JP5874700B2 - Iron-based mixed powder for powder metallurgy - Google Patents

Iron-based mixed powder for powder metallurgy Download PDF

Info

Publication number
JP5874700B2
JP5874700B2 JP2013196620A JP2013196620A JP5874700B2 JP 5874700 B2 JP5874700 B2 JP 5874700B2 JP 2013196620 A JP2013196620 A JP 2013196620A JP 2013196620 A JP2013196620 A JP 2013196620A JP 5874700 B2 JP5874700 B2 JP 5874700B2
Authority
JP
Japan
Prior art keywords
powder
iron
cutting
machinability
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013196620A
Other languages
Japanese (ja)
Other versions
JP2014080683A (en
Inventor
丹晴 高尾
丹晴 高尾
和男 樋口
和男 樋口
政志 藤長
政志 藤長
浩伸 大野
浩伸 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013196620A priority Critical patent/JP5874700B2/en
Publication of JP2014080683A publication Critical patent/JP2014080683A/en
Application granted granted Critical
Publication of JP5874700B2 publication Critical patent/JP5874700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、自動車焼結部品用などに好適な、鉄基粉末と合金用粉末と被削性改善用粉末と潤滑剤粉末とを混合した粉末冶金用鉄基混合粉に係り、特に鉄基粉末製焼結体の被削性改善に関する。   The present invention relates to an iron-based mixed powder for powder metallurgy, in which an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant powder, which are suitable for automobile sintered parts and the like, and particularly iron-based powder. The present invention relates to improvement of machinability of a sintered body.

粉末冶金技術の進歩により、高寸法精度の複雑な形状の部品をニアネット形状に製造することができるようになり、粉末冶金技術を利用した製品が各種分野で利用されている。粉末冶金技術は、粉末を所望形状の金型に充填し、成形した後、焼結を行うことで形状の自由度が高いことが特徴となっている。そのため、形状が複雑な歯車等の機械部品に適用する事例が多い。   Advances in powder metallurgy technology have made it possible to manufacture parts with high dimensional accuracy and complex shapes in a near net shape, and products using powder metallurgy technology have been used in various fields. The powder metallurgy technique is characterized by a high degree of freedom in shape by filling powder in a mold having a desired shape, forming, and then sintering. For this reason, there are many cases of application to mechanical parts such as gears having complicated shapes.

例えば、鉄系粉末冶金の分野では、鉄基粉末に、銅粉、黒鉛粉などの合金用粉末と、ステアリン酸亜鉛、ステアリン酸リチウム等の潤滑剤とを混合した鉄基混合粉を、所定形状の金型に充填したのち加圧成形して成形体とし、ついで、焼結処理を施して焼結部品を得ている。このようにして得られた焼結部品は、一般的に寸法精度が良いとされるが、非常に厳しい寸法精度が要求される焼結部品を製造する場合には、焼結した後、更に切削加工を施す必要がある。しかし、このようにして製造された焼結体は、空孔の含有比率が高く、溶解法による金属材料に比べて切削抵抗が高い。   For example, in the field of iron-based powder metallurgy, an iron-based mixed powder obtained by mixing an iron-based powder with a powder for an alloy such as copper powder or graphite powder and a lubricant such as zinc stearate or lithium stearate, has a predetermined shape. After being filled in the mold, pressure molding is performed to form a molded body, and then a sintering process is performed to obtain a sintered part. The sintered parts obtained in this way are generally considered to have good dimensional accuracy. However, when manufacturing sintered parts that require extremely strict dimensional accuracy, the sintered parts are further cut after sintering. Need to be processed. However, the sintered body produced in this way has a high content ratio of pores, and has a higher cutting resistance than a metal material obtained by the melting method.

以上の理由により、粉末冶金技術分野においては、焼結体の被削性を高めることが重要な課題の一つとされている。また、切削加工では、その種類によって切削条件が異なり、例えば旋盤加工は比較的高速の切削速度で加工される一方、ドリル加工では比較的低速の切削速度で加工される。したがって、焼結体は、切削加工の種類によらず、高速切削および低速切削のいずれにおいても優れた被削性を有することが望ましい。   For the above reasons, in the powder metallurgy technical field, increasing the machinability of the sintered body is regarded as one of the important issues. In cutting, cutting conditions vary depending on the type. For example, lathe machining is performed at a relatively high cutting speed, while drilling is performed at a relatively low cutting speed. Therefore, it is desirable that the sintered body has excellent machinability in both high-speed cutting and low-speed cutting regardless of the type of cutting.

従来、焼結体の被削性を向上させる目的で、鉄基混合粉に、Pb、Se、Te等を、粉末で添加、あるいは鉄粉あるいは鉄基粉末に合金化して添加することが行われてきた。しかし、Pbは融点が330℃と低いため、焼結過程で溶融し、しかも鉄中に固溶せず基地中に均一分散させることが難しいという問題があった。また、Se、Teは、焼結体を脆化させるため、焼結体の機械的特性の劣化が著しいという問題があった。更に、様々な切削速度で加工される場合について検討されていないため、切削条件によっては十分な被削性が得られないという問題もあった。   Conventionally, for the purpose of improving the machinability of the sintered body, Pb, Se, Te, etc. are added to the iron-based mixed powder as a powder, or alloyed with iron powder or iron-based powder. I came. However, since Pb has a melting point as low as 330 ° C., it has a problem that it is melted during the sintering process and is not dissolved in iron and is difficult to uniformly disperse in the matrix. Moreover, since Se and Te embrittle the sintered body, there was a problem that the mechanical properties of the sintered body deteriorated remarkably. Furthermore, since the case of processing at various cutting speeds has not been studied, there is a problem that sufficient machinability cannot be obtained depending on cutting conditions.

このような問題に対し、特許文献1には、鉄粉を主体とし、アノールサイト相および/またはゲーレナイト相を有する平均粒径50μm以下のCaO−Al2O3−Si2O系複合酸化物の粉末を0.02〜0.3重量%含有する粉末冶金用鉄系混合粉末が記載されている。特許文献1に記載された技術では、被削材(焼結体)中に予め複合酸化物(CaO−Al2O3−Si2O系複合酸化物)を分散させ、切削時に加工面に露出した複合酸化物粒子が工具表面に付着して工具保護膜(いわゆるベラーク層)を形成し、工具表面の材質劣化を防止して、被削性を改善するとしている。そして、特許文献1に記載された技術によれば、高速切削および低速切削のいずれにおいても優れた被削性を備えた焼結体が得られるとしている。 In order to solve such a problem, Patent Document 1 discloses a CaO—Al 2 O 3 —Si 2 O-based composite oxide having an average particle size of 50 μm or less, mainly composed of iron powder and having an anolsite phase and / or a gehlenite phase. An iron-based mixed powder for powder metallurgy containing 0.02 to 0.3% by weight of powder is described. In the technique described in Patent Document 1, a composite oxide (CaO—Al 2 O 3 —Si 2 O-based composite oxide) is dispersed in advance in a work material (sintered body), and exposed to the work surface during cutting. The composite oxide particles adhered to the tool surface form a tool protection film (so-called Berak layer), prevent material deterioration of the tool surface, and improve machinability. According to the technique described in Patent Document 1, a sintered body having excellent machinability can be obtained in both high-speed cutting and low-speed cutting.

