WO2016190039A1 - Mixed powder for iron-based powder metallurgy and sintered body produced using same - Google Patents

Mixed powder for iron-based powder metallurgy and sintered body produced using same Download PDF

Info

Publication number
WO2016190039A1
WO2016190039A1 PCT/JP2016/063170 JP2016063170W WO2016190039A1 WO 2016190039 A1 WO2016190039 A1 WO 2016190039A1 JP 2016063170 W JP2016063170 W JP 2016063170W WO 2016190039 A1 WO2016190039 A1 WO 2016190039A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
iron
weight
oxide
sintered body
Prior art date
Application number
PCT/JP2016/063170
Other languages
French (fr)
Japanese (ja)
Inventor
宣明 赤城
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020177036354A priority Critical patent/KR20180008733A/en
Priority to CN201680029929.4A priority patent/CN107614157B/en
Priority to US15/569,008 priority patent/US20180126454A1/en
Priority to EP16799747.7A priority patent/EP3305440B1/en
Priority to KR1020197025709A priority patent/KR102060955B1/en
Publication of WO2016190039A1 publication Critical patent/WO2016190039A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • C22C1/055Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon

Definitions

  • the present invention relates to a mixed powder for iron-based powder metallurgy and a sintered body produced using the same, and more specifically, an iron group containing a binary oxide and a ternary oxide in a specific weight ratio.
  • the present invention relates to a powder mixture for powder metallurgy and a sintered body produced using the same.
  • Powder metallurgy is widely used as an industrial production method for various machine parts.
  • the procedure for iron-based powder metallurgy is to first prepare a mixed powder by mixing an iron-based powder, an alloy powder such as a copper (Cu) powder, a nickel (Ni) powder, a graphite powder, and a lubricant. .
  • the mixed powder is filled into a mold, press-molded, and sintered to produce a sintered body.
  • a machine part having a desired shape is prepared by subjecting the sintered body to cutting such as drilling or turning.
  • the ideal of powder metallurgy is to process the sintered body so that it can be used as a machine part without cutting the sintered body.
  • the sintering may cause uneven shrinkage of the raw material powder.
  • the dimensional accuracy required for mechanical parts is high, and the shape of the parts is complicated. For this reason, it is becoming essential to cut the sintered body. From such a background, machinability is imparted to the sintered body so that the sintered body can be processed smoothly.
  • MnS manganese sulfide
  • the addition of MnS powder is effective for relatively low-speed cutting such as drilling.
  • the addition of manganese sulfide powder is not necessarily effective for high-speed cutting in recent years, and there are problems such as generation of dirt on the sintered body and reduction in mechanical strength.
  • Patent Documents 1 to 4 have been proposed as methods other than adding the above-described manganese sulfide.
  • Patent Document 1 Japanese Patent Publication No. 52-16684
  • 0.1 to 1.0% of calcium sulfide and 0. 0% of iron-based raw material powder containing carbon and copper in a required amount of iron powder are disclosed.
  • a sintered steel containing 1-2% carbon (C) and 0.5-5.0% copper (Cu) is disclosed.
  • Patent Document 2 Japanese Patent Publication No. 2008-502807 discloses a metallurgical powder composition containing a powder containing calcium aluminate. Powder containing the calcium aluminate, 51 and to 57% by weight alumina, and calcium oxide 31-37% by weight, and SiO 2 of less than 6.0 wt%, less than 2.5 wt.% Fe 2 O 3 If, comprising the TiO 2 of less than 3.0 wt%, and 2.0 wt% less than MgO, and K 2 O of less than 0.2 wt%, less than 0.2 wt% of sulfur.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2010-236061
  • SiO 2 —CaO—MgO-based oxide powder in a ratio of 0.01 to 1.0 part by mass with respect to 100 parts by mass of iron-based powder.
  • An iron-based mixed powder is disclosed.
  • Patent Document 4 Japanese Patent Laid-Open No. 09-279204
  • a powder of CaO—Al 2 O 3 —SiO 2 based composite oxide mainly composed of iron powder and having an average particle size of 50 ⁇ m or less is 0.02 to 0.3.
  • An iron-based mixed powder for powder metallurgy containing by weight is disclosed.
  • this excessive amount of CaO reacts with other oxides or sulfur or is present alone, the characteristics of the sintered body are difficult to stabilize.
  • the present invention has been made in view of the above-described present situation, and an object of the present invention is to provide an iron-based powder capable of producing a sintered body excellent in machinability both in the initial stage of cutting and in long-term cutting. It is to provide mixed powder for metallurgy.
  • the mixed powder for iron-based powder metallurgy according to the present invention includes one or more ternary oxides selected from the group consisting of Ca—Al—Si oxides and Ca—Mg—Si oxides, and Ca—Al. And one or more binary oxides selected from the group consisting of Ca oxides and Ca—Si oxides, and the total weight of the ternary oxides and the binary oxides is 0.025. Contains from 0.3% to 0.3% by weight.
  • the present invention is also a sintered body produced by sintering the above mixed powder for iron-based powder metallurgy.
  • the inventor of the present invention includes an oxide (2CaO.Al 2 O 3 .SiO 2 powder) contained in a sintered body and a titanium oxide (TiO 2 ) powder contained in a cutting tool or a cutting tool coating.
  • the reaction mechanism was confirmed. Specifically, a mixed powder of 2CaO ⁇ Al 2 O 3 ⁇ SiO 2 powder and TiO 2 powder was heated in an atmosphere under no pressure, and the reaction product was analyzed by X-ray diffraction.
  • the present inventor has formed a protective film immediately after the start of cutting, in a state where the cutting edge temperature of the cutting tool is low, the reaction between the ternary oxide and TiO 2 in the tool does not occur sufficiently. It was assumed that it was difficult to do.
  • the present inventor when a certain period of time has elapsed from the start of cutting and the cutting edge temperature of the cutting tool becomes high, Ca in the ternary oxide reacts with TiO 2 on the tool surface to protect the tool surface. While forming the film, it was confirmed that various binary oxides were formed. The present inventor has lost the Ca in the binary oxide by reacting with TiO 2 on the surface of the cutting tool, and causes hard wear by generating hard Al 2 O 3 and SiO 2. It was assumed that the ternary oxide exhibited the effect of suppressing tool wear more than the binary oxide in cutting during the period.
  • the inventor has improved the machinability at the initial stage of cutting with a binary oxide, and cuts in long-time cutting with a ternary oxide in which hard Al 2 O 3 and SiO 2 are not easily generated. As a result, the present invention shown below was completed.
  • the present invention it is possible to provide a mixed powder for iron-based powder metallurgy capable of producing a sintered body excellent in machinability both in the initial stage of cutting and in long-term cutting.
  • the mixed powder for iron-based powder metallurgy of the present invention is preferably formed by mixing an iron-based powder, a ternary oxide, and a binary oxide.
  • Various additives such as an alloy powder, a graphite powder, a lubricant, a binder, and a machining accelerator may be appropriately added to the mixed powder.
  • a small amount of inevitable impurities may be contained in the mixed powder in the process of manufacturing the mixed powder for iron-based powder metallurgy.
  • the mixed powder for iron-based powder metallurgy according to the present invention can be obtained by filling a metal mold or the like and molding it, followed by sintering.
  • the sintered body produced in this way can be used for various machine parts by cutting. The use and manufacturing method of this sintered body will be described later.
  • the iron-based powder is a main component constituting the mixed powder for iron-based powder metallurgy, and is preferably contained in a weight ratio of 60% by weight or more with respect to the entire mixed powder for iron-based powder metallurgy.
  • the weight% of iron-base powder here means the ratio for the total weight other than a lubricant among the mixed powder for iron-base powder metallurgy.
  • the definition means the weight ratio in the total weight of the iron-based powder metallurgy mixed powder excluding the lubricant.
  • the iron-based powder atomized iron powder, pure iron powder such as reduced iron powder, partially diffusion alloyed steel powder, fully alloyed steel powder, or hybrid steel powder in which alloy components are partially diffused Etc. can be used.
  • the volume average particle diameter of the iron-based powder is preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more. When the volume average particle diameter of the iron-based powder is 50 ⁇ m or more, the handleability is excellent.
  • the volume average particle size of the iron-based powder is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less. When the volume average particle diameter of the iron-based powder is 200 ⁇ m or less, it is easy to form a precise shape and sufficient strength can be obtained.
  • the mixed powder for iron-based powder metallurgy according to the present invention includes both a binary oxide and a ternary oxide in a total weight of 0.025 wt% or more and 0.3 wt% or less.
  • the binary oxide can improve the machinability at the initial stage of cutting when the sintered body is used for cutting.
  • the ternary oxide can improve the machinability when cut for a long time. By containing both oxides in such a weight ratio, a sintered body excellent in machinability can be produced both in the initial stage of cutting and in long-term cutting.
  • the total weight of the oxide is preferably 0.03% by weight or more, more preferably 0.04% by weight or more, further preferably 0.05% by weight or more, and particularly preferably 0%. .1% by weight or more. From the viewpoint of cost, the smaller the weight ratio of the binary oxide and the ternary oxide, the better.
  • the total weight of the oxides is preferably 0.25% by weight or less, more preferably 0.2% by weight or less. When the total weight of the oxides is 0.25% by weight or less, the crushing strength of the sintered body can be sufficiently ensured.
  • the binary oxide means a complex oxide of two elements
  • the ternary oxide means a complex oxide of three elements.
  • the binary oxide is preferably a complex oxide of two elements selected from the group consisting of Ca, Mg, Al, Si, Co, Ni, Ti, Mn, Fe, and Zn. More preferred are system oxides, Ca—Si oxides, and the like.
  • Examples of the Ca—Al-based oxide include CaO ⁇ Al 2 O 3 and 12CaO ⁇ 7Al 2 O 3 .
  • Examples of the Ca—Si-based oxide include 2CaO ⁇ SiO 2 .
  • the ternary oxide is preferably a complex oxide of three elements selected from the group consisting of Ca, Mg, Al, Si, Co, Ni, Ti, Mn, Fe, and Zn.
  • -Si-based oxides, Ca-Mg-Si-based oxides and the like are more preferable.
  • Examples of the Ca—Mg—Si oxide include 2CaO ⁇ MgO ⁇ 2SiO 2 . Among these it is preferable to add 2CaO ⁇ Al 2 O 3 ⁇ SiO 2.
  • the 2CaO ⁇ Al 2 O 3 ⁇ SiO 2 reacts with TiO 2 contained in the coating applied in the cutting tool or cutting tool, by forming a protective film on the surface of the cutting tool, the machinability It can be remarkably improved.
  • the shape of the binary oxide and the ternary oxide is not particularly limited, but a spherical shape or a shape in which it is crushed, that is, a shape having a round shape as a whole is preferable.
  • the volume average particle diameter of the binary oxide and ternary oxide is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more. As the volume average particle size is smaller, there is a tendency that the machinability of the sintered body can be improved by adding a small amount. Further, the volume average particle diameter is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and further preferably 9 ⁇ m or less. If the volume average particle diameter is too large, it becomes difficult to improve the machinability of the sintered body.
