rotary blade, but is generally about 1 to 10 m / sec at the peripheral speed of the tip of the rotary blade. Subsequently, it heat-mixes until the temperature in a mixing tank becomes more than melting | fusing point of a binder, and mixes for about 1 to 30 minutes at the temperature more than melting | fusing point. After mixing, the inside of the mixing tank is cooled. During this cooling process, the binder is solidified, and at this time, auxiliary materials such as alloy components adhere to the surface of the iron powder.

切削性改善粒子である酸化物粒子を添加する効果は、明確に解明されてはいないが、発明者らは以下の通りと考えている。
つまり、融点を1000〜1800℃に調整した酸化物粒子を鉄基粉末に添加して焼結することで、焼結体内部に酸化物粒子が存在することとなる。この内部の酸化物粒子が切削時の工具と被削材の摩擦発熱により軟化し、被削材表面に移動または溶出して、工具と被削材の間の摩擦を低減するとともに、被削材表面に移動した酸化物粒子の被膜が摩擦発熱による工具の酸化劣化を防止することで、工具磨耗ならびに工具欠損が同時に低減し、その結果、切削性が改善されるものと考えられる。
The effect of adding oxide particles that are machinability improving particles has not been clearly clarified, but the inventors consider the following.
That is, oxide particles having a melting point adjusted to 1000 to 1800 ° C. are added to the iron-based powder and sintered, so that the oxide particles are present inside the sintered body. The internal oxide particles soften due to frictional heat generation between the tool and the work material during cutting, and move or elute to the work material surface to reduce the friction between the tool and the work material. It is considered that the coating of oxide particles moved to the surface prevents oxidative deterioration of the tool due to frictional heat generation, so that tool wear and tool loss are simultaneously reduced, resulting in improved machinability.

アトマイズ純鉄粉(商品名:JFEスチールJIP301A)に、合金用粉末として、0.8mass%の黒鉛粉末(平均粒径:4μm)と、2mass%の電解銅粉を添加し、この鉄粉と合金用粉末からなる鉄基粉末に対し、切削性改善用粉末として表1に示す配合割合および平均粒径になるSiO2-CaO-MgO系粉末を添加した。さらに、鉄基粉末と切削性改善用粉末とを含む粉末全体で、0.8mass%の比率になる潤滑剤を添加し、所定時間混合して鉄基混合粉末とした。
なお、比較例として、本発明に従う切削性改善用粉末を含有しないもの(比較例1)、および従来使用されてきたMnSを添加したもの(比較例2)も準備した。
Add 0.8mass% graphite powder (average particle size: 4μm) and 2mass% electrolytic copper powder to atomized pure iron powder (trade name: JFE Steel JIP301A) as an alloy powder. The SiO 2 —CaO—MgO-based powder having the blending ratio and average particle size shown in Table 1 was added as a machinability improving powder to the iron-based powder composed of powder. Furthermore, a lubricant having a ratio of 0.8 mass% was added to the whole powder including the iron-based powder and the machinability improving powder, and mixed for a predetermined time to obtain an iron-based mixed powder.
In addition, as a comparative example, a powder not containing the machinability improving powder according to the present invention (Comparative Example 1) and a conventionally added MnS (Comparative Example 2) were also prepared.

これら鉄基混合粉末を金型に充填した後、圧縮成形を施した。形状は、JIS Z 2507「焼結軸受−圧環強さ試験方法」に準ずる外径:60mm、内径:20mm、高さ:25mmのリング形状とし、成形密度は6.9Mg/m3とした。
ついで、これらの試験片成形体を、メッシュベルト炉のRX混合ガス雰囲気中で、1130℃×20分の条件により焼結して焼結体とし、これらを3つ重ねた円筒状の形で旋盤にセットし、外周を研削した。1000m切削したところで切削を止め、工具チップの横逃げ面のアブレッシブ磨耗の幅を測定した。
After these iron-based mixed powders were filled in a mold, compression molding was performed. The shape was a ring shape with an outer diameter of 60 mm, an inner diameter of 20 mm, and a height of 25 mm in accordance with JIS Z 2507 “Sintered bearing-crushing strength test method”, and the molding density was 6.9 Mg / m 3 .
Then, these specimens were sintered in a mesh belt furnace RX mixed gas atmosphere under the conditions of 1130 ° C x 20 minutes to form a sintered body, and a lathe was formed in a cylindrical shape by stacking three of them. And the outer periphery was ground. The cutting was stopped after cutting 1000 m, and the width of the abrasive wear on the side clearance surface of the tool tip was measured.