また、特許文献2には、鉄基粉末に、黒鉛粉、Cu粉および複合酸化物を混合した粉末治金用鉄系混合粉末であって、前記複合酸化物の800℃における粘性を105(poise)以下とし、前記複合酸化物の含有量を混合粉末全質量に対して0.05〜1.5質量%とする粉末治金用鉄系混合粉末が記載されている。そして、特許文献2に記載された技術によれば、前記複合酸化物の潤滑効果により切削時の工具摩耗を抑制することで、一般的な切削条件域である100〜200m/min程度の切削速度で加工した場合において良好な被削性を有する鉄粉焼結体が得られるとしている。 Patent Document 2 discloses an iron-based mixed powder for powder metallurgy in which an iron-based powder is mixed with graphite powder, Cu powder and a composite oxide, and the viscosity of the composite oxide at 800 ° C. is 10 5 ( poise), and an iron-based mixed powder for powder metallurgy in which the content of the composite oxide is 0.05 to 1.5 mass% with respect to the total mass of the mixed powder is described. And according to the technique described in patent document 2, the cutting speed of about 100-200 m / min which is a general cutting condition area | region is suppressed by suppressing the tool wear at the time of cutting by the lubrication effect of the said complex oxide. It is said that an iron powder sintered body having good machinability can be obtained in the case of being processed by.

特開平9−279204号公報JP-A-9-279204 特開2009−35796号公報JP 2009-35796 A

しかしながら、特許文献1に記載された技術によって得られる焼結体は、高速切削加工の場合には優れた被削性を示すものの、低速切削加工の場合には十分な被削性改善効果が得られない。特許文献1に記載された技術では、工具保護膜を形成する目的で、粉末冶金用鉄系混合粉末に所定の複合酸化物粉末を添加しているが、この複合酸化物の融点は極めて高い。そのため、このような粉末冶金用鉄系混合粉末により製造された焼結体を切削加工する場合、高速切削加工では切削時に発生する加工熱により上記複合酸化物が溶融して工具保護膜を形成することができるものの、低速切削加工では切削時に発生する加工熱が少ないため、複合酸化物が溶融せず、工具保護膜を形成することができない。以上のように、特許文献1に記載された技術では、上記複合酸化物が溶融し得る200m/min以上の高速切削にしか適用することができないという問題があった。   However, the sintered body obtained by the technique described in Patent Document 1 exhibits excellent machinability in the case of high-speed cutting, but has a sufficient machinability improving effect in the case of low-speed cutting. I can't. In the technique described in Patent Document 1, a predetermined complex oxide powder is added to an iron-based mixed powder for powder metallurgy for the purpose of forming a tool protection film, but the melting point of this complex oxide is extremely high. Therefore, when cutting a sintered body manufactured with such an iron-based mixed powder for powder metallurgy, the composite oxide is melted by processing heat generated during cutting in high-speed cutting to form a tool protective film. However, in low-speed cutting, since the processing heat generated during cutting is small, the composite oxide does not melt and a tool protective film cannot be formed. As described above, the technique described in Patent Document 1 has a problem that it can be applied only to high-speed cutting at 200 m / min or more at which the composite oxide can be melted.

また、特許文献1に記載された技術では、粉体特性、焼結体特性の低下を防止するために、複合酸化物粉末を不純物が少なく、かつ粒度を調整した粉末とする必要があり、材料コストが高騰するという問題があった。更に、特許文献1に記載されたベラーク形成による切削性改善は、旋削加工では切削動力低減に有効であるが、切屑が微細化しないため、ドリル切削においては、切り屑の排除性が悪く、ドリル被削性には問題を残している。   In addition, in the technique described in Patent Document 1, in order to prevent deterioration of powder characteristics and sintered body characteristics, it is necessary to make the composite oxide powder a powder with less impurities and an adjusted particle size. There was a problem that the cost increased. Further, the improvement in machinability by the formation of the burak described in Patent Document 1 is effective in reducing the cutting power in turning, but since the chips are not miniaturized, the chip evacuation is poor in drill cutting, and the drill There remains a problem with machinability.

一方、特許文献2に記載された技術によると、所定の複合酸化物粉末を添加した粉末冶金用鉄系混合粉末を用い、上記複合酸化物による潤滑効果を利用することで、一般的な切削条件である切削速度100〜200m/min程度の切削においても良好な被削性を有する焼結体が得られる。しかしながら、特許文献2に記載された技術では、その実施例が示すように、上記複合酸化物の殆どは融点が900℃未満である。そのため、上記粉末冶金用鉄系混合粉末により製造された焼結体を200m/min以上の高速切削で加工すると、複合酸化物の粘度が低下する結果、十分な被削性改善効果が得られない。   On the other hand, according to the technique described in Patent Document 2, by using the iron-based mixed powder for powder metallurgy to which a predetermined composite oxide powder is added, and utilizing the lubricating effect of the composite oxide, general cutting conditions A sintered body having good machinability can be obtained even in cutting at a cutting speed of about 100 to 200 m / min. However, in the technique described in Patent Document 2, as shown in the examples, most of the composite oxides have a melting point of less than 900 ° C. Therefore, if the sintered body manufactured with the iron-based mixed powder for powder metallurgy is processed at a high speed cutting of 200 m / min or more, the viscosity of the composite oxide is reduced, so that sufficient machinability improvement effect cannot be obtained. .

以上のように、従来技術によると、低速切削または高速切削のいずれか一方に適用した場合に優れた被削性を示す焼結体は得られるものの、低速切削および高速切削のいずれを適用した場合であっても優れた被削性を示す焼結体を得ることができなかった。そのため、従来技術の粉末冶金用鉄基混合粉末により製造される焼結体は汎用性に乏しく、改善の余地があった。
本発明は、上記した従来技術の問題を有利に解決し、切削条件や切削工具によらず、高速切削および低速切削のいずれを適用した場合であっても、優れた被削性を示す焼結体を製造することが可能な、粉末冶金用鉄基混合粉を提供することを目的とする。
As described above, according to the prior art, a sintered body exhibiting excellent machinability when applied to either low speed cutting or high speed cutting can be obtained, but when either low speed cutting or high speed cutting is applied. Even so, a sintered body exhibiting excellent machinability could not be obtained. Therefore, the sintered body manufactured with the iron-based mixed powder for powder metallurgy according to the prior art has poor versatility and has room for improvement.
The present invention advantageously solves the above-mentioned problems of the prior art and exhibits excellent machinability regardless of cutting conditions and cutting tools, regardless of whether high-speed cutting or low-speed cutting is applied. An object is to provide an iron-based mixed powder for powder metallurgy capable of producing a body.