  • the volume average particle size is a value of the particle size D 50 of 50% of the integrated value in the particle size distribution obtained using a laser diffraction particle size distribution measuring apparatus (Microtrack “MODEL 9320-X100” manufactured by Nikkiso Co., Ltd.).
  • a laser diffraction particle size distribution measuring apparatus Microtrack “MODEL 9320-X100” manufactured by Nikkiso Co., Ltd.
  • the binary oxide is preferably contained in an amount of 0.01% by weight or more, more preferably 0.03% by weight or more, and further preferably 0.05% by weight or more.
  • the binary oxide is preferably contained in an amount of 0.25% by weight or less, more preferably 0.2% by weight or less, and still more preferably 0.15% by weight or less.
  • the ternary oxide is preferably contained in an amount of 0.01% by weight or more, more preferably 0.03% by weight or more, and still more preferably 0.05% by weight or more. Further, the ternary oxide is preferably contained in an amount of 0.25% by weight or less, more preferably 0.2% by weight or less, and further preferably 0.15% by weight or less. By including such a weight ratio, it is possible to obtain a sintered body excellent in machinability even during long-term cutting while suppressing cost.
  • the weight ratio of the ternary oxide and the binary oxide is preferably included in a ratio of 9: 1 to 1: 9, more preferably 9: 1 to 3: 7, and even more preferably 7: 3 to 4. : 6.
  • a sintered body that is easy to be cut can be produced both in the initial stage of cutting and in long-term cutting.
  • the alloy powder is added to promote bonding between the iron-based powders and to increase the strength of the sintered body after sintering.
  • Such an alloy powder is preferably contained in an amount of 0.1 wt% or more and 10 wt% or less with respect to the entire mixed powder for iron-based powder metallurgy. When it is 0.1% by weight or more, the strength of the sintered body can be increased, and when it is 10% by weight or less, dimensional accuracy during sintering of the sintered body can be ensured.
  • alloy powder examples include non-ferrous metal powders such as copper (Cu) powder, nickel (Ni) powder, Mo powder, Cr powder, V powder, Si powder, and Mn powder, and cuprous oxide powder. You may use individually by 1 type and may use 2 or more types together.
  • the lubricant is added in order to make it easy to take out the molded body obtained by compressing the mixed powder for iron-based powder metallurgy in the mold. That is, when a lubricant is added to the mixed powder for iron-based powder metallurgy, it is possible to reduce the drawing pressure when taking out the molded body from the mold, and to prevent cracking of the molded body and damage to the mold.
  • the lubricant may be added to the iron-based powder metallurgy mixed powder, or may be applied to the surface of the mold.
  • the lubricant When the lubricant is added to the iron-based powder metallurgy mixed powder, the lubricant is preferably contained in an amount of 0.01% by weight or more, and 0.1% by weight or more, based on the weight of the iron-based powder metallurgy mixed powder. More preferably. When the content of the lubricant is 0.01% by weight or more, it is easy to obtain the effect of reducing the punching pressure of the sintered body.
  • the lubricant is preferably contained in an amount of 1.5% by weight or less, more preferably 1.2% by weight or less, based on the weight of the mixed powder for iron-based powder metallurgy. When the content of the lubricant is 1.5% by weight or less, it is easy to obtain a high-density sintered body and a high-strength sintered body can be obtained.
  • the lubricant is selected from the group consisting of metal soap (lithium stearate, calcium stearate, zinc stearate, etc.), stearic acid monoamide, fatty acid amide, amide wax, hydrocarbon wax, and cross-linked (meth) acrylic acid alkyl ester resin.
  • metal soap lithium stearate, calcium stearate, zinc stearate, etc.
  • stearic acid monoamide fatty acid amide
  • amide wax hydrocarbon wax
  • cross-linked (meth) acrylic acid alkyl ester resin one or more of them can be used.
  • the binder is added to adhere the alloy powder and the graphite powder to the surface of the iron-based powder.
  • a butene polymer a methacrylic acid polymer, or the like is used.
  • the butene polymer it is preferable to use a 1-butene homopolymer composed of butene alone or a copolymer of butene and alkene.
  • the alkene here is preferably a lower alkene, preferably ethylene or propylene.
  • the methacrylic acid polymer is selected from the group consisting of methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, ethyl hexyl methacrylate, lauryl methacrylate, methyl acrylate and ethyl acrylate 1 More than seeds can be used.
  • the binder is preferably contained in an amount of 0.01% by weight or more, more preferably 0.05% by weight or more, and further preferably 0.1% by weight or more, based on the weight of the mixed powder for iron-based powder metallurgy. It is included.
  • the binder content is preferably 0.5% by weight or less, more preferably 0.4% by weight or less, and still more preferably 0.8% by weight or less with respect to the weight of the mixed powder for iron-based powder metallurgy. 3% by weight or less.
  • the machining accelerator is added in order to improve the machinability of the sintered body obtained by sintering the mixed powder for iron-based powder metallurgy. It is preferable to use calcium sulfide as the machining accelerator.
  • calcium sulfide is used as a machining accelerator, calcium sulfide is hygroscopic and may impair the stability of the performance. Therefore, the surface of the powder made of calcium sulfide is coated, or the powder of calcium sulfide is preliminarily 300 It is preferably heated to from °C to 900 °C to form II type calcium sulfate.
  • the hygroscopic property of the powder made of calcium sulfide can be suppressed, and the performance of the sintered body can be stabilized.
  • the type II calcium sulfate has extremely low hygroscopicity, the performance of the sintered body can be stabilized.
  • an amide polymer material, an organic material such as styrene / butadiene rubber, or the like can be used for the coating of the powder made of calcium sulfide.
  • the machining accelerator is preferably contained in an amount of 0.01% by weight or more, more preferably 0.05% by weight or more, more preferably 0.1% by weight based on the weight of the mixed powder for iron-based powder metallurgy. It is contained by weight% or more.
  • the content of the machining accelerator is preferably 1% by weight or less, more preferably 0.4% by weight or less, and still more preferably 0.3% by weight with respect to the weight of the mixed powder for iron-based powder metallurgy. % By weight or less.
  • the mixed powder for iron-based powder metallurgy of the present invention can be produced by mixing iron-based powder, ternary oxide, and binary oxide using, for example, a mechanical stirring mixer.
  • various additives such as alloy powders, graphite powders, lubricants and binders may be added as appropriate.
  • the mechanical stirring mixer include a high speed mixer, a nauter mixer, a V-type mixer, and a double cone blender.
  • the order of mixing the powders is not particularly limited.
  • the mixing temperature is not particularly limited, but is preferably 150 ° C. or lower from the viewpoint of suppressing oxidation of the iron-based powder in the mixing step.
  • a compacted body After the mixed powder for iron-based powder metallurgy prepared above is filled in a mold, a compacted body can be manufactured by applying a pressure of 300 MPa to 1200 MPa.
  • the molding temperature at this time is preferably 25 ° C. or higher and 150 ° C. or lower.
  • the sintered compact is obtained by sintering the compacting body produced above by a normal sintering method.
  • the sintering condition may be a non-oxidizing atmosphere or a reducing atmosphere.
  • the green compact is preferably sintered for 5 minutes to 60 minutes at a temperature of 1000 ° C. to 1300 ° C. in an atmosphere such as a nitrogen atmosphere, a mixed atmosphere of nitrogen and hydrogen, and a hydrocarbon.
  • the sintered body produced as described above can be used as machine parts such as automobiles, agricultural equipment, electric tools, and home appliances by processing with various tools such as cutting tools as necessary.
  • cutting tools include a drill, an end mill, a milling cutting tool, a turning cutting tool, a reamer, and a tap.
  • the iron-based powder metallurgy mixed powder contains a binary oxide, whereby a sintered body having excellent machinability at the initial cutting stage can be obtained. Moreover, when the mixed powder for iron-based powder metallurgy contains a ternary oxide, a sintered body excellent in machinability in long-term cutting can be obtained. When the total weight of the binary oxide and the ternary oxide is in the above range, the machinability in the initial stage of cutting and the machinability in long-term cutting can be made highly compatible.
  • the mixed powder for iron-based powder metallurgy includes a ternary oxide and a binary oxide in a weight ratio of 9: 1 to 1: 9. Good balance of machinability.
  • the mixed powder for iron-based powder metallurgy contains ternary oxides and binary oxides in a total weight of 0.05% by weight to 0.2% by weight.
  • a sintered body having an excellent balance of machinability can be produced.
  • Examples 1 to 6 and Comparative Examples 1 to 6) In each of the examples and comparative examples, 2% by weight of copper powder (product name: CuATW-250 (Fukuda Metal Foil Powder Industrial Co., Ltd.) with respect to pure iron powder (product name: Atmel 300M (manufactured by Kobe Steel)) Made by the company)), and the composition and weight% of binary oxide and / or ternary oxide shown in the column of “binary oxide” and / or “ternary oxide” in Table 1, A mixed powder for iron-based powder metallurgy was prepared by mixing graphite powder (product name CPB (manufactured by Nippon Graphite Industry Co., Ltd.)) and 0.75 wt% zinc stearate. The graphite powder was added in an amount such that the amount of carbon after sintering was 0.75% by weight. As the binary oxide and ternary oxide, those having a volume average particle diameter of 2 ⁇ m were used.
  • the above mixed powder for iron-based powder metallurgy was filled in a mold, and a test piece was molded in a ring shape having an outer diameter of 64 mm, an inner diameter of 24 mm, and a thickness of 20 mm so that the molding density was 7.00 g / cm 3 .
  • This ring-shaped test piece was sintered at 1130 ° C. for 30 minutes in a 10% by volume H 2 —N 2 atmosphere to produce a sintered body.
  • Examples 1 to 6 are sintered bodies containing a combination of a binary oxide and a ternary oxide.
  • Comparative Example 1 is a sintered body containing neither binary oxide nor ternary oxide.
  • Comparative Examples 3 and 4 are sintered bodies containing only ternary oxides.
  • Comparative Examples 2, 5, and 6 are sintered bodies containing only binary oxides.
  • Comparative Example 2 the component (CaO.Al 2 O 3 ) disclosed in Patent Document 1 is used.
  • Comparative Example 3 the component (2CaO ⁇ MgO ⁇ 2SiO 2 ) disclosed in Patent Document 3 is used.
  • Comparative Example 4 the component (2CaO.Al 2 O 3 .SiO 2 ) disclosed in Patent Document 4 is used.
  • Example 7 to 18 In Examples 7 to 18, the total weight of the binary oxide and the ternary oxide was fixed to 0.1% by weight, and the weight ratio and composition thereof were set to “binary oxide” and “ A mixed powder and sintered body for iron-based powder metallurgy were prepared in the same manner as in Example 1 except that the composition and weight% shown in the column of “ternary oxide” were changed. The amount of tool wear was evaluated in the same manner as in Example 1 for the sintered body thus produced. These results are shown in Table 2 below.
  • Example 19 to 21 and Comparative Examples 7 to 9 In Examples 19 to 21 and Comparative Examples 7 to 9, the weights of the binary oxide and the ternary oxide are shown in the columns of “binary oxide” and “ternary oxide” in Table 3.
  • a mixed powder and sintered body for iron-based powder metallurgy were produced in the same manner as in Example 1 except that the composition and weight percentage were changed. The amount of wear was evaluated for the sintered body thus produced by the same method as in Example 1. These results are shown in Table 3 below.