切削工具は、超硬:P10種相当の直方体のチップを用いて、切削速度:200m/分、送り:0.1mm/rev、切込み深さ:0.5mmの条件で切削を実施した。
試験結果を表1に併記する。
The cutting tool was a carbide: P10 type cuboidal insert, and cutting was performed at a cutting speed of 200 m / min, a feed of 0.1 mm / rev, and a cutting depth of 0.5 mm.
The test results are also shown in Table 1.

Figure 2010236061
Figure 2010236061

表1に示したとおり、本発明に従う鉄基混合粉末を用いた焼結体はいずれもチップの横逃げ面のアブレッシブ磨耗の幅が0.12mm以下と、従来のMnSを添加した比較例2と比べて、極めて小さいことがわかる。また、切削改善材を添加しない比較例1は、アブレッシブ磨耗の幅が大きく、それによって切削抵抗が増大し、1000mの切削も困難であった。   As shown in Table 1, all the sintered bodies using the iron-based mixed powder according to the present invention had an abrasive wear width of 0.12 mm or less on the side flank face of the chip, compared with Comparative Example 2 in which conventional MnS was added. It can be seen that it is extremely small. Further, in Comparative Example 1 in which no cutting improving material was added, the width of the abrasive wear was large, thereby increasing the cutting resistance and making 1000 m cutting difficult.

還元鉄粉(商品名:JFEスチールJIP255M)に、合金用粉末として、0.8mass%の黒鉛粉末(平均粒径:4μm)と、2mass%のアトマイズ銅粉を添加し、この鉄粉と合金用粉末からなる鉄基粉末に対し、切削性改善用粉末として表2に示す配合割合および平均粒径になるSiO2-CaO-MgO系粉末を添加した。さらに、鉄基粉末と切削性改善用粉末とを含む粉末全体で、0.8mass%の比率になる潤滑剤を添加し、所定時間混合して鉄基混合粉末とした。
なお、比較例として、本発明に従う切削性改善用粉末を含有しないもの(比較例3)および、従来使用されてきたMnSを添加したもの(比較例4)も準備した。
To the reduced iron powder (trade name: JFE Steel JIP255M), 0.8mass% graphite powder (average particle size: 4μm) and 2mass% atomized copper powder are added as alloy powder. This iron powder and alloy powder The SiO 2 —CaO—MgO-based powder having the blending ratio and average particle size shown in Table 2 was added as a machinability improving powder to the iron-based powder made of. Furthermore, a lubricant having a ratio of 0.8 mass% was added to the whole powder including the iron-based powder and the machinability improving powder, and mixed for a predetermined time to obtain an iron-based mixed powder.
In addition, as a comparative example, those not containing the machinability improving powder according to the present invention (Comparative Example 3) and those added with conventionally used MnS (Comparative Example 4) were also prepared.

これら鉄基混合混合粉末を金型に充填した後、圧縮成形を施した。形状は、実施例1と同様に外径:60mm、内径:20mm、高さ:25mmのリング形状とし、成形密度は6.9Mg/m3とした。
ついで、これらの試験片成形体を実施例1と同じ条件で焼結体とし、これらを3つ重ねた円筒状の形で旋盤にセットし、外周を研削した。1000m切削したところで切削を止め、工具チップの横逃げ面のアブレッシブ磨耗の幅を測定した。
After these iron-based mixed powders were filled in a mold, compression molding was performed. The shape was a ring shape with an outer diameter of 60 mm, an inner diameter of 20 mm, and a height of 25 mm, as in Example 1, and the molding density was 6.9 Mg / m 3 .
Subsequently, these test piece molded bodies were made into sintered bodies under the same conditions as in Example 1, and these were set on a lathe in the form of a cylinder in which three of them were stacked, and the outer periphery was ground. The cutting was stopped after cutting 1000 m, and the width of the abrasive wear on the side clearance surface of the tool tip was measured.

切削工具は、超硬:P10種相当の直方体のチップを用いて、切削速度:200m/分、送り:0.1mm/rev、切込み深さ:0.5mmの条件で切削を実施した。
試験結果を表2に併記する。
The cutting tool was a carbide: P10 type cuboidal insert, and cutting was performed at a cutting speed of 200 m / min, a feed of 0.1 mm / rev, and a cutting depth of 0.5 mm.
The test results are also shown in Table 2.

Figure 2010236061
Figure 2010236061

表2に示したとおり、本発明に従う鉄基混合粉末を用いた焼結体はいずれもチップの横逃げ面のアブレッシブ磨耗の幅が0.14mm以下と、従来のMnSを添加した比較例4と比べて、極めて小さいことがわかる。また、切削性改善用粉末を添加しない比較例3は、アブレッシブ磨耗の幅が大きく、それによって切削抵抗が増大し、1000mの切削も困難であった。   As shown in Table 2, all the sintered bodies using the iron-based mixed powder according to the present invention had an abrasive wear width of 0.14 mm or less on the side flank face of the chip, compared with the comparative example 4 in which conventional MnS was added. It can be seen that it is extremely small. Further, in Comparative Example 3 in which the powder for improving machinability was not added, the width of the abrasive wear was large, thereby increasing the cutting resistance and making it difficult to cut 1000 m.