本発明者らは、上記した目的を達成するために、粉末冶金用鉄基混合粉により製造される焼結体の被削性に及ぼす各種要因、特に粉末冶金用鉄基混合粉に添加される被削性改善用粉末の影響について鋭意検討した。
特許文献1に記載されているように、所定の被削性改善用粉末(特許文献1に記載された技術の場合、CaO−Al2O3−Si2O系複合酸化物)を添加した粉末冶金用鉄基混合粉を用いて焼結体を製造し、該焼結体を切削加工すると、焼結体中の被削性改善用粉末粒子が切削時に発生する加工熱により溶融して工具保護膜を形成する。そして、この工具保護膜が形成されることで被削性が向上する。
In order to achieve the above-mentioned object, the present inventors add various factors that affect the machinability of a sintered body produced by an iron-based mixed powder for powder metallurgy, particularly an iron-based mixed powder for powder metallurgy. The effect of the machinability improving powder was studied earnestly.
As described in Patent Document 1, a powder to which a predetermined machinability improving powder (CaO—Al 2 O 3 —Si 2 O-based composite oxide in the case of the technique described in Patent Document 1) is added When a sintered body is manufactured using iron-based mixed powder for metallurgy and the sintered body is cut, the machinability improving powder particles in the sintered body are melted by the processing heat generated during cutting to protect the tool. A film is formed. And machinability improves by forming this tool protective film.

したがって、粉末冶金用鉄基混合粉に添加する被削性改善用粉末としては、切削時に発生する加工熱により溶融し得る融点を有するものが望ましいが、切削時に発生する加工熱の発熱量は、切削条件、特に切削速度に左右される。例えば、ドリル加工のような低速切削では、切削時の発熱量が小さいため、特許文献1に記載された技術で適用されているCaO−Al2O3−Si2O系複合酸化物のような高融点物質を溶融することができない。一方、旋盤加工のような高速切削では、切削時の発熱量が大きいため、特許文献2に記載された技術で適用されている比較的低融点の複合酸化物では、粘性が著しく低下し、適切な工具保護膜を形成することができない。 Therefore, the machinability improving powder added to the iron-based mixed powder for powder metallurgy preferably has a melting point that can be melted by the processing heat generated during cutting, but the calorific value of the processing heat generated during cutting is It depends on cutting conditions, especially cutting speed. For example, in low-speed cutting such as drilling, since the calorific value at the time of cutting is small, the CaO—Al 2 O 3 —Si 2 O-based composite oxide applied by the technique described in Patent Document 1 is used. High melting point material cannot be melted. On the other hand, in high-speed cutting such as lathe processing, the amount of heat generated at the time of cutting is large, so the complex oxide with a relatively low melting point applied in the technique described in Patent Document 2 has a markedly reduced viscosity and is appropriate. It is not possible to form a simple tool protection film.

そこで、本発明者らは、高速切削および低速切削のいずれにおいても切削時に溶融して適切な工具保護膜を形成し得るような被削性改善用粉末の融点について検討した。その結果、800℃以上1350℃以下の温度範囲が、被削性改善用粉末の融点として望ましい温度範囲であることを知見した。また、本発明者らは更に検討を進め、被削性改善用粉末として融点が800℃以上1350℃以下であり、且つ、焼結体の特性(強度等)に悪影響を及ぼさず、しかも容易に入手し得る安価な粉末を模索した。その結果、被削性改善用粉末として、Ca、Al、Si、F、NaおよびCを含有する粉末を用いることが有効であり、各成分の配合量を適宜変更することで、その融点を800℃以上1350℃以下の温度範囲における任意の温度に調整できることを知見した。   Therefore, the present inventors examined the melting point of the machinability improving powder that can be melted during cutting to form an appropriate tool protective film in both high speed cutting and low speed cutting. As a result, it was found that a temperature range of 800 ° C. or higher and 1350 ° C. or lower is a desirable temperature range as the melting point of the machinability improving powder. Further, the present inventors have further studied, and have a melting point of 800 ° C. or higher and 1350 ° C. or lower as a machinability improving powder, and do not adversely affect the properties (strength, etc.) of the sintered body, and easily We searched for cheap powders that could be obtained. As a result, it is effective to use a powder containing Ca, Al, Si, F, Na, and C as the machinability improving powder. By appropriately changing the amount of each component, the melting point is 800 It was found that the temperature can be adjusted to an arbitrary temperature within a temperature range of from 1 ° C to 1350 ° C.

さらに、本発明者らは、800℃以上1350℃以下の被削性改善用粉末を含有する粉末冶金用鉄基混合粉の特徴について調査した。その結果、主に比較的低速の切削速度(例えば300m/min未満、好ましくは200m/min以下の低速切削)で加工する焼結体用の粉末冶金用鉄基混合粉の場合には、焼結体の被削性向上の観点から、被削性改善用粉末の融点を焼結温度以下の融点とすることが特に望ましいことを知見した。一方、主に比較的高速の切削速度(例えば200m/min超、好ましくは300m/min以上の高速切削)で加工する焼結体用の粉末冶金用鉄基混合粉の場合には、焼結体の被削性向上の観点から、被削性改善用粉末の融点を焼結温度以上の融点とすることが特に望ましいことを知見した。   Furthermore, the present inventors investigated the characteristics of the iron-based mixed powder for powder metallurgy containing the machinability improving powder at 800 ° C. or higher and 1350 ° C. or lower. As a result, in the case of iron-based mixed powders for powder metallurgy for sintered bodies that are mainly processed at relatively low cutting speeds (for example, low speed cutting of less than 300 m / min, preferably 200 m / min or less), sintering From the viewpoint of improving the machinability of the body, it has been found that it is particularly desirable to set the melting point of the machinability improving powder to a melting point below the sintering temperature. On the other hand, in the case of iron-based mixed powders for powder metallurgy for sintered bodies that are mainly processed at relatively high cutting speeds (for example, high speed cutting of more than 200 m / min, preferably 300 m / min or more), the sintered body From the viewpoint of improving machinability, it has been found that it is particularly desirable to set the melting point of the machinability improving powder to a melting point higher than the sintering temperature.

以上のように、焼結体が低速切削加工用焼結体であるか高速切削加工用焼結体であるかによって、原料となる粉末冶金用鉄基混合粉に含まれる被削性改善用粉末の融点を、焼結温度に基づき800℃以上1350℃以下の範囲内で最適化することが、焼結体の被削性向上に特に有効であるという知見を得た。したがって、例えば焼結温度を1150℃とする場合、被削性改善用粉末の融点を800℃以上1150℃以下とすれば特に低速切削加工用焼結体の被削性向上に有効であり、被削性改善用粉末の融点を1150℃以上1350℃以下とすれば特に高速切削加工用焼結体の被削性向上に有効である。   As described above, the machinability improving powder contained in the iron-based mixed powder for powder metallurgy, which is a raw material, depending on whether the sintered body is a sintered body for low speed cutting or a sintered body for high speed cutting. It was found that it is particularly effective to improve the machinability of the sintered body by optimizing the melting point of the sintered body within a range of 800 ° C. to 1350 ° C. based on the sintering temperature. Therefore, for example, when the sintering temperature is 1150 ° C., if the melting point of the machinability improving powder is 800 ° C. or higher and 1150 ° C. or lower, it is particularly effective for improving the machinability of the sintered body for low speed cutting. If the melting point of the machinability improving powder is 1150 ° C. or higher and 1350 ° C. or lower, it is particularly effective for improving the machinability of the sintered body for high speed cutting.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち本発明の要旨は次のとおりである。
[1] 鉄基粉末と、合金用粉末と、被削性改善用粉末と、潤滑剤粉末とを混合してなる粉末冶金用鉄基混合粉であって、前記被削性改善用粉末がCa、Al、Si、F、NaおよびCを含有する粉末であり、前記被削性改善用粉末の融点が800℃以上1350℃以下であることを特徴とする粉末冶金用鉄基混合粉。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
[1] An iron-based mixed powder for powder metallurgy obtained by mixing an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant powder, wherein the machinability improving powder is Ca An iron-based mixed powder for powder metallurgy, characterized in that the melting point of the powder for improving machinability is 800 ° C. or higher and 1350 ° C. or lower.