Abstract

This mixed powder for iron-based powder metallurgy comprises: one or more ternary oxides selected from the group consisting of Ca-Al-Si oxides and Ca-Mg-Si oxides; and one or more binary oxides selected from the group consisting of Ca-Al oxides and Ca-Si oxides. The mixed powder for iron-based powder metallurgy contains 0.025-0.3 wt% of the ternary oxides and the binary oxides by total weight.

Description

鉄基粉末冶金用混合粉及びそれを用いて作製した焼結体Mixed powder for iron-based powder metallurgy and sintered body produced using the same
 本発明は、鉄基粉末冶金用混合粉及びそれを用いて作製した焼結体に関し、より特定的には、2元系酸化物と3元系酸化物とを特定の重量比で含む鉄基粉末冶金用混合粉及びそれを用いて作製した焼結体に関する。 The present invention relates to a mixed powder for iron-based powder metallurgy and a sintered body produced using the same, and more specifically, an iron group containing a binary oxide and a ternary oxide in a specific weight ratio. The present invention relates to a powder mixture for powder metallurgy and a sintered body produced using the same.
 粉末冶金は、様々な機械部品の工業的生産方法として広く用いられている。鉄基粉末冶金の手順は、まず、鉄基粉末と、銅(Cu)粉末、ニッケル(Ni)粉末等の合金用粉末と、黒鉛粉と、潤滑剤とを混合することにより混合粉末を準備する。次に、この混合粉末を金型に充填してプレス成形し、焼結することにより焼結体を作製する。最後に、この焼結体に対してドリル加工や旋削加工等の切削加工を施すことによって所望の形状の機械部品に整える。 Powder metallurgy is widely used as an industrial production method for various machine parts. The procedure for iron-based powder metallurgy is to first prepare a mixed powder by mixing an iron-based powder, an alloy powder such as a copper (Cu) powder, a nickel (Ni) powder, a graphite powder, and a lubricant. . Next, the mixed powder is filled into a mold, press-molded, and sintered to produce a sintered body. Finally, a machine part having a desired shape is prepared by subjecting the sintered body to cutting such as drilling or turning.
 粉末冶金の理想は、焼結体に切削加工を施すことなく、焼結体を機械部品として使用できるように加工することである。しかし、上記焼結によって原料粉末に不均一な収縮が生じることもある。近年では機械部品に要求される寸法精度が高く、部品形状が複雑化している。このため、焼結体に切削加工を施すことは必須になりつつある。このような背景から、焼結体を円滑に加工できるように、焼結体に被削性を付与している。 The ideal of powder metallurgy is to process the sintered body so that it can be used as a machine part without cutting the sintered body. However, the sintering may cause uneven shrinkage of the raw material powder. In recent years, the dimensional accuracy required for mechanical parts is high, and the shape of the parts is complicated. For this reason, it is becoming essential to cut the sintered body. From such a background, machinability is imparted to the sintered body so that the sintered body can be processed smoothly.
 上記被削性を付与する手段として、硫化マンガン(MnS)粉末を混合粉末に添加する手法がある。MnS粉末の添加は、ドリル穿孔等の比較的低速の切削加工には有効である。しかし、硫化マンガン粉末の添加は、近年の高速切削加工には必ずしも有効ではないこと、焼結体に汚れが発生すること、機械的強度が低下すること等の課題がある。 As a means for imparting the above machinability, there is a technique of adding manganese sulfide (MnS) powder to the mixed powder. The addition of MnS powder is effective for relatively low-speed cutting such as drilling. However, the addition of manganese sulfide powder is not necessarily effective for high-speed cutting in recent years, and there are problems such as generation of dirt on the sintered body and reduction in mechanical strength.
 このため、上記硫化マンガンを添加する以外の手法として、例えば特許文献1~4に開示される添加剤が提案されている。 For this reason, for example, additives disclosed in Patent Documents 1 to 4 have been proposed as methods other than adding the above-described manganese sulfide.
 特許文献1(特公昭52-16684号公報)には、鉄粉の所要量の炭素と銅を含有せしめた鉄系原料粉に対し、0.1~1.0%の硫化カルシウムと、0.1~2%の炭素(C)と、0.5~5.0%の銅(Cu)とを含有する焼結鋼が開示されている。 In Patent Document 1 (Japanese Patent Publication No. 52-16684), 0.1 to 1.0% of calcium sulfide and 0. 0% of iron-based raw material powder containing carbon and copper in a required amount of iron powder are disclosed. A sintered steel containing 1-2% carbon (C) and 0.5-5.0% copper (Cu) is disclosed.
 特許文献2(特表2008-502807号公報)には、アルミン酸カルシウムを含む粉末を含む冶金粉末組成物が開示されている。上記アルミン酸カルシウムを含む粉末は、51~57重量%のアルミナと、31-37重量%の酸化カルシウムと、6.0重量%未満のSiO2と、2.5重量%未満のFe23と、3.0重量%未満のTiO2と、2.0重量%未満のMgOと、0.2重量%未満のK2Oと、0.2重量%未満の硫黄とを含む。 Patent Document 2 (Japanese Patent Publication No. 2008-502807) discloses a metallurgical powder composition containing a powder containing calcium aluminate. Powder containing the calcium aluminate, 51 and to 57% by weight alumina, and calcium oxide 31-37% by weight, and SiO 2 of less than 6.0 wt%, less than 2.5 wt.% Fe 2 O 3 If, comprising the TiO 2 of less than 3.0 wt%, and 2.0 wt% less than MgO, and K 2 O of less than 0.2 wt%, less than 0.2 wt% of sulfur.
 特許文献3(特開2010-236061号公報)には、鉄基粉末100質量部に対して、0.01~1.0質量部の割合でSiO2-CaO-MgO系の酸化物粉末を含む鉄基混合粉末が開示されている。 Patent Document 3 (Japanese Patent Application Laid-Open No. 2010-236061) includes SiO 2 —CaO—MgO-based oxide powder in a ratio of 0.01 to 1.0 part by mass with respect to 100 parts by mass of iron-based powder. An iron-based mixed powder is disclosed.
 特許文献4(特開平09-279204号公報)には、鉄粉を主体とし、平均粒径50μm以下のCaO-Al23-SiO2系複合酸化物の粉末を0.02~0.3重量%含有する粉末冶金用鉄系混合粉末が開示されている。 In Patent Document 4 (Japanese Patent Laid-Open No. 09-279204), a powder of CaO—Al 2 O 3 —SiO 2 based composite oxide mainly composed of iron powder and having an average particle size of 50 μm or less is 0.02 to 0.3. An iron-based mixed powder for powder metallurgy containing by weight is disclosed.
 特許文献1に開示の硫化カルシウムを鉄系原料粉に含有させることにより、機械部品の強度が大幅に低下すること、混合粉末が経時変化して品質が安定しないこと等の課題がある。また、特許文献1に開示の焼結鋼を切削工具によって加工すると、切屑が細かく分断されにくかった。このことから、特許文献1に開示の焼結鋼は、現在の切屑処理性の要求を満たすレベルと言えるほど優れているとは言い難い。 The inclusion of calcium sulfide disclosed in Patent Document 1 in the iron-based raw material powder causes problems such as a significant decrease in the strength of mechanical parts and a deterioration in quality due to a change in the mixed powder over time. Moreover, when the sintered steel disclosed in Patent Document 1 is processed with a cutting tool, it is difficult for the chips to be finely divided. For this reason, it is difficult to say that the sintered steel disclosed in Patent Document 1 is so excellent that it can be said to satisfy the current requirements for chip disposal.
 特許文献2に記載された技術は、アルミン酸モノカルシウムの理論比であるCaO:Al23=35.5:64.5に対し、Al23が不足する一方でCaOを過剰に含む。この過剰量のCaOが、他の酸化物又は硫黄と反応するか又は単独で存在することにより、焼結体の特性が安定しにくい。 The technique described in Patent Document 2 includes CaO: Al 2 O 3 = 35.5: 64.5, which is a theoretical ratio of monocalcium aluminate, while Al 2 O 3 is insufficient and CaO is excessively contained. . When this excessive amount of CaO reacts with other oxides or sulfur or is present alone, the characteristics of the sintered body are difficult to stabilize.
 特許文献3及び4に記載された技術は、切削時に加工面に露出したセラミックス粉末が工具表面に付着して工具保護膜を形成する。この工具保護膜が工具の材質劣化を防止し、切削性を改善する。しかしながら、特許文献3及び4に開示の鉄系混合粉末によって作製された焼結体は、切削開始直後(切削初期)の被削性のさらなる改善が求められている。 In the techniques described in Patent Documents 3 and 4, ceramic powder exposed on the work surface during cutting adheres to the tool surface to form a tool protective film. This tool protective film prevents material deterioration of the tool and improves machinability. However, the sintered body made of the iron-based mixed powder disclosed in Patent Documents 3 and 4 is required to further improve machinability immediately after the start of cutting (the initial stage of cutting).
 本発明は、上記の現状に鑑みてなされたものであり、その目的とするところは、切削開始初期においても長期間の切削においても被削性に優れた焼結体を作製し得る鉄基粉末冶金用混合粉を提供することである。 The present invention has been made in view of the above-described present situation, and an object of the present invention is to provide an iron-based powder capable of producing a sintered body excellent in machinability both in the initial stage of cutting and in long-term cutting. It is to provide mixed powder for metallurgy.
特公昭52-16684号公報Japanese Patent Publication No. 52-16684 特表2008-502807号公報Special table 2008-502807 特開2010-236061号公報JP 2010-236061 A 特開平09-279204号公報JP 09-279204 A
 本発明の鉄基粉末冶金用混合粉は、Ca-Al-Si系酸化物及びCa-Mg-Si系酸化物からなる群より選択される1種以上の3元系酸化物と、Ca-Al系酸化物及びCa-Si系酸化物からなる群より選択される1種以上の2元系酸化物とを含み、前記3元系酸化物及び前記2元系酸化物を合計重量で0.025重量%以上0.3重量%以下含む。 The mixed powder for iron-based powder metallurgy according to the present invention includes one or more ternary oxides selected from the group consisting of Ca—Al—Si oxides and Ca—Mg—Si oxides, and Ca—Al. And one or more binary oxides selected from the group consisting of Ca oxides and Ca—Si oxides, and the total weight of the ternary oxides and the binary oxides is 0.025. Contains from 0.3% to 0.3% by weight.
 本発明は、上記鉄基粉末冶金用混合粉を焼結することによって作製された焼結体でもある。 The present invention is also a sintered body produced by sintering the above mixed powder for iron-based powder metallurgy.
 本発明者は上記目的を達成するため、焼結体に含まれる酸化物(2CaO・Al23・SiO2粉末)と、切削工具又は切削工具のコーティングに含まれる酸化チタン(TiO2)粉末との反応のメカニズムを確認した。具体的には、無加圧下の大気中で、2CaO・Al23・SiO2粉末と、TiO2粉末との混合粉末を加熱し、その反応生成物をX線回折によって分析した。 In order to achieve the above object, the inventor of the present invention includes an oxide (2CaO.Al 2 O 3 .SiO 2 powder) contained in a sintered body and a titanium oxide (TiO 2 ) powder contained in a cutting tool or a cutting tool coating. The reaction mechanism was confirmed. Specifically, a mixed powder of 2CaO · Al 2 O 3 · SiO 2 powder and TiO 2 powder was heated in an atmosphere under no pressure, and the reaction product was analyzed by X-ray diffraction.
 その結果、上記混合粉末を700℃で5分間加熱した場合には、TiO2と2CaO・Al23・SiO2とは反応しないが、上記混合粉末を700℃で1時間加熱した場合には、2CaO・Al23・SiO2がCaO・Al23・2SiO2、2CaO・SiO2等の多様な酸化物に分解され、さらにCaO・TiO2も生成されることが明らかとなった。 As a result, when the mixed powder was heated for 5 minutes at 700 ° C., if it does not react with TiO 2 and 2CaO · Al 2 O 3 · SiO 2, where the above-described mixed powder is heated for 1 hour at 700 ° C. The , 2CaO · Al 2 O 3 · SiO 2 is decomposed into various oxides such as CaO · Al 2 O 3 · 2SiO 2, 2CaO · SiO 2, was found to be further CaO · TiO 2 also produced .
 上記分析結果に基づいて、本発明者は、切削開始直後で切削工具の刃先温度が低い状態では、3元系酸化物と工具中のTiOとの反応が充分に起こらず、保護皮膜を形成しにくいと仮定した。また、本発明者は、切削開始から一定期間が経過して切削工具の刃先温度が高くなった状態では、3元系酸化物中のCaが工具表面のTiO2と反応して工具表面に保護皮膜を形成する一方で、種々の2元系酸化物を形成することを確認した。本発明者は、2元系酸化物中のCaが切削工具の表面のTiO2と反応して失われるとともに硬質のAl23、SiO2が生成することにより工具摩耗を引き起こすことで、長期間の切削では3元系酸化物が2元系酸化物よりも工具摩耗の抑制効果を発揮すると仮定した。 Based on the above analysis results, the present inventor has formed a protective film immediately after the start of cutting, in a state where the cutting edge temperature of the cutting tool is low, the reaction between the ternary oxide and TiO 2 in the tool does not occur sufficiently. It was assumed that it was difficult to do. In addition, the present inventor, when a certain period of time has elapsed from the start of cutting and the cutting edge temperature of the cutting tool becomes high, Ca in the ternary oxide reacts with TiO 2 on the tool surface to protect the tool surface. While forming the film, it was confirmed that various binary oxides were formed. The present inventor has lost the Ca in the binary oxide by reacting with TiO 2 on the surface of the cutting tool, and causes hard wear by generating hard Al 2 O 3 and SiO 2. It was assumed that the ternary oxide exhibited the effect of suppressing tool wear more than the binary oxide in cutting during the period.