本発明によれば、切削工具の寿命低下を招くことがなく、かつ、製造コストの上昇を招くことのない、切削性に優れた焼結部材を提供することができる。さらに、この切削性に優れた焼結体により、切削加工の必要な部品でも、小型軽量かつ十分な強度を有する機械部品を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sintered member excellent in machinability which does not cause the lifetime reduction of a cutting tool, and does not cause the raise of manufacturing cost can be provided. Furthermore, with this sintered body excellent in machinability, it is possible to provide a machine component having a small size, light weight and sufficient strength even for a component that requires cutting.

Claims (7)

焼結部材用の鉄基粉末に、SiO2-CaO-MgO系の酸化物粉末を該鉄基粉末:100質量部に対して、0.01〜1.0質量部の割合で配合したことを特徴とする快削性焼結部材用の鉄基混合粉末。 An iron-based powder for a sintered member and a SiO 2 —CaO—MgO-based oxide powder blended at a ratio of 0.01 to 1.0 part by mass with respect to 100 parts by mass of the iron-based powder. Iron-based mixed powder for machinable sintered parts. 前記酸化物粉末がMgOの一部をAl2O3および/またはTiO2で置換してなることを特徴とする請求項1に記載の快削性焼結部材用の鉄基混合粉末。 2. The iron-based mixed powder for a free-cutting sintered member according to claim 1, wherein the oxide powder is obtained by substituting a part of MgO with Al 2 O 3 and / or TiO 2 . 前記酸化物粉末の融点が1000〜1800℃の範囲であることを特徴とする請求項1または2に記載の快削性焼結部材用の鉄基混合粉末。   The iron-based mixed powder for a free-cutting sintered member according to claim 1 or 2, wherein the oxide powder has a melting point in the range of 1000 to 1800 ° C. 前記酸化物粉末の平均粒径が0.5〜10μmであることを特徴とする請求項1〜3のいずれかに記載の快削性焼結部材用の鉄基混合粉末。   The iron-based mixed powder for a free-cutting sintered member according to any one of claims 1 to 3, wherein the oxide powder has an average particle size of 0.5 to 10 µm. 前記鉄基混合粉末中に、さらに潤滑剤および/または結合剤を含有させたことを特徴とする請求項1〜4のいずれかに記載の快削性焼結部材用の鉄基混合粉末。   The iron-based mixed powder for a free-cutting sintered member according to any one of claims 1 to 4, further comprising a lubricant and / or a binder contained in the iron-based mixed powder. 前記潤滑剤または結合剤が、ステアリン酸亜鉛、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸モノアミド、およびエチレンビスステアロアミドのうちから選んだ1種または2種以上であることを特徴とする請求項1〜5のいずれかに記載の快削性焼結部材用の鉄基混合粉末。   2. The lubricant or binder is one or more selected from zinc stearate, lithium stearate, calcium stearate, stearic acid monoamide, and ethylene bisstearamide. Iron-based mixed powder for a free-cutting sintered member according to any one of -5. 前記鉄基粉末として用いる鉄粉または合金粉が、アトマイズ粉および/または還元粉であることを特徴とする請求項1〜6のいずれかに記載の快削性焼結部材用の鉄基混合粉末。
The iron-based mixed powder for a free-cutting sintered member according to any one of claims 1 to 6, wherein the iron powder or alloy powder used as the iron-based powder is atomized powder and / or reduced powder. .
JP2009087882A 2009-03-31 2009-03-31 Iron based mixed powder for sintered member excellent in machinability Pending JP2010236061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087882A JP2010236061A (en) 2009-03-31 2009-03-31 Iron based mixed powder for sintered member excellent in machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087882A JP2010236061A (en) 2009-03-31 2009-03-31 Iron based mixed powder for sintered member excellent in machinability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014014756A Division JP5772998B2 (en) 2014-01-29 2014-01-29 Iron-based mixed powder for sintered parts with excellent machinability

Publications (1)

Publication Number Publication Date
JP2010236061A true JP2010236061A (en) 2010-10-21

Family

ID=43090663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087882A Pending JP2010236061A (en) 2009-03-31 2009-03-31 Iron based mixed powder for sintered member excellent in machinability

Country Status (1)