[2] [1]において、前記被削性改善用粉末が、更にTi、B、Mg、Fe、Sのうちの1種または2種以上を含有する粉末であることを特徴とする粉末冶金用鉄基混合粉。
[3] [1]または[2]において、前記被削性改善用粉末の融点が800℃以上1150℃以下であることを特徴とする粉末冶金用鉄基混合粉。
[4] [1]または[2]において、前記被削性改善用粉末の融点が1150℃以上1350℃以下であることを特徴とする粉末冶金用鉄基混合粉。
[2] In [1], the machinability improving powder is a powder further containing one or more of Ti, B, Mg, Fe, and S, for powder metallurgy Iron-based mixed powder.
[3] The iron-based mixed powder for powder metallurgy according to [1] or [2], wherein the machinability improving powder has a melting point of 800 ° C. or higher and 1150 ° C. or lower.
[4] The iron-based mixed powder for powder metallurgy according to [1] or [2], wherein the machinability improving powder has a melting point of 1150 ° C. or higher and 1350 ° C. or lower.

本発明によれば、切削条件や切削工具によらず、高速切削および低速切削のいずれを適用した場合であっても、優れた被削性を示す焼結体を製造することが可能となる。具体的には、切削時、切削速度:100〜500m/minの広範囲に亘り優れた被削性を有する焼結体が得られ、旋盤加工等の高速切削およびドリル加工等の低速切削のいずれにも適用可能な焼結体が得られる。また、本発明によれば、上記の如く被削性に優れた焼結体を、その特性(焼結体の強度等)に悪影響を及ぼすことなく、しかも安価に製造することができ、産業上格段の効果を奏する。   According to the present invention, it is possible to manufacture a sintered body exhibiting excellent machinability regardless of cutting conditions and cutting tools, regardless of whether high-speed cutting or low-speed cutting is applied. Specifically, during cutting, a sintered body with excellent machinability over a wide range of cutting speed: 100 to 500 m / min can be obtained, which can be used for both high-speed cutting such as lathe processing and low-speed cutting such as drilling. Can be applied to the sintered body. In addition, according to the present invention, a sintered body having excellent machinability as described above can be produced at a low cost without adversely affecting the properties (such as strength of the sintered body). There is a remarkable effect.

本発明の粉末冶金用鉄基混合粉は、鉄基粉末と、合金用粉末と、被削性改善用粉末と、潤滑剤粉末とを混合してなる粉末冶金用鉄基混合粉であって、前記被削性改善用粉末がCa、Al、Si、F、NaおよびCを含有する粉末であり、前記被削性改善用粉末の融点が800℃以上1350℃以下であることを特徴とする。   The iron-based mixed powder for powder metallurgy of the present invention is an iron-based mixed powder for powder metallurgy obtained by mixing an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant powder, The machinability improving powder is a powder containing Ca, Al, Si, F, Na, and C, and the melting point of the machinability improving powder is 800 ° C. or higher and 1350 ° C. or lower.

本発明において、鉄基粉末としては、アトマイズ鉄粉および還元鉄粉などの純鉄粉、合金元素を予め合金化した予合金鋼粉(完全合金化鋼粉)、あるいは鉄粉に合金元素(Ni、Cu、Moなど)が部分拡散し合金化された部分拡散合金化鋼粉、あるいは前記合金元素を予合金化した合金元素予合金化鋼粉(完全合金化鋼粉)にさらに合金元素を部分拡散させたハイブリッド鋼粉などの鉄基粉末がいずれも適用できる。また、鉄基粉末としては、上記した鉄基粉末に加えてさらに合金用粉末、および潤滑剤粉末を混合した鉄基粉末混合粉としてもよい。   In the present invention, as the iron-based powder, pure iron powder such as atomized iron powder and reduced iron powder, prealloyed steel powder (alloyed steel powder) obtained by prealloying an alloying element, or alloying element (Ni , Cu, Mo, etc.) Partially diffused alloyed steel powder that has been partially diffused and alloyed, or alloyed elemental prealloyed steel powder (fully alloyed steel powder) that has been prealloyed from the above alloying elements, and further part of alloying elements Any iron-based powder such as hybrid steel powder that has been diffused can be applied. The iron-based powder may be an iron-based powder mixed powder obtained by further mixing an alloy powder and a lubricant powder in addition to the above-described iron-based powder.

また、合金用粉末としては、黒鉛粉末、Cu(銅)粉末、Mo粉末、Ni粉末などの非鉄金属粉末、亜酸化銅粉末などが例示され、所望の焼結体特性に応じて選択して混合する。これらの合金用粉末を、鉄基粉末に混合させることにより焼結体の強度を上昇させることができ、所望の焼結部品強度を確保できる。なお、合金用粉末の配合量は、所望の焼結体強度に応じて調整することが好ましく、例えば鉄基粉末、合金用粉末、被削性改善用粉末の合計量に対する質量%で、0.1%以上10%以下程度とすることが好ましい。合金用粉末の配合量が、0.1質量%以上であれば、焼結体強度が低下するおそれがない。一方、10質量%以下の添加であれば、焼結体の寸法精度が低下するおそれがない。   Examples of alloy powders include non-ferrous metal powders such as graphite powder, Cu (copper) powder, Mo powder, Ni powder, and cuprous oxide powder, which are selected and mixed according to the desired sintered body characteristics. To do. By mixing these alloy powders with iron-based powder, the strength of the sintered body can be increased, and a desired sintered part strength can be ensured. The blending amount of the alloy powder is preferably adjusted according to the desired strength of the sintered body, for example, 0.1% by mass% with respect to the total amount of iron-based powder, alloy powder, and machinability improving powder. It is preferable to set it to about 10% or less. If the blending amount of the alloy powder is 0.1% by mass or more, there is no possibility that the strength of the sintered body is lowered. On the other hand, if the addition is 10% by mass or less, there is no possibility that the dimensional accuracy of the sintered body is lowered.

本発明では、被削性改善用粉末を、Ca、Al、Si、F、NaおよびCを含有し、融点が800℃以上1350℃以下である粉末とする。これは、焼結体の特性に悪影響を及ぼさず、容易に入手し得る可能な限り安価な粉末で、融点が800℃以上1350℃以下になるものを鋭意模索した結果得られたものである。   In the present invention, the machinability improving powder is a powder containing Ca, Al, Si, F, Na and C and having a melting point of 800 ° C. or higher and 1350 ° C. or lower. This is obtained as a result of earnestly searching for a powder that is not readily adversely affected and that can be easily obtained and is as cheap as possible and has a melting point of 800 ° C. or higher and 1350 ° C. or lower.