 本発明者は上記仮定に基づいて、2元系酸化物により切削初期の被削性を高め、硬質のAl23、SiO2が生じにくい3元系酸化物により長時間の切削における被削性を高めることを見出し、以下に示す本発明を完成した。 Based on the above assumptions, the inventor has improved the machinability at the initial stage of cutting with a binary oxide, and cuts in long-time cutting with a ternary oxide in which hard Al 2 O 3 and SiO 2 are not easily generated. As a result, the present invention shown below was completed.
 本発明によれば、切削開始初期においても長期間切削においても被削性に優れた焼結体を作製し得る鉄基粉末冶金用混合粉を提供することができる。 According to the present invention, it is possible to provide a mixed powder for iron-based powder metallurgy capable of producing a sintered body excellent in machinability both in the initial stage of cutting and in long-term cutting.
 以下、本発明の鉄基粉末冶金用混合粉及びその製造方法を具体的に説明する。 Hereinafter, the mixed powder for iron-based powder metallurgy according to the present invention and the manufacturing method thereof will be described in detail.
 <鉄基粉末冶金用混合粉>
 本発明の鉄基粉末冶金用混合粉は、鉄基粉末と、3元系酸化物と、2元系酸化物とを混合してなることが好ましい。この混合粉末に、合金用粉末、黒鉛粉末、潤滑剤、バインダ、被削促進剤等の各種添加剤が適宜添加されてもよい。これら以外に、鉄基粉末冶金用混合粉の製造過程で当該混合粉に、微量の不可避不純物が含まれてもよい。本発明の鉄基粉末冶金用混合粉は、金型等に充填して成形した上で焼結することにより焼結体を得ることができる。このようにして作製された焼結体は、切削加工を施すことにより各種機械部品に使用することができる。この焼結体の用途及び製造方法は後述する。
<Mixed powder for iron-based powder metallurgy>
The mixed powder for iron-based powder metallurgy of the present invention is preferably formed by mixing an iron-based powder, a ternary oxide, and a binary oxide. Various additives such as an alloy powder, a graphite powder, a lubricant, a binder, and a machining accelerator may be appropriately added to the mixed powder. In addition to these, a small amount of inevitable impurities may be contained in the mixed powder in the process of manufacturing the mixed powder for iron-based powder metallurgy. The mixed powder for iron-based powder metallurgy according to the present invention can be obtained by filling a metal mold or the like and molding it, followed by sintering. The sintered body produced in this way can be used for various machine parts by cutting. The use and manufacturing method of this sintered body will be described later.
 <鉄基粉末>
 鉄基粉末は、鉄基粉末冶金用混合粉を構成する主要構成成分であり、鉄基粉末冶金用混合粉全体に対し60重量%以上の重量比率で含まれることが好ましい。なお、ここでの鉄基粉末の重量%は、鉄基粉末冶金用混合粉のうちの潤滑剤以外の総重量に占める割合を意味する。以下に各成分の重量%を規定する場合、その規定はいずれも潤滑剤を除く鉄基粉末冶金用混合粉の総重量に占める重量割合を意味するものとする。
<Iron-based powder>
The iron-based powder is a main component constituting the mixed powder for iron-based powder metallurgy, and is preferably contained in a weight ratio of 60% by weight or more with respect to the entire mixed powder for iron-based powder metallurgy. In addition, the weight% of iron-base powder here means the ratio for the total weight other than a lubricant among the mixed powder for iron-base powder metallurgy. In the following, when the weight percent of each component is defined, the definition means the weight ratio in the total weight of the iron-based powder metallurgy mixed powder excluding the lubricant.
 上記鉄基粉末としては、アトマイズ鉄粉、還元鉄粉等の純鉄粉、部分拡散合金化鋼粉、完全合金化鋼粉、又は完全合金化鋼粉に合金成分を部分拡散させたハイブリッド鋼粉等を用いることができる。鉄基粉末の体積平均粒子径は50μm以上であることが好ましく、より好ましくは70μm以上である。鉄基粉末の体積平均粒子径が50μm以上であると、ハンドリング性に優れる。また、鉄基粉末の体積平均粒子径は200μm以下であるのが好ましく、100μm以下がより好ましい。鉄基粉末の体積平均粒子径が200μm以下であると、精密形状を成形しやすく、かつ十分な強度を得られる。 As the iron-based powder, atomized iron powder, pure iron powder such as reduced iron powder, partially diffusion alloyed steel powder, fully alloyed steel powder, or hybrid steel powder in which alloy components are partially diffused Etc. can be used. The volume average particle diameter of the iron-based powder is preferably 50 μm or more, more preferably 70 μm or more. When the volume average particle diameter of the iron-based powder is 50 μm or more, the handleability is excellent. The volume average particle size of the iron-based powder is preferably 200 μm or less, and more preferably 100 μm or less. When the volume average particle diameter of the iron-based powder is 200 μm or less, it is easy to form a precise shape and sufficient strength can be obtained.
 <2元系酸化物及び3元系酸化物>
 本発明の鉄基粉末冶金用混合粉は、2元系酸化物及び3元系酸化物の両方を合計重量で0.025重量%以上0.3重量%以下含む。2元系酸化物は、焼結体を切削加工に用いたときの切削初期の被削性を向上させることができる。3元系酸化物は、長時間切削したときの被削性を向上させることができる。このような重量割合で両酸化物を含有することにより、切削初期においても長期間切削においても被削性に優れた焼結体を作製し得る。
<Binary oxide and ternary oxide>
The mixed powder for iron-based powder metallurgy according to the present invention includes both a binary oxide and a ternary oxide in a total weight of 0.025 wt% or more and 0.3 wt% or less. The binary oxide can improve the machinability at the initial stage of cutting when the sintered body is used for cutting. The ternary oxide can improve the machinability when cut for a long time. By containing both oxides in such a weight ratio, a sintered body excellent in machinability can be produced both in the initial stage of cutting and in long-term cutting.
 上記酸化物の合計重量は、0.03重量%以上であることが好ましく、0.04重量%以上であることがより好ましく、0.05重量%以上であることがさらに好ましく、特に好ましくは0.1重量%以上である。コストの観点からは、2元系酸化物及び3元系酸化物の重量割合は少ないほど好ましい。また、上記酸化物の合計重量は0.25重量%以下であることが好ましく、より好ましくは0.2重量%以下である。酸化物の合計重量が0.25重量%以下であることにより、焼結体の圧環強度を十分に確保することができる。 The total weight of the oxide is preferably 0.03% by weight or more, more preferably 0.04% by weight or more, further preferably 0.05% by weight or more, and particularly preferably 0%. .1% by weight or more. From the viewpoint of cost, the smaller the weight ratio of the binary oxide and the ternary oxide, the better. The total weight of the oxides is preferably 0.25% by weight or less, more preferably 0.2% by weight or less. When the total weight of the oxides is 0.25% by weight or less, the crushing strength of the sintered body can be sufficiently ensured.
 ここで、2元系酸化物とは2種の元素の複合酸化物を意味し、3元系酸化物とは3種の元素の複合酸化物を意味する。2元系酸化物は、Ca、Mg、Al、Si、Co、Ni、Ti、Mn、Fe及びZnからなる群より選択される2種の元素の複合酸化物であることが好ましく、Ca-Al系酸化物、Ca-Si系酸化物等がより好ましい。Ca-Al系酸化物としては、CaO・Al23、12CaO・7Al23等が挙げられる。Ca-Si系酸化物としては、2CaO・SiO2等が挙げられる。 Here, the binary oxide means a complex oxide of two elements, and the ternary oxide means a complex oxide of three elements. The binary oxide is preferably a complex oxide of two elements selected from the group consisting of Ca, Mg, Al, Si, Co, Ni, Ti, Mn, Fe, and Zn. More preferred are system oxides, Ca—Si oxides, and the like. Examples of the Ca—Al-based oxide include CaO · Al 2 O 3 and 12CaO · 7Al 2 O 3 . Examples of the Ca—Si-based oxide include 2CaO · SiO 2 .
 3元系酸化物は、Ca、Mg、Al、Si、Co、Ni、Ti、Mn、Fe及びZnからなる群より選択される3種の元素の複合酸化物を用いることが好ましく、Ca-Al-Si系酸化物、Ca-Mg-Si系酸化物等がより好ましい。Ca-Al-Si系酸化物としては、2CaO・Al23・SiO2等が挙げられる。Ca-Mg-Si系酸化物としては、2CaO・MgO・2SiO2等が挙げられる。中でも2CaO・Al23・SiO2を添加することが好ましい。上記2CaO・Al23・SiO2は、切削工具中または切削工具に施されたコーティングに含まれるTiO2と反応して、切削工具の表面に保護皮膜を形成することにより、被削性を顕著に向上させることができる。 The ternary oxide is preferably a complex oxide of three elements selected from the group consisting of Ca, Mg, Al, Si, Co, Ni, Ti, Mn, Fe, and Zn. -Si-based oxides, Ca-Mg-Si-based oxides and the like are more preferable. The Ca-Al-Si-based oxides, 2CaO · Al 2 O 3 · SiO 2 or the like. Examples of the Ca—Mg—Si oxide include 2CaO · MgO · 2SiO 2 . Among these it is preferable to add 2CaO · Al 2 O 3 · SiO 2. The 2CaO · Al 2 O 3 · SiO 2 reacts with TiO 2 contained in the coating applied in the cutting tool or cutting tool, by forming a protective film on the surface of the cutting tool, the machinability It can be remarkably improved.
 2元系酸化物及び3元系酸化物の形状は、特に制限されないが、球形又はそれが潰れた形状のもの、すなわち全体に丸みのある形状が好ましい。 The shape of the binary oxide and the ternary oxide is not particularly limited, but a spherical shape or a shape in which it is crushed, that is, a shape having a round shape as a whole is preferable.
 2元系酸化物及び3元系酸化物の体積平均粒子径は0.1μm以上が好ましく、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。体積平均粒子径が小さいほど少量の添加で焼結体の被削性を向上することができる傾向がある。また、体積平均粒子径は15μm以下が好ましく、より好ましくは10μm以下、さらに好ましくは9μm以下である。体積平均粒子径が大きすぎると焼結体の被削性を向上させにくくなる。上記体積平均粒子径は、レーザー回折式粒度分布測定装置(日機装株式会社製マイクロトラック「MODEL9320-X100」)を用いて得られた粒度分布における積算値50%の粒度D50の値である。本発明のように、2元系酸化物と3元系酸化物とを組み合わせて用いることにより、両酸化物の添加量を減少させることができ、原料コストの低減にもなる。 The volume average particle diameter of the binary oxide and ternary oxide is preferably 0.1 μm or more, more preferably 0.5 μm or more, and further preferably 1 μm or more. As the volume average particle size is smaller, there is a tendency that the machinability of the sintered body can be improved by adding a small amount. Further, the volume average particle diameter is preferably 15 μm or less, more preferably 10 μm or less, and further preferably 9 μm or less. If the volume average particle diameter is too large, it becomes difficult to improve the machinability of the sintered body. The volume average particle size is a value of the particle size D 50 of 50% of the integrated value in the particle size distribution obtained using a laser diffraction particle size distribution measuring apparatus (Microtrack “MODEL 9320-X100” manufactured by Nikkiso Co., Ltd.). By using a combination of a binary oxide and a ternary oxide as in the present invention, the amount of both oxides added can be reduced and the raw material cost can be reduced.
 2元系酸化物は、0.01重量%以上含むことが好ましく、より好ましくは0.03重量%以上、さらに好ましくは0.05重量%以上含むことである。また2元系酸化物は、0.25重量%以下含むことが好ましく、より好ましくは0.2重量%以下、さらに好ましくは0.15重量%以下である。このような重量割合で含むことにより、コストを抑制しつつ切削初期の被削性に優れた焼結体を得ることができる。 The binary oxide is preferably contained in an amount of 0.01% by weight or more, more preferably 0.03% by weight or more, and further preferably 0.05% by weight or more. The binary oxide is preferably contained in an amount of 0.25% by weight or less, more preferably 0.2% by weight or less, and still more preferably 0.15% by weight or less. By including such a weight ratio, it is possible to obtain a sintered body excellent in machinability at the initial stage of cutting while suppressing cost.
 3元系酸化物は、0.01重量%以上含むことが好ましく、より好ましくは0.03重量%以上、さらに好ましくは0.05重量%以上含むことである。また3元系酸化物は、0.25重量%以下含むことが好ましく、より好ましくは0.2重量%以下、さらに好ましくは0.15重量%以下である。このような重量割合で含むことにより、コストを抑制しつつ長期間の切削にも被削性に優れた焼結体を得ることができる。 The ternary oxide is preferably contained in an amount of 0.01% by weight or more, more preferably 0.03% by weight or more, and still more preferably 0.05% by weight or more. Further, the ternary oxide is preferably contained in an amount of 0.25% by weight or less, more preferably 0.2% by weight or less, and further preferably 0.15% by weight or less. By including such a weight ratio, it is possible to obtain a sintered body excellent in machinability even during long-term cutting while suppressing cost.