Country Link
JP (1) JP2010236061A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144801A (en) * 2010-02-18 2012-08-02 Jfe Steel Corp Mixed powder for powder metallurgy and method for producing the same, and sintered body made of iron-based powder excellent in cuttability and method for producing the same
JP2015172238A (en) * 2014-02-21 2015-10-01 Jfeスチール株式会社 Mixed powder for powder metallurgy, production method thereof and iron-based powder-made sintered body
WO2016190039A1 (en) * 2015-05-27 2016-12-01 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy and sintered body produced using same
JP2017141484A (en) * 2016-02-08 2017-08-17 住友電気工業株式会社 Ferrous powder for powder metallurgy, and method for producing ferrous powder for powder metallurgy
CN107614158A (en) * 2015-05-27 2018-01-19 株式会社神户制钢所 The sintered body of its making of ferrous based powder metallurgical mixed powder and its manufacture method and use and the manufacture method of sintered body
CN107614159A (en) * 2015-05-27 2018-01-19 株式会社神户制钢所 Ferrous based powder metallurgical mixed powder and its manufacture method and the sintered body using its making
KR20190089193A (en) 2016-12-02 2019-07-30 가부시키가이샤 고베 세이코쇼 Mixed powder for iron powder metallurgy and method for producing sintered body using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260113A (en) * 1995-03-24 1996-10-08 Toyota Motor Corp Sintering material excellent in machinability and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260113A (en) * 1995-03-24 1996-10-08 Toyota Motor Corp Sintering material excellent in machinability and its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144801A (en) * 2010-02-18 2012-08-02 Jfe Steel Corp Mixed powder for powder metallurgy and method for producing the same, and sintered body made of iron-based powder excellent in cuttability and method for producing the same
JP2015172238A (en) * 2014-02-21 2015-10-01 Jfeスチール株式会社 Mixed powder for powder metallurgy, production method thereof and iron-based powder-made sintered body
WO2016190039A1 (en) * 2015-05-27 2016-12-01 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy and sintered body produced using same
JP2016222942A (en) * 2015-05-27 2016-12-28 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy and sintered body manufactured by using the same
CN107614158A (en) * 2015-05-27 2018-01-19 株式会社神户制钢所 The sintered body of its making of ferrous based powder metallurgical mixed powder and its manufacture method and use and the manufacture method of sintered body
CN107614159A (en) * 2015-05-27 2018-01-19 株式会社神户制钢所 Ferrous based powder metallurgical mixed powder and its manufacture method and the sintered body using its making
KR20190104455A (en) 2015-05-27 2019-09-09 가부시키가이샤 고베 세이코쇼 Mixed powder for iron-based powder metallurgy and sintered body produced using same
JP2017141484A (en) * 2016-02-08 2017-08-17 住友電気工業株式会社 Ferrous powder for powder metallurgy, and method for producing ferrous powder for powder metallurgy
WO2017138433A1 (en) * 2016-02-08 2017-08-17 住友電気工業株式会社 Iron-based powder for powder metallurgy, and method for manufacturing iron-based powder for powder metallurgy
KR20190089193A (en) 2016-12-02 2019-07-30 가부시키가이샤 고베 세이코쇼 Mixed powder for iron powder metallurgy and method for producing sintered body using the same
US11241736B2 (en) 2016-12-02 2022-02-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Powder mixture for iron-based powder metallurgy, and method for manufacturing sintered compact using same

Similar Documents

Publication Publication Date Title
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
JP4412133B2 (en) Iron-based mixed powder for powder metallurgy
JP5585749B1 (en) Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body made of iron-based powder
JP2010236061A (en) Iron based mixed powder for sintered member excellent in machinability
WO2007105429A1 (en) Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
JP5772998B2 (en) Iron-based mixed powder for sintered parts with excellent machinability
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
CN107835864B (en) The manufacturing method of iron-based powder for powder metallurgy and iron-based powder for powder metallurgy
JP5962787B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JPH0711006B2 (en) Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering
JP5962691B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP6380501B2 (en) Mixed powder for powder metallurgy, method for producing mixed powder for powder metallurgy, and sintered body
JP2008127640A (en) Iron-based powder for powder metallurgy
WO2018100955A1 (en) Powder mixture for iron-based powder metallurgy, and method for manufacturing sintered compact using same
JP6007928B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP2014025109A (en) Mixed powder for powder metallurgy
JP2007332423A (en) Iron-based powder for powder metallurgy
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP2010053388A (en) Iron-based powder mixture, powder compact using the same and method for producing sintered compact
JP6493357B2 (en) Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body
JPWO2019163263A1 (en) Mixed powder for powder metallurgy
JPH0745681B2 (en) Reduced iron powder with excellent machinability and mechanical properties after sintering
JP5310074B2 (en) Iron-based powder mixture for high-strength sintered parts of automobiles
JP2017106060A (en) Mixture powder for powder metallurgy, manufacturing method therefor and manufacturing method of iron-based powder-made sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029