複数の成分元素が存在することで、また、これら複数の成分元素の各配合量を調整することで、800℃以上1350℃以下の様々な温度の融点に簡単に調整でき、これまでにない広範囲な切削温度域をカバーできる。このことは、様々な元素、特に入手し易いという観点から地殻中に多数含まれる元素を、優先的に候補として配合し試験することで実現したものである。   Due to the presence of multiple component elements, and by adjusting the amount of each of these multiple component elements, the melting point can be easily adjusted to various temperatures ranging from 800 ° C to 1350 ° C. Can cover a wide range of cutting temperatures. This is realized by preferentially blending and testing various elements, particularly elements contained in a large number in the crust from the viewpoint of easy availability.

Caは比重1.55g/cm3の非常に軟らかい金属で、融点が840〜850℃と低く、石灰石、大理石、石膏などの炭酸塩、硫酸塩の形で産出する。これらの炭酸塩、硫酸塩は容易に入手し得ることから、被削性改善用粉末成分の候補として選択した。本発明では、Ca源として、例えばCa(OH)2、CaCO3、CaO、CaF2、CaSO4等を使用することができる。 Ca is a very soft metal with a specific gravity of 1.55 g / cm 3 , has a low melting point of 840-850 ° C., and is produced in the form of carbonates and sulfates such as limestone, marble and gypsum. Since these carbonates and sulfates can be easily obtained, they were selected as candidates for the machinability improving powder component. In the present invention, for example, Ca (OH) 2 , CaCO 3 , CaO, CaF 2 , CaSO 4 and the like can be used as the Ca source.

また、Alは、比重2.7g/cm3の金属として軽量で融点660℃と低く、アルミナ等の形で容易に入手し得ることから、被削性改善用粉末成分の候補として選択した。本発明では、Al源として、例えばAl2O3、Al(OH)3、Na3AlF6(氷晶石)、AlCl3、AlK(SO4)2・12H2O(ミョウバン)、AlN、Al2(SO4)3、Al2O3・2H2O(ボーキサイト)等を使用することができる。 In addition, Al was selected as a candidate for a machinability improving powder component because it is a lightweight metal with a specific gravity of 2.7 g / cm 3 , is light and has a low melting point of 660 ° C., and can be easily obtained in the form of alumina or the like. In the present invention, as an Al source, for example, Al 2 O 3 , Al (OH) 3 , Na 3 AlF 6 (cryolite), AlCl 3 , AlK (SO 4 ) 2 · 12H 2 O (alum), AlN, Al 2 (SO 4 ) 3 , Al 2 O 3 .2H 2 O (bauxite), etc. can be used.

また、Siは比重2.33g/cm3、融点は1410℃とやや高めだが、地球の主要な構成元素の一つとして容易に入手し得ることから、被削性改善用粉末成分の候補として選択した。本発明では、Si源として、例えばSiO2、SiC、ケイ酸(MgSiO3)等を使用することができる。 Si has a specific gravity of 2.33g / cm 3 and a melting point of 1410 ° C, which is slightly higher, but it is easily available as one of the main constituent elements of the earth. . In the present invention, for example, SiO 2 , SiC, silicic acid (MgSiO 3 ) or the like can be used as the Si source.

また、Fは、融点−220℃で反応性が高いため、天然には蛍石(CaF2)や氷晶石などとして存在し、昔からCaF2等は融剤として使用されている。今回鋭意研究した結果、Fは、焼結体の特性に悪影響を及ぼすことなく被削性改善用粉末の融点を低下させる効果を有することが判明し、本発明において被削性改善用粉末を所望の融点とするために必須の元素であることがわかった。F源としては、CaF2(蛍石)、F2、HF、AlF3(フッ化アルミニウム)、NaF、Na3AlF6(氷晶石)等が挙げられる。 Further, since F has a high reactivity at a melting point of -220 ° C., it naturally exists as fluorite (CaF 2 ), cryolite, etc., and CaF 2 and the like have long been used as a flux. As a result of earnest research this time, it has been found that F has an effect of lowering the melting point of the machinability improving powder without adversely affecting the properties of the sintered body, and the machinability improving powder is desired in the present invention. It was found to be an essential element for achieving the melting point of. Examples of the F source include CaF 2 (fluorite), F 2 , HF, AlF 3 (aluminum fluoride), NaF, and Na 3 AlF 6 (cryolite).

また、Naは比重0.97g/cm3で軟らかい金属で融点が98℃と低く、塩化物、硝酸塩、硫酸塩、ほう酸塩、炭酸塩として広くかつ多量に地上に分布している。今回鋭意研究した結果、Fと同様、Naも焼結体の特性に悪影響を及ぼすことなく被削性改善用粉末の融点を低下させる効果を有することが判明し、本発明において被削性改善用粉末を所望の融点とするために必須の元素であることがわかった。Na源としては、NaHCO3(重曹)、Na2CO3(炭酸ソーダ)、Na2SO4(芒硝)、NaF、NaCl(食塩)、NaOH(苛性ソーダ)、Na2O等が挙げられる。 Na is a soft metal with a specific gravity of 0.97g / cm 3 and a melting point as low as 98 ° C. It is widely distributed over the ground as chlorides, nitrates, sulfates, borates and carbonates. As a result of earnest research this time, as with F, Na was found to have the effect of lowering the melting point of the machinability improving powder without adversely affecting the properties of the sintered body. It was found to be an essential element for bringing the powder to the desired melting point. Examples of the Na source include NaHCO 3 (sodium bicarbonate), Na 2 CO 3 (sodium carbonate), Na 2 SO 4 (sodium nitrate), NaF, NaCl (salt), NaOH (caustic soda), Na 2 O and the like.

また、本発明では、被削性改善用粉末の融点を低下させるFとNaの複合効果、および種々の元素を添加した効果により、焼結体切削時における剪断抵抗の抑制効果による切削抵抗低減効果と、工具刃先に良質な保護膜が形成される効果の両方が期待され、被削性改善効果が広範囲で実現可能となると推測される。   Further, in the present invention, the combined effect of F and Na that lowers the melting point of the machinability improving powder, and the effect of adding various elements, the cutting resistance reduction effect due to the effect of suppressing the shear resistance at the time of cutting the sintered body In addition, both the effect of forming a high-quality protective film on the tool edge are expected, and it is speculated that the machinability improving effect can be realized in a wide range.

また、Cは最も融点が高く、黒鉛粉として粉末冶金用鉄基混合粉に一般的に添加されている。Cを添加することにより、焼結体に必要な配合量を減少できる可能性も期待できるが、被削性改善用粉末を所望の融点(800℃以上1350℃以下)に調整する場合にも使用可能であることが判明した。C源としては、石灰、黒鉛、ダイヤモンド、CO、CO2、H2CO3等が挙げられる。 C has the highest melting point and is generally added to the iron-based mixed powder for powder metallurgy as graphite powder. The addition of C can be expected to reduce the amount of compound necessary for the sintered body, but it is also used when adjusting the machinability improving powder to the desired melting point (800 ° C to 1350 ° C). It turned out to be possible. Examples of the C source include lime, graphite, diamond, CO, CO 2 and H 2 CO 3 .