 3元系酸化物及び2元系酸化物の重量比は9:1~1:9の割合で含まれることが好ましく、より好ましくは9:1~3:7、さらに好ましくは7:3~4:6である。このような重量比で両酸化物を含むことにより、切削初期においても長期間切削においても被削しやすい焼結体を作製し得る。 The weight ratio of the ternary oxide and the binary oxide is preferably included in a ratio of 9: 1 to 1: 9, more preferably 9: 1 to 3: 7, and even more preferably 7: 3 to 4. : 6. By including both oxides in such a weight ratio, a sintered body that is easy to be cut can be produced both in the initial stage of cutting and in long-term cutting.
 <合金用粉末>
 合金用粉末は、鉄基粉末同士の結合を促し、かつ焼結後の焼結体の強度を高めるために添加される。このような合金用粉末は、鉄基粉末冶金用混合粉全体に対して0.1重量%以上10重量%以下含まれることが好ましい。0.1重量%以上であることにより焼結体の強度を高めることができ、10重量%以下であることにより焼結体の焼結時の寸法精度を確保することができる。
<Alloy powder>
The alloy powder is added to promote bonding between the iron-based powders and to increase the strength of the sintered body after sintering. Such an alloy powder is preferably contained in an amount of 0.1 wt% or more and 10 wt% or less with respect to the entire mixed powder for iron-based powder metallurgy. When it is 0.1% by weight or more, the strength of the sintered body can be increased, and when it is 10% by weight or less, dimensional accuracy during sintering of the sintered body can be ensured.
 上記合金用粉末としては、銅(Cu)粉、ニッケル(Ni)粉、Mo粉、Cr粉、V粉、Si粉、Mn粉等の非鉄金属粉末、亜酸化銅粉末等が挙げられ、これらを1種単独で用いてもよいし、2種以上を併用してもよい。 Examples of the alloy powder include non-ferrous metal powders such as copper (Cu) powder, nickel (Ni) powder, Mo powder, Cr powder, V powder, Si powder, and Mn powder, and cuprous oxide powder. You may use individually by 1 type and may use 2 or more types together.
 <潤滑剤>
 潤滑剤は、金型内で鉄基粉末冶金用混合粉を圧縮して得た成形体を、金型から取り出しやすくするために添加される。つまり、鉄基粉末冶金用混合粉に潤滑剤を添加すると、金型から成形体を取り出すときの抜き圧を低減し、成形体の割れや金型の損傷を防止することができる。潤滑剤は、鉄基粉末冶金用混合粉に添加してもよいし、金型の表面に塗布してもよい。潤滑剤を鉄基粉末冶金用混合粉に添加する場合、潤滑剤は、鉄基粉末冶金用混合粉の重量に対し、0.01重量%以上含まれることが好ましく、0.1重量%以上含まれることがより好ましい。潤滑剤の含有量が0.01重量%以上であることにより、焼結体の抜き圧を低減する効果を得やすい。また潤滑剤は、鉄基粉末冶金用混合粉の重量に対し、1.5重量%以下含まれることが好ましく、より好ましくは1.2重量%以下含まれることである。潤滑剤の含有量が1.5重量%以下であることにより、高密度な焼結体を得やすく、強度の高い焼結体を得ることができる。
<Lubricant>
The lubricant is added in order to make it easy to take out the molded body obtained by compressing the mixed powder for iron-based powder metallurgy in the mold. That is, when a lubricant is added to the mixed powder for iron-based powder metallurgy, it is possible to reduce the drawing pressure when taking out the molded body from the mold, and to prevent cracking of the molded body and damage to the mold. The lubricant may be added to the iron-based powder metallurgy mixed powder, or may be applied to the surface of the mold. When the lubricant is added to the iron-based powder metallurgy mixed powder, the lubricant is preferably contained in an amount of 0.01% by weight or more, and 0.1% by weight or more, based on the weight of the iron-based powder metallurgy mixed powder. More preferably. When the content of the lubricant is 0.01% by weight or more, it is easy to obtain the effect of reducing the punching pressure of the sintered body. The lubricant is preferably contained in an amount of 1.5% by weight or less, more preferably 1.2% by weight or less, based on the weight of the mixed powder for iron-based powder metallurgy. When the content of the lubricant is 1.5% by weight or less, it is easy to obtain a high-density sintered body and a high-strength sintered body can be obtained.
 上記潤滑剤は、金属石鹸(ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸亜鉛等)、ステアリン酸モノアミド、脂肪酸アミド、アミドワックス、炭化水素系ワックス及び架橋(メタ)アクリル酸アルキルエステル樹脂からなる群より選択される1種以上を用いることができる。中でも、鉄基粉末表面に合金用粉末、黒鉛粉末等を付着させる性能が良好であり、かつ鉄基混合粉末の偏析を軽減しやすいという観点から、アミド系潤滑剤を用いることが好ましい。 The lubricant is selected from the group consisting of metal soap (lithium stearate, calcium stearate, zinc stearate, etc.), stearic acid monoamide, fatty acid amide, amide wax, hydrocarbon wax, and cross-linked (meth) acrylic acid alkyl ester resin. One or more of them can be used. Among these, it is preferable to use an amide-based lubricant from the viewpoint that the performance of attaching the alloy powder, the graphite powder, and the like to the surface of the iron-based powder is good and the segregation of the iron-based mixed powder is easily reduced.
 <バインダ>
 バインダは、鉄基粉末表面に合金用粉末及び黒鉛粉末を付着させるために添加される。バインダは、ブテン系重合体、メタクリル酸系重合体等が用いられる。ブテン系重合体としては、ブテンのみからなる1-ブテン単独重合体、又はブテンとアルケンの共重合体を用いることが好ましい。ここでのアルケンは低級アルケンが好ましく、好ましくはエチレン又はプロピレンである。メタクリル酸系重合体は、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロへキシル、メタクリル酸エチルへキシル、メタクリル酸ラウリル、アクリル酸メチル及びアクリル酸エチルからなる群より選択される1種以上を用いることができる。
<Binder>
The binder is added to adhere the alloy powder and the graphite powder to the surface of the iron-based powder. As the binder, a butene polymer, a methacrylic acid polymer, or the like is used. As the butene polymer, it is preferable to use a 1-butene homopolymer composed of butene alone or a copolymer of butene and alkene. The alkene here is preferably a lower alkene, preferably ethylene or propylene. The methacrylic acid polymer is selected from the group consisting of methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, ethyl hexyl methacrylate, lauryl methacrylate, methyl acrylate and ethyl acrylate 1 More than seeds can be used.
 バインダは、鉄基粉末冶金用混合粉の重量に対し、0.01重量%以上含まれることが好ましく、0.05重量%以上含まれることがより好ましく、さらに好ましくは、0.1重量%以上含まれることである。また、バインダの含有量は、鉄基粉末冶金用混合粉の重量に対し、0.5重量%以下含まれることが好ましく、0.4重量%以下含まれることがより好ましく、さらに好ましくは0.3重量%以下である。 The binder is preferably contained in an amount of 0.01% by weight or more, more preferably 0.05% by weight or more, and further preferably 0.1% by weight or more, based on the weight of the mixed powder for iron-based powder metallurgy. It is included. The binder content is preferably 0.5% by weight or less, more preferably 0.4% by weight or less, and still more preferably 0.8% by weight or less with respect to the weight of the mixed powder for iron-based powder metallurgy. 3% by weight or less.
 <被削促進剤>
 被削促進剤は、鉄基粉末冶金用混合粉を焼結して得た焼結体の被削性を向上するために添加される。被削促進剤は、硫化カルシウムを用いることが好ましい。硫化カルシウムを被削促進剤として用いる場合、硫化カルシウムは吸湿性があるため性能の安定性を損なうことがあるので、硫化カルシウムからなる粉末の表面をコーティングするか、又は硫化カルシウムの粉末を予め300℃~900℃に加熱してII型の硫酸カルシウムの形態にすることが好ましい。これにより硫化カルシウムからなる粉末の吸湿性を抑制することができ、焼結体の性能を安定化させることができる。またII型の硫酸カルシウムは吸湿性が著しく低いため、焼結体の性能を安定化させることができる。上記硫化カルシウムからなる粉末のコーティングは、アミド系高分子材料、スチレン・ブタジエンゴム等の有機材料等を用いることができる。
<Machining accelerator>
The machining accelerator is added in order to improve the machinability of the sintered body obtained by sintering the mixed powder for iron-based powder metallurgy. It is preferable to use calcium sulfide as the machining accelerator. When calcium sulfide is used as a machining accelerator, calcium sulfide is hygroscopic and may impair the stability of the performance. Therefore, the surface of the powder made of calcium sulfide is coated, or the powder of calcium sulfide is preliminarily 300 It is preferably heated to from ℃ to 900 ℃ to form II type calcium sulfate. Thereby, the hygroscopic property of the powder made of calcium sulfide can be suppressed, and the performance of the sintered body can be stabilized. In addition, since the type II calcium sulfate has extremely low hygroscopicity, the performance of the sintered body can be stabilized. For the coating of the powder made of calcium sulfide, an amide polymer material, an organic material such as styrene / butadiene rubber, or the like can be used.
 被削促進剤は、鉄基粉末冶金用混合粉の重量に対し、0.01重量%以上含まれることが好ましく、0.05重量%以上含まれることがより好ましく、さらに好ましくは、0.1重量%以上含まれることである。また被削促進剤の含有量は、鉄基粉末冶金用混合粉の重量に対し、1重量%以下含まれることが好ましく、より好ましくは0.4重量%以下であり、さらに好ましくは0.3重量%以下である。 The machining accelerator is preferably contained in an amount of 0.01% by weight or more, more preferably 0.05% by weight or more, more preferably 0.1% by weight based on the weight of the mixed powder for iron-based powder metallurgy. It is contained by weight% or more. The content of the machining accelerator is preferably 1% by weight or less, more preferably 0.4% by weight or less, and still more preferably 0.3% by weight with respect to the weight of the mixed powder for iron-based powder metallurgy. % By weight or less.
 <鉄基粉末冶金用混合粉の製造方法>
 本発明の鉄基粉末冶金用混合粉は、例えば機械撹拌式混合機を用いて、鉄基粉末と、3元系酸化物と、2元系酸化物とを混合して作製することができる。上記各粉末に加えて、合金用粉末、黒鉛粉末、潤滑剤、バインダ等の各種添加剤を適宜添加してもよい。上記機械撹拌式混合器としては、例えば、ハイスピードミキサー、ナウターミキサー、V型混合機、ダブルコーンブレンダー等が挙げられる。上記各粉末の混合順序は特に限定されない。混合温度は、特に限定されないが、混合工程で鉄基粉末の酸化を抑制する観点から150℃以下が好ましい。
<Method for producing mixed powder for iron-based powder metallurgy>
The mixed powder for iron-based powder metallurgy of the present invention can be produced by mixing iron-based powder, ternary oxide, and binary oxide using, for example, a mechanical stirring mixer. In addition to the above powders, various additives such as alloy powders, graphite powders, lubricants and binders may be added as appropriate. Examples of the mechanical stirring mixer include a high speed mixer, a nauter mixer, a V-type mixer, and a double cone blender. The order of mixing the powders is not particularly limited. The mixing temperature is not particularly limited, but is preferably 150 ° C. or lower from the viewpoint of suppressing oxidation of the iron-based powder in the mixing step.
 <焼結体の製造方法>
 上記で作製した鉄基粉末冶金用混合粉を金型に充填した後、300MPa以上1200MPa以下の圧力をかけることによって圧粉成形体を製造することができる。このときの成形温度は、25℃以上150℃以下であることが好ましい。
<Method for producing sintered body>
After the mixed powder for iron-based powder metallurgy prepared above is filled in a mold, a compacted body can be manufactured by applying a pressure of 300 MPa to 1200 MPa. The molding temperature at this time is preferably 25 ° C. or higher and 150 ° C. or lower.
 そして上記で作製した圧粉成形体を通常の焼結方法によって焼結することにより焼結体を得る。焼結条件は、非酸化性雰囲気又は還元性雰囲気であればよい。上記圧粉成形体は、窒素雰囲気、窒素及び水素の混合雰囲気、炭化水素等の雰囲気下、1000℃以上1300℃以下の温度で5分以上60分以下の焼結を行なうことが好ましい。 And the sintered compact is obtained by sintering the compacting body produced above by a normal sintering method. The sintering condition may be a non-oxidizing atmosphere or a reducing atmosphere. The green compact is preferably sintered for 5 minutes to 60 minutes at a temperature of 1000 ° C. to 1300 ° C. in an atmosphere such as a nitrogen atmosphere, a mixed atmosphere of nitrogen and hydrogen, and a hydrocarbon.
 <焼結体>
 上記のようにして作製した焼結体は、必要に応じて切削工具等の種々の工具で加工することによって、自動車、農機具、電動工具、家電製品等の機械部品としても使用することができる。このような切削工具としては、たとえばドリル、エンドミル、フライス加工用切削工具、旋削加工用切削工具、リーマ、タップ等を挙げることができる。
<Sintered body>
The sintered body produced as described above can be used as machine parts such as automobiles, agricultural equipment, electric tools, and home appliances by processing with various tools such as cutting tools as necessary. Examples of such cutting tools include a drill, an end mill, a milling cutting tool, a turning cutting tool, a reamer, and a tap.
 上記実施形態によれば、鉄基粉末冶金用混合粉が2元系酸化物を含むことによって、切削初期における被削性に優れた焼結体を得ることができる。また鉄基粉末冶金用混合粉が3元系酸化物を含むことによって、長期間の切削における被削性に優れた焼結体を得ることができる。そして、2元系酸化物と3元系酸化物の合計重量が上記範囲であることにより、切削初期における被削性と、長期間の切削における被削性とを高度に両立させることができる。 According to the above embodiment, the iron-based powder metallurgy mixed powder contains a binary oxide, whereby a sintered body having excellent machinability at the initial cutting stage can be obtained. Moreover, when the mixed powder for iron-based powder metallurgy contains a ternary oxide, a sintered body excellent in machinability in long-term cutting can be obtained. When the total weight of the binary oxide and the ternary oxide is in the above range, the machinability in the initial stage of cutting and the machinability in long-term cutting can be made highly compatible.
 上記鉄基粉末冶金用混合粉は、3元系酸化物及び2元系酸化物の重量比が9:1~1:9の割合で含むので、切削初期の被削性と長期間切削の被削性のバランスが良好なものとなる。 The mixed powder for iron-based powder metallurgy includes a ternary oxide and a binary oxide in a weight ratio of 9: 1 to 1: 9. Good balance of machinability.
 上記鉄基粉末冶金用混合粉は、3元系酸化物及び2元系酸化物を合計重量で0.05重量%以上0.2重量%以下含むので、切削初期の被削性と長期間切削の被削性のバランスに優れた焼結体を作製し得る。 The mixed powder for iron-based powder metallurgy contains ternary oxides and binary oxides in a total weight of 0.05% by weight to 0.2% by weight. A sintered body having an excellent balance of machinability can be produced.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 (実施例1~6及び比較例1~6)
 各実施例及び各比較例では、純鉄粉(製品名:アトメル300M(株式会社神戸製鋼所製))に対し、2重量%の銅粉末(製品名:CuATW-250(福田金属箔粉工業株式会社製))と、表1の「2元系酸化物」及び/又は「3元系酸化物」の欄に示す組成及び重量%の2元系酸化物及び/又は3元系酸化物と、黒鉛粉(製品名CPB(日本黒鉛工業株式会社製))と、0.75重量%のステアリン酸亜鉛と、を混合することにより鉄基粉末冶金用混合粉を作製した。上記黒鉛粉は、焼結後の炭素量が0.75重量%となるような分量を添加した。上記2元系酸化物及び3元系酸化物はいずれも体積平均粒子径が2μmのものを用いた。
(Examples 1 to 6 and Comparative Examples 1 to 6)
In each of the examples and comparative examples, 2% by weight of copper powder (product name: CuATW-250 (Fukuda Metal Foil Powder Industrial Co., Ltd.) with respect to pure iron powder (product name: Atmel 300M (manufactured by Kobe Steel)) Made by the company)), and the composition and weight% of binary oxide and / or ternary oxide shown in the column of “binary oxide” and / or “ternary oxide” in Table 1, A mixed powder for iron-based powder metallurgy was prepared by mixing graphite powder (product name CPB (manufactured by Nippon Graphite Industry Co., Ltd.)) and 0.75 wt% zinc stearate. The graphite powder was added in an amount such that the amount of carbon after sintering was 0.75% by weight. As the binary oxide and ternary oxide, those having a volume average particle diameter of 2 μm were used.
 上記鉄基粉末冶金用混合粉を金型に充填し、外径64mm、内径24mm、厚み20mmのリング形状で、成形密度が7.00g/cm3となるように試験片を成形した。このリング形状の試験片を10体積%のH2-N2雰囲気下で1130℃×30分間焼結することにより焼結体を作製した。 The above mixed powder for iron-based powder metallurgy was filled in a mold, and a test piece was molded in a ring shape having an outer diameter of 64 mm, an inner diameter of 24 mm, and a thickness of 20 mm so that the molding density was 7.00 g / cm 3 . This ring-shaped test piece was sintered at 1130 ° C. for 30 minutes in a 10% by volume H 2 —N 2 atmosphere to produce a sintered body.
 このようにして作製した焼結体を用いて、サーメットチップ(ISO型番:SNGN120408 ノンブレーカ)を使用して、周速160m/min、切込み0.5mm/pass、送り0.1mm/rev、乾式の条件で旋削を行うことにより、切削工具の工具摩耗量を測定した。工具摩耗量は、切削開始から330m切削した時点での切削工具の摩耗量(μm)と、1150m切削した時点での切削工具の摩耗量(μm)とを、工具顕微鏡を用いて測定した。摩耗量の評価結果を表1の「工具摩耗量」の各欄に示している。なお、摩耗量の値が小さいほど焼結体の被削性が優れることを示している。 Using the sintered body thus produced, using a cermet chip (ISO model number: SNGN120408, non-breaker), a peripheral speed of 160 m / min, a cutting depth of 0.5 mm / pass, a feed of 0.1 mm / rev, a dry type The amount of tool wear of the cutting tool was measured by turning under conditions. The amount of wear of the tool was measured using a tool microscope for the amount of wear (μm) of the cutting tool when 330 m was cut from the start of cutting and the amount of wear (μm) of the cutting tool after cutting 1150 m. The evaluation result of the wear amount is shown in each column of “Tool wear amount” in Table 1. In addition, it has shown that the machinability of a sintered compact is excellent, so that the value of abrasion amount is small.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、焼結体密度は、日本粉末冶金工業会規格(JPMA M 01)に準じて測定した値を採用した。圧環強度は、JIS Z 2507―2000に準じて測定した値を採用した。圧環強度が高いほど、焼結体が破壊されにくく、強度が高いことを示している。 In Table 1, as the sintered body density, a value measured in accordance with Japan Powder Metallurgy Industry Association Standard (JPMA M 01) was adopted. As the crushing strength, a value measured according to JIS Z 2507-2000 was adopted. It shows that the higher the crushing strength, the harder the sintered body is broken and the higher the strength.
 表1に示すように、実施例1~6は2元系酸化物と3元系酸化物とを組み合わせて含む焼結体である。比較例1は2元系酸化物及び3元系酸化物のいずれも含まない焼結体である。比較例3及び4は3元系酸化物のみを含む焼結体である。比較例2、5及び6は、2元系酸化物のみを含む焼結体である。なお、比較例2は特許文献1に開示の成分(CaO・Al23)を用いている。比較例3は特許文献3に開示の成分(2CaO・MgO・2SiO2)を用いている。比較例4は特許文献4に開示の成分(2CaO・Al23・SiO2)を用いている。 As shown in Table 1, Examples 1 to 6 are sintered bodies containing a combination of a binary oxide and a ternary oxide. Comparative Example 1 is a sintered body containing neither binary oxide nor ternary oxide. Comparative Examples 3 and 4 are sintered bodies containing only ternary oxides. Comparative Examples 2, 5, and 6 are sintered bodies containing only binary oxides. In Comparative Example 2, the component (CaO.Al 2 O 3 ) disclosed in Patent Document 1 is used. In Comparative Example 3, the component (2CaO · MgO · 2SiO 2 ) disclosed in Patent Document 3 is used. In Comparative Example 4, the component (2CaO.Al 2 O 3 .SiO 2 ) disclosed in Patent Document 4 is used.
 実施例1~6の焼結体は、比較例1~6のそれに比して、330m切削時(初期摩耗)と1150mの切削時(長時間摩耗)のいずれにおいても工具摩耗量を顕著に低減できることが明らかとなった。この理由はおそらく、2元系酸化物が切削初期の被削性を向上するとともに3元系酸化物が長時間切削の被削性を向上し、これらの効果が相俟って切削初期及び長期間切削のいずれにおいても焼結体の被削性が高められたことによるものと考えられる。 In comparison with Comparative Examples 1 to 6, the sintered bodies of Examples 1 to 6 significantly reduce the amount of tool wear during both 330 m cutting (initial wear) and 1150 m cutting (long time wear). It became clear that we could do it. This is probably because the binary oxide improves the machinability at the beginning of cutting and the ternary oxide improves the machinability of the cutting for a long time. This is considered to be because the machinability of the sintered body was enhanced in any period cutting.
 比較例1と比較例2、5及び6とを対比すると、2元系酸化物の添加が切削工具の初期摩耗を抑制する効果があることがわかる。また比較例1と比較例3及び4とを対比すると、3元系酸化物の添加が長時間の切削における切削工具の摩耗を抑制する効果があることがわかる。 Comparing Comparative Example 1 with Comparative Examples 2, 5, and 6, it can be seen that the addition of the binary oxide has an effect of suppressing the initial wear of the cutting tool. Further, comparing Comparative Example 1 with Comparative Examples 3 and 4, it can be seen that the addition of the ternary oxide has an effect of suppressing the wear of the cutting tool during long-time cutting.
 表1に示す各実施例及び各比較例の結果から、2元系酸化物と3元系酸化物とをその合計重量で0.1重量%含むことにより、切削初期及び長時間切削のいずれにおいても被削性しやすい焼結体が得られることが明らかとなり、本発明の効果が示された。 From the results of each Example and each Comparative Example shown in Table 1, by including 0.1% by weight of the binary oxide and the ternary oxide in the total weight, both in the initial cutting time and in the long-time cutting. As a result, it became clear that a sintered body easily machinable was obtained, and the effect of the present invention was shown.
 (実施例7~18)
 実施例7~18では、2元系酸化物及び3元系酸化物の合計重量を0.1重量%に固定し、それらの重量比率及び組成を表2の「2元系酸化物」及び「3元系酸化物」の欄に示す組成及び重量%に変更したことが異なる他は実施例1と同様にして鉄基粉末冶金用混合粉及び焼結体を作製した。このようにして作製した焼結体に対して、実施例1と同様の方法で工具摩耗量を評価した。これらの結果を以下の表2に示す。
(Examples 7 to 18)
In Examples 7 to 18, the total weight of the binary oxide and the ternary oxide was fixed to 0.1% by weight, and the weight ratio and composition thereof were set to “binary oxide” and “ A mixed powder and sintered body for iron-based powder metallurgy were prepared in the same manner as in Example 1 except that the composition and weight% shown in the column of “ternary oxide” were changed. The amount of tool wear was evaluated in the same manner as in Example 1 for the sintered body thus produced. These results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、3元系酸化物と2元系酸化物とを重量比率で9:1~1:9で含むことにより、切削初期における被削性と長時間切削における被削性とを両立できることが明らかとなった。特に、上記重量比が9:1~3:7であることにより、切削初期における被削性と長時間切削における被削性とを高度に両立できることが明らかとなった。 From the results shown in Table 2, by including the ternary oxide and the binary oxide in a weight ratio of 9: 1 to 1: 9, the machinability at the initial stage of cutting and the machinability at long cutting time It became clear that both can be achieved. In particular, it has been clarified that when the weight ratio is 9: 1 to 3: 7, the machinability at the initial stage of cutting and the machinability at the long-time cutting can be highly compatible.
 (実施例19~21及び比較例7~9)
 実施例19~21及び比較例7~9では、2元系酸化物及び3元系酸化物の重量を、表3の「2元系酸化物」及び「3元系酸化物」の欄に示す組成及び重量%に変更したことが異なる他は実施例1と同様にして鉄基粉末冶金用混合粉及び焼結体を作製した。このようにして作製した焼結体に対して、実施例1と同様の方法で摩耗量を評価した。これらの結果を以下の表3に示す。
(Examples 19 to 21 and Comparative Examples 7 to 9)
In Examples 19 to 21 and Comparative Examples 7 to 9, the weights of the binary oxide and the ternary oxide are shown in the columns of “binary oxide” and “ternary oxide” in Table 3. A mixed powder and sintered body for iron-based powder metallurgy were produced in the same manner as in Example 1 except that the composition and weight percentage were changed. The amount of wear was evaluated for the sintered body thus produced by the same method as in Example 1. These results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、2元系酸化物と3元系酸化物の合計含有量が0.025重量%以上0.3重量%以下であることにより、切削初期における被削性と長時間切削における被削性とを両立できることが明らかとなり、本発明の効果が示された。一方、2元系酸化物と3元系酸化物の合計重量%が0.025重量%未満であると(比較例7、8)、被削性の向上効果を十分に得られず、また2元系酸化物と3元系酸化物の合計重量が0.3重量%を超えると(比較例9)、圧環強度が800MPa未満となり、焼結体の強度不足になることが明らかとなった。 From the results shown in Table 3, when the total content of the binary oxide and the ternary oxide is 0.025 wt% or more and 0.3 wt% or less, the machinability in the initial cutting and long-time cutting It was clarified that both the machinability and the machinability can be achieved, and the effect of the present invention was shown. On the other hand, if the total weight% of the binary oxide and the ternary oxide is less than 0.025 wt% (Comparative Examples 7 and 8), the effect of improving the machinability cannot be obtained sufficiently, and 2 When the total weight of the ternary oxide and the ternary oxide exceeds 0.3% by weight (Comparative Example 9), it has become clear that the crushing strength is less than 800 MPa and the strength of the sintered body is insufficient.