本発明では、上記に例示したようなCa源、Al源、Si源、F源、Na源およびC源の粉末などを適当な配合量で混合し、融点が800℃以上1350℃以下である被削性改善用粉末とする。所望の融点(800℃以上1350℃以下)とするには、被削性改善用粉末の全質量に対し、Ca源粉末含有量をCa換算で15質量%以上40質量%以下、Al源粉末含有量をAl換算で0.01質量%以上10質量%以下(より好ましくは0.01質量%以上5質量%以下)、Si源粉末含有量をSi換算で10質量%以上25質量%以下、F源粉末含有量をF換算で0.01質量%以上15質量%以下、Na源粉末含有量をNa換算で0.01質量%以上20質量%以下、C源粉末含有量をC換算で0.01質量%以上10質量%以下とすることが好ましい。   In the present invention, powders of Ca source, Al source, Si source, F source, Na source and C source as exemplified above are mixed in an appropriate blending amount, and the melting point is 800 ° C. or higher and 1350 ° C. or lower. Use powder for improving machinability. To achieve the desired melting point (800 ° C or higher and 1350 ° C or lower), the Ca source powder content is 15% by mass or more and 40% by mass or less in terms of Ca with respect to the total mass of the machinability improving powder. The amount is 0.01 mass% or more and 10 mass% or less (more preferably 0.01 mass% or more and 5 mass% or less) in terms of Al, and the Si source powder content is 10 mass% or more and 25 mass% or less in terms of Si, F source powder content Is 0.01 mass% to 15 mass% in terms of F, the Na source powder content is 0.01 mass% to 20 mass% in terms of Na, and the C source powder content is 0.01 mass% to 10 mass% in terms of C It is preferable.

なお、本発明における被削性改善用粉末は、融点を800℃以上1350℃以下になるように調整したものであり、被削性改善用粉末の融点は焼結温度以下、焼結温度以上のいずれに調整してもよい。
切削速度との関係から、主に低速度域の切削速度で使用する場合は、より融点の低い焼結温度以下の融点のもののほうが、切削時の温度が低く被削性の効果がより発揮され易いことが期待される。
また、主に高速度域の切削速度で使用する場合は、より融点の高い焼結温度以上の融点のもののほうが、切削時の温度が高いので、被削性の効果がより発揮され易いことがわかる。
The machinability improving powder in the present invention is adjusted to have a melting point of 800 ° C. or higher and 1350 ° C. or lower, and the machinability improving powder has a melting point of a sintering temperature or lower and a sintering temperature or higher. Any adjustment may be made.
Due to the relationship with the cutting speed, when using mainly at a cutting speed in the low speed range, the one with a melting point lower than the sintering temperature, which has a lower melting point, exhibits a lower cutting temperature and more effective machinability. It is expected to be easy.
Also, when used mainly at high cutting speeds, the melting point higher than the melting temperature, which is higher than the sintering temperature, has a higher temperature at the time of cutting, so the machinability effect may be more easily exhibited. Recognize.

また、本発明者らが更に詳細に鋭意研究し、種々の元素を検討した結果、上記した被削性改善用粉末に、更にTi、B、Mg、Fe、Sのうちの1種または2種以上を含有するとより良い効果が得られる場合があることがわかった。特にTi、Bを含有する場合は、より超高速域でも優れた被削性効果を発現することが期待できる。   In addition, as a result of the inventors diligently studying in detail and examining various elements, the above-described powder for improving machinability is further added with one or two of Ti, B, Mg, Fe, and S. It has been found that a better effect may be obtained when the above is contained. In particular, when Ti and B are contained, an excellent machinability effect can be expected even in the ultra-high speed range.

なお、Tiは比重4.5g/cm3で軽くて耐食性に優れていて、融点が1675℃と高く、地球を構成する地殻の成分として9番目に多い元素(遷移元素としては鉄に次ぐ元素)で、酸化物の形(ルチル(金紅石)、板チタン石、チタン鉄鉱(イルメナイト)、灰チタン石(ペロブスカイト)、くさび石(チタナイト)等)で多量に産出する。これらの酸化物は容易に入手し得ることから、被削性改善用粉末成分の候補として選択した。本発明では、Ti源として、例えばTiO2、FeTiO3、CaTiO3、CaTiSiO5、TiC、TiN、TiCl4、BaTiO3、Ti-6Al-4V等を使用することができる。
Ti含有量は、被削性改善用粉末の全質量に対し、Ti換算で1質量%以下とすることが好ましい。上記含有量がTi換算で、1質量%以下であれば、焼結体特性に悪影響を及ぼすことがない。
Ti has a specific gravity of 4.5g / cm 3 and is light and excellent in corrosion resistance. Its melting point is as high as 1675 ° C, and it is the ninth most common element in the earth's crust (the element next to iron as the transition element). It is produced in large quantities in the form of oxides (rutile (goldenite), plate titanium stone, titanite (ilmenite), perovskite, wedge stone (titanite), etc.). Since these oxides can be easily obtained, they were selected as candidates for the powder component for improving machinability. In the present invention, for example, TiO 2 , FeTiO 3 , CaTiO 3 , CaTiSiO 5 , TiC, TiN, TiCl 4 , BaTiO 3 , and Ti-6Al-4V can be used as the Ti source.
The Ti content is preferably 1% by mass or less in terms of Ti with respect to the total mass of the machinability improving powder. If the content is 1% by mass or less in terms of Ti, the sintered body characteristics are not adversely affected.

また、Bは比重が2.4〜2.5g/cm3で非常に硬く、硬度は単体元素としてはダイヤモンドに次ぐ硬度のもので、融点は2180℃と高く、ほう砂(Na2B4O5(OH)4・8H2O)やほう酸(H3BO3)の状態であることが多い。本発明では、Bを添加することにより、被削性改善用粉末を所望の融点(800℃以上1350℃以下)に調整することも可能であり、B源としては、B、B2O3、BN、H3BO3等が挙げられる。B含有量は、被削性改善用粉末の全質量に対し、B換算で5質量%以下とすることが好ましい。上記含有量がB換算で、5質量%以下であれば、焼結体特性に悪影響を及ぼすことがない。 B has a specific gravity of 2.4 to 2.5 g / cm 3 and is very hard. Its hardness is second only to diamond as a single element. Its melting point is as high as 2180 ° C. Borax (Na 2 B 4 O 5 (OH ) 4 · 8H 2 O) and boric acid (H 3 BO 3 ). In the present invention, by adding B, it is possible to adjust the machinability improving powder to a desired melting point (800 ° C. or higher and 1350 ° C. or lower). As the B source, B, B 2 O 3 , BN, H 3 BO 3 and the like. The B content is preferably 5% by mass or less in terms of B with respect to the total mass of the machinability improving powder. When the content is 5% by mass or less in terms of B, the sintered body characteristics are not adversely affected.