Claims (6)

  1.  Ca-Al-Si系酸化物及びCa-Mg-Si系酸化物からなる群より選択される1種以上の3元系酸化物と、Ca-Al系酸化物及びCa-Si系酸化物からなる群より選択される1種以上の2元系酸化物とを含み、
     前記3元系酸化物及び前記2元系酸化物を合計重量で0.025重量%以上0.3重量%以下含む、鉄基粉末冶金用混合粉。
    It consists of one or more ternary oxides selected from the group consisting of Ca—Al—Si oxides and Ca—Mg—Si oxides, and Ca—Al oxides and Ca—Si oxides. And one or more binary oxides selected from the group,
    A mixed powder for iron-based powder metallurgy containing the ternary oxide and the binary oxide in a total weight of 0.025 wt% or more and 0.3 wt% or less.
  2.  前記3元系酸化物及び前記2元系酸化物の重量比が9:1~1:9の割合で含まれる請求項1に記載の鉄基粉末冶金用混合粉。 The mixed powder for iron-based powder metallurgy according to claim 1, wherein a weight ratio of the ternary oxide and the binary oxide is included in a ratio of 9: 1 to 1: 9.
  3.  前記3元系酸化物及び前記2元系酸化物を合計重量で0.05重量%以上0.2重量%以下含む、請求項1又は2に記載の鉄基粉末冶金用混合粉。 The mixed powder for iron-based powder metallurgy according to claim 1 or 2, comprising the ternary oxide and the binary oxide in a total weight of 0.05 wt% or more and 0.2 wt% or less.
  4.  前記2元系酸化物は、CaO・Al23、2CaO・SiO2及び12CaO・7Al23からなる群より選択される1種以上である請求項1に記載の鉄基粉末冶金用混合粉。 The binary oxides, mixed iron-based powder metallurgy according to claim 1 is CaO · Al 2 O 3, 2CaO · SiO 2 and 12CaO · 7Al 2 O 1 or more to 3 selected from the group consisting of powder.
  5.  前記3元系酸化物は、2CaO・MgO・2SiO2及び2CaO・Al23・SiO2からなる群より選択される1種以上である請求項1に記載の鉄基粉末冶金用混合粉。 2. The mixed powder for iron-based powder metallurgy according to claim 1, wherein the ternary oxide is at least one selected from the group consisting of 2CaO · MgO · 2SiO 2 and 2CaO · Al 2 O 3 · SiO 2 .
  6.  請求項1に記載の鉄基粉末冶金用混合粉を焼結することによって作製された焼結体。 A sintered body produced by sintering the mixed powder for iron-based powder metallurgy according to claim 1.
PCT/JP2016/063170 2015-05-27 2016-04-27 Mixed powder for iron-based powder metallurgy and sintered body produced using same WO2016190039A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177036354A KR20180008733A (en) 2015-05-27 2016-04-27 Mixed powders for iron powder metallurgy and sintered bodies produced therefrom
CN201680029929.4A CN107614157B (en) 2015-05-27 2016-04-27 Ferrous based powder metallurgical mixed powder and the sintered body made using it
US15/569,008 US20180126454A1 (en) 2015-05-27 2016-04-27 Mixed powder for iron-based powder metallurgy and sintered body produced using same
EP16799747.7A EP3305440B1 (en) 2015-05-27 2016-04-27 Mixed powder for iron-based powder metallurgy and sintered body produced using same
KR1020197025709A KR102060955B1 (en) 2015-05-27 2016-04-27 Mixed powder for iron-based powder metallurgy and sintered body produced using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-107346 2015-05-27
JP2015107346A JP6480264B2 (en) 2015-05-27 2015-05-27 Mixed powder and sintered body for iron-based powder metallurgy