また、Mgは比重1.74g/cm3で軽い軟らかい金属性元素である。融点は650℃と低く、安定な酸化物を作り易いものだが、容易に入手し得ることから被削性改善用粉末成分の候補として選択した。本発明者らが鋭意研究した結果、Mgの添加により、被削性改善用粉末の融点が低下することが明らかになり、被削性改善用粉末を所望の融点(800℃以上1350℃以下)とするために使用可能な元素であることが判明した。Mg源としては、Mg、MgO、Mg(OH)2、MgF2、MgCl2、MgCO3、MgSO4、MgO・Al2O3(MgAl2O4尖晶石(スピネル))、Mg3Si4O10(OH)2(滑石(タルク))等が挙げられる。Mg含有量は、被削性改善用粉末の全質量に対し、Mg換算で5質量%以下とすることが好ましい。上記含有量がMg換算で5質量%以下であれば、焼結体特性に悪影響を及ぼすことがない。 Mg is a light soft metallic element having a specific gravity of 1.74 g / cm 3 . The melting point is as low as 650 ° C., and it is easy to produce a stable oxide, but since it is easily available, it was selected as a candidate for a machinability improving powder component. As a result of intensive studies by the present inventors, it became clear that the melting point of the machinability improving powder was lowered by the addition of Mg, and the machinability improving powder had a desired melting point (800 ° C to 1350 ° C). It was found to be an element that can be used for Mg sources include Mg, MgO, Mg (OH) 2 , MgF 2 , MgCl 2 , MgCO 3 , MgSO 4 , MgO · Al 2 O 3 (MgAl 2 O 4 spinel), Mg 3 Si 4 And O 10 (OH) 2 (talc). The Mg content is preferably 5% by mass or less in terms of Mg with respect to the total mass of the machinability improving powder. If the content is 5% by mass or less in terms of Mg, the sintered body characteristics are not adversely affected.

また、Feは比重7.8g/cm3で融点が1538℃と高めのものだが、容易に入手し得るものとして被削性改善用粉末成分の候補として選択した。本発明者らが鋭意研究した結果、Feは、被削性改善用粉末を所望の融点(800℃以上1350℃以下)に調整する際にも使用可能であることが判明した。Fe源としては、FeO(酸化鉄(ウスタイト))、Fe2O3(赤鉄鉱(ヘマタイト))、Fe3O4(磁鉄鉱(マグネタイト))、Fe2O3・nH2O(褐鉄鉱(リモナイト))、FeCO3(菱鉄鉱)、FeS2(FenSn+1硫化鉄鉱)等が挙げられる。Fe含有量は、被削性改善用粉末の全質量に対し、Fe換算で25質量%以下とすることが好ましく、15質量%以下とすることがより好ましい。上記含有量がFe換算で25質量%以下であれば、被削性改善用粉末の融点を調整できる。 Fe, which has a specific gravity of 7.8 g / cm 3 and a melting point as high as 1538 ° C., was selected as a candidate for a machinability improving powder component because it is easily available. As a result of intensive studies by the present inventors, it has been found that Fe can also be used when adjusting the machinability improving powder to a desired melting point (800 ° C. or higher and 1350 ° C. or lower). Fe sources include FeO (iron oxide (wustite)), Fe 2 O 3 (hematite (hematite)), Fe 3 O 4 (magnetite (magnetite)), Fe 2 O 3 · nH 2 O (limonite (limonite) ), FeCO 3 (siderite), FeS 2 (Fe n S n + 1 sulfite) and the like. The Fe content is preferably 25% by mass or less, more preferably 15% by mass or less in terms of Fe with respect to the total mass of the machinability improving powder. If the content is 25% by mass or less in terms of Fe, the melting point of the machinability improving powder can be adjusted.

また、Sは、比重1.92〜2.07g/cm3で、融点が107〜120℃と低く、天然には数多くの硫黄鉱物(硫化鉱物、硫酸塩鉱物)として産出(単体でも産出)するものであり、容易に入手し得ることから被削性改善用粉末成分の候補として選択した。本発明者らが鋭意研究した結果、Sは、被削性改善用粉末を所望の融点(800℃以上1350℃以下)に調整する際にも使用可能であることが判明した。S源としては、S、H2S、SO2、H2SO4、BaSO4、CaSO4、CaSO4・2H2O、Na2S2O3等が挙げられる。S含有量は、被削性改善用粉末の全質量に対し、S換算で1質量%以下とすることが好ましい。上記含有量がS換算で、1質量%以下であれば、焼結体特性に悪影響を及ぼすことがない。 In addition, S has a specific gravity of 1.92 to 2.07 g / cm 3 and a melting point as low as 107 to 120 ° C., and is naturally produced as a large number of sulfur minerals (sulfide minerals and sulfate minerals). Since it can be easily obtained, it was selected as a candidate for a powder component for improving machinability. As a result of intensive studies by the present inventors, it has been found that S can also be used when adjusting the machinability improving powder to a desired melting point (800 ° C. or higher and 1350 ° C. or lower). Examples of the S source include S, H 2 S, SO 2 , H 2 SO 4 , BaSO 4 , CaSO 4 , CaSO 4 .2H 2 O, Na 2 S 2 O 3 and the like. The S content is preferably 1% by mass or less in terms of S with respect to the total mass of the machinability improving powder. When the content is 1% by mass or less in terms of S, the sintered body characteristics are not adversely affected.

被削性改善用粉末の配合量は、鉄基粉末、合金用粉末、被削性改善用粉末の合計量に対する質量%で、0.02%以上1.5%以下程度とすることが好ましい。被削性改善用粉末の配合量が、0.02質量%以上であれば、狙った被削性改善効果が得られる。一方、1.5質量%以下であれば、焼結体特性に悪影響を及ぼすことがない。   The blending amount of the machinability improving powder is preferably 0.02% or more and 1.5% or less in terms of mass% with respect to the total amount of the iron base powder, the alloy powder, and the machinability improving powder. If the blending amount of the machinability improving powder is 0.02% by mass or more, the targeted machinability improving effect can be obtained. On the other hand, when the content is 1.5% by mass or less, the sintered body characteristics are not adversely affected.

なお、被削性改善用粉末の平均粒径は、本粉末(本発明の粉末冶金用鉄基混合粉)の本質的な特性を損なうまで影響はしない。但し、より効果を上げるため、また焼結体特性への影響を小さくするためには、粒径は小さいほうが好ましく、平均粒径200μm以下とすることがより好ましい。   Note that the average particle size of the machinability improving powder does not affect until the essential characteristics of the present powder (iron-based mixed powder for powder metallurgy of the present invention) are impaired. However, in order to increase the effect and reduce the influence on the sintered body characteristics, it is preferable that the particle size is small, and it is more preferable that the average particle size is 200 μm or less.

本発明の被削性改善用粉末の調製方法は、特に限定されず、例えば必要な元素に関してより不純物が少なくなるようなものを上記に挙げた物質(何でも可、単体でも可)から選定し、それを混合するだけでよく、必要なら粉砕等も実施して製造すればよい。その際に好ましい含有量に調整するのは言うまでもない。   The method for preparing the machinability improving powder of the present invention is not particularly limited, and, for example, a material that has less impurities with respect to the necessary elements is selected from the substances listed above (anything is acceptable, or simple substance is possible), What is necessary is just to mix it, and what is necessary is just to implement grinding | pulverization etc. if necessary. Needless to say, the content is adjusted to a preferable content.