Publications (1)

Publication Number Publication Date
WO2016190039A1 true WO2016190039A1 (en) 2016-12-01

Family

ID=57394042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063170 WO2016190039A1 (en) 2015-05-27 2016-04-27 Mixed powder for iron-based powder metallurgy and sintered body produced using same

Country Status (6)

Country Link
US (1) US20180126454A1 (en)
EP (1) EP3305440B1 (en)
JP (1) JP6480264B2 (en)
KR (2) KR20180008733A (en)
CN (1) CN107614157B (en)
WO (1) WO2016190039A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE545171C2 (en) * 2016-12-02 2023-05-02 Kobe Steel Ltd Powder mixture for iron-based powder metallurgy, and method for manufacturing sintered compact using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6480266B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy, method for producing the same, and sintered body
EP3214192B1 (en) * 2016-02-08 2018-12-26 Sumitomo Electric Industries, Ltd. Iron-based sintered body
JP6929259B2 (en) * 2018-01-25 2021-09-01 株式会社神戸製鋼所 Mixed powder for powder metallurgy
KR102348200B1 (en) * 2018-01-25 2022-01-06 가부시키가이샤 고베 세이코쇼 Mixed powder for powder metallurgy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255604A (en) * 1988-04-05 1989-10-12 Kawasaki Steel Corp Ferrous mixed powder for powder metallurgy having excellent machinability and mechanical property after sintering
JPH08260113A (en) * 1995-03-24 1996-10-08 Toyota Motor Corp Sintering material excellent in machinability and its production
JP2008502807A (en) * 2004-06-10 2008-01-31 ヘガネス・コーポレーシヨン Metallurgical powder composition and parts produced therefrom
JP2010236061A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Iron based mixed powder for sintered member excellent in machinability
JP2012513538A (en) * 2008-12-22 2012-06-14 ホガナス アクチボラグ (パブル) Machinability improving composition
JP2015172238A (en) * 2014-02-21 2015-10-01 Jfeスチール株式会社 Mixed powder for powder metallurgy, production method thereof and iron-based powder-made sintered body

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216684B2 (en) * 1973-02-22 1977-05-11
JPS5840283B2 (en) 1975-07-29 1983-09-05 昭和電線電纜株式会社 Thailand connection cable
CN86102543A (en) * 1986-10-24 1988-05-18 中国科学院上海治金研究所 Fe-Cr series multi-element vibration-damp steel and manufacture method thereof
JPH07138693A (en) * 1993-11-12 1995-05-30 Daido Steel Co Ltd Production of sintered magnetic alloy
JP3449110B2 (en) * 1996-04-17 2003-09-22 株式会社神戸製鋼所 Iron-based mixed powder for powder metallurgy and method for producing sintered body using the same
JP4115826B2 (en) 2002-12-25 2008-07-09 富士重工業株式会社 Iron-based sintered body excellent in aluminum alloy castability and manufacturing method thereof
DE112005000921T5 (en) 2004-04-23 2007-04-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Iron-based sintered alloy, iron-based sintered alloy element and manufacturing method therefor
JP4957204B2 (en) 2006-11-22 2012-06-20 Jfeスチール株式会社 Iron-based powder for powder metallurgy
JP5260913B2 (en) * 2007-08-03 2013-08-14 株式会社神戸製鋼所 Iron-based mixed powder for powder metallurgy and sintered iron powder
JP5604981B2 (en) * 2009-05-28 2014-10-15 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy
JP5696512B2 (en) 2010-02-18 2015-04-08 Jfeスチール株式会社 Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
JP5874700B2 (en) * 2012-09-27 2016-03-02 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy
SE540222C2 (en) 2013-07-18 2018-05-02 Jfe Steel Corp Mixed powder for powder metallurgy, method of manufacturing same, and method of manufacturing iron-based powder sinteredbody
JP5772998B2 (en) 2014-01-29 2015-09-02 Jfeスチール株式会社 Iron-based mixed powder for sintered parts with excellent machinability
JP6480266B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy, method for producing the same, and sintered body
JP6480265B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy, method for producing the same, sintered body and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255604A (en) * 1988-04-05 1989-10-12 Kawasaki Steel Corp Ferrous mixed powder for powder metallurgy having excellent machinability and mechanical property after sintering
JPH08260113A (en) * 1995-03-24 1996-10-08 Toyota Motor Corp Sintering material excellent in machinability and its production
JP2008502807A (en) * 2004-06-10 2008-01-31 ヘガネス・コーポレーシヨン Metallurgical powder composition and parts produced therefrom
JP2012513538A (en) * 2008-12-22 2012-06-14 ホガナス アクチボラグ (パブル) Machinability improving composition
JP2010236061A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Iron based mixed powder for sintered member excellent in machinability
JP2015172238A (en) * 2014-02-21 2015-10-01 Jfeスチール株式会社 Mixed powder for powder metallurgy, production method thereof and iron-based powder-made sintered body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3305440A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE545171C2 (en) * 2016-12-02 2023-05-02 Kobe Steel Ltd Powder mixture for iron-based powder metallurgy, and method for manufacturing sintered compact using same

Also Published As

Publication number Publication date
KR20190104455A (en) 2019-09-09
US20180126454A1 (en) 2018-05-10
EP3305440B1 (en) 2020-09-09
EP3305440A1 (en) 2018-04-11
CN107614157B (en) 2019-07-05
KR20180008733A (en) 2018-01-24
EP3305440A4 (en) 2018-05-16
CN107614157A (en) 2018-01-19
JP2016222942A (en) 2016-12-28
JP6480264B2 (en) 2019-03-06
KR102060955B1 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
JP5904234B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP6480264B2 (en) Mixed powder and sintered body for iron-based powder metallurgy
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
KR102102584B1 (en) Mixed powder for iron powder metallurgy and manufacturing method therefor, and sintered body produced therefrom and manufacturing method thereof
WO2016190037A1 (en) Mixed powder for iron-based powder metallurgy, method for producing same, and sintered body produced using same
JP2015172238A (en) Mixed powder for powder metallurgy, production method thereof and iron-based powder-made sintered body
US11241736B2 (en) Powder mixture for iron-based powder metallurgy, and method for manufacturing sintered compact using same
JP4640162B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP6493357B2 (en) Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body
CN111344090B (en) Mixed powder for powder metallurgy
JP2007211329A (en) Iron-based powdery mixture for powder metallurgy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15569008

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177036354

Country of ref document: KR

Kind code of ref document: A