本発明では、上記した鉄基粉末、合金用粉末、被削性改善用粉末に加えて、適正量の潤滑剤を配合する。配合される潤滑剤としては、ステアリン酸亜鉛、ステアリン酸リチウム等の金属石鹸、あるいはオレイン酸などのカルボン酸、ステアリン酸アミド、ステアリン酸ビスアミド、エチレンビスステアロアミドなどの、アミドワックスが好ましい。潤滑剤の配合量は、本発明では特に限定されないが、鉄基粉末、合金用粉末、被削性改善用粉末の合計量100質量部に対し、0.1質量部以上1.0質量部以下とすることが好ましい。潤滑剤の配合量が0.1質量部以上であれば、金型との摩擦が増加し抜き出し力が増大することがなく、金型寿命が低下しない。一方、1.0質量部以下であれば、成形密度が低下せず、焼結体密度が低下しない。   In the present invention, an appropriate amount of lubricant is blended in addition to the iron-based powder, alloy powder, and machinability improving powder. The lubricant to be blended is preferably a metal soap such as zinc stearate or lithium stearate, or an amide wax such as carboxylic acid such as oleic acid, stearic acid amide, stearic acid bisamide, or ethylene bisstearamide. The blending amount of the lubricant is not particularly limited in the present invention, but may be 0.1 parts by mass or more and 1.0 part by mass or less with respect to 100 parts by mass of the total amount of the iron-based powder, the alloy powder, and the machinability improving powder. preferable. If the blending amount of the lubricant is 0.1 parts by mass or more, the friction with the mold increases, the extraction force does not increase, and the mold life does not decrease. On the other hand, if it is 1.0 mass part or less, a molding density will not fall and a sintered compact density will not fall.

次に、本発明の粉末冶金用鉄基混合粉の好ましい製造方法について説明するが、これに限定されるものではないことは言うまでもない。
鉄基粉末に、合金用粉末、および、被削性改善用粉末、更に潤滑剤を、それぞれ所定量配合し、通常公知の混合機を用いて、一回に、あるいは二回以上に分けて混合し、混合粉(鉄基混合粉)とすることが望ましい。上記した被削性改善用粉末は、必ずしも全量を一度に混合する必要はなく、一部のみを配合して混合(一次混合)したのち、残部を二次混合材として配合し混合(二次混合)することもできる。なお、潤滑剤も、二回に分けて配合してもよい。
Next, although the preferable manufacturing method of the iron group mixed powder for powder metallurgy of this invention is demonstrated, it cannot be overemphasized that it is not limited to this.
Predetermined amounts of alloy powder, machinability improving powder, and lubricant are added to the iron-based powder, and mixed in a single batch or two or more batches using a known mixer. It is desirable to use mixed powder (iron-based mixed powder). The above-mentioned powder for improving machinability does not necessarily need to be mixed all at once. After mixing and mixing only a part (primary mixing), the remainder is mixed and mixed as a secondary mixture (secondary mixing). ). In addition, you may mix | blend a lubricant in two steps.

なお、鉄基粉末の一部または全部に、偏析防止処理を施され結合材により表面に合金用粉末および/または被削性改善用粉末の一部または全部を固着させた鉄基粉末を用いても良い。なお、偏析防止処理としては、特許第3004800号公報に記載の方法を用いることができる。
また、鉄基粉末に、合金用粉末、および、被削性改善用粉末を、潤滑剤とともに所定量配合して、該潤滑剤の融点のうちの最低値以上に加熱し、少なくとも1種の潤滑剤を溶融させて、混合したのち、所定の温度以下に冷却して固化させる一次混合を行い、さらに、二次混合材を添加し、混合する二次混合を行ってもよい。
In addition, a part or all of the iron-based powder is subjected to segregation prevention treatment, and an iron-based powder in which a part or all of the alloying powder and / or the machinability improving powder is fixed to the surface by a binder. Also good. As the segregation prevention treatment, the method described in Japanese Patent No. 3004800 can be used.
In addition, a predetermined amount of alloying powder and machinability improving powder are mixed with the iron-based powder together with the lubricant, and heated to the minimum value of the melting point of the lubricant to at least one kind of lubrication. After the agent is melted and mixed, primary mixing may be performed in which the agent is cooled to a predetermined temperature or lower and solidified, and further, a secondary mixture is added and mixed.

また、混合手段としては、特に制限はなく、従来公知の混合機いずれもが使用できる。なお、加熱が容易な、高速底部撹拌式混合機、傾斜回転パン型混合機、回転クワ型混合機および円錐遊星スクリュー形混合機などは特に有利に適合する。   The mixing means is not particularly limited, and any conventionally known mixer can be used. Note that a high-speed bottom-stirring mixer, an inclined rotary pan mixer, a rotary mulberry mixer, a conical planetary screw mixer, and the like that are easy to heat are particularly advantageous.

つぎに、上記した製造方法で製造された本発明の粉末冶金用鉄基混合粉を用いた、焼結体の好ましい製造方法について説明する。
まず、好ましくは上記した方法で製造された、本発明の粉末冶金用鉄基混合粉を、金型に充填し圧縮成形し、成形体とする。成形方法は、プレス等の通常の成形方法がいずれも好適である。
Below, the preferable manufacturing method of a sintered compact using the iron group mixed powder for powder metallurgy of this invention manufactured with the above-mentioned manufacturing method is demonstrated.
First, the iron-based mixed powder for powder metallurgy of the present invention, which is preferably produced by the method described above, is filled into a mold and compression-molded to obtain a molded body. As the molding method, any ordinary molding method such as a press is suitable.

得られた成形体は、ついで焼結処理を施され、焼結体となる。焼結処理の温度は、鉄基粉末の融点の約70%の温度で行うことが好ましく、1000℃以上1300℃以下とすることが好ましい。焼結処理の温度が1000℃以上であれば、焼結体密度が低くなり過ぎることがない。一方、焼結処理の温度が1300℃以下であれば、異常粒成長が起こることがなく、焼結体強度が低下することがない。また、焼結処理の雰囲気は、窒素あるいはアルゴンなどの不活性雰囲気、あるいは、これに水素を混合した不活性ガス−水素ガス混合雰囲気、あるいは、アンモニア分解ガス、RXガス、天然ガスなどの還元雰囲気とすることが好ましい。   The obtained molded body is then subjected to a sintering treatment to become a sintered body. The temperature for the sintering treatment is preferably about 70% of the melting point of the iron-based powder, and preferably 1000 ° C. or higher and 1300 ° C. or lower. If the temperature of the sintering treatment is 1000 ° C. or higher, the density of the sintered body will not be too low. On the other hand, if the temperature of the sintering treatment is 1300 ° C. or lower, abnormal grain growth does not occur and the strength of the sintered body does not decrease. In addition, the sintering atmosphere can be an inert atmosphere such as nitrogen or argon, an inert gas-hydrogen gas mixed atmosphere in which hydrogen is mixed with this, or a reducing atmosphere such as ammonia decomposition gas, RX gas, natural gas, etc. It is preferable that

焼結処理後、更に、必要に応じて、ガス浸炭熱処理や浸炭窒化処理等の熱処理を施し、所望の特性を具備された製品(焼結部品等)とすることができる。なお、切削加工等の加工を随時施し、所定寸法の製品とすることは言うまでもない。   After the sintering treatment, a heat treatment such as a gas carburizing heat treatment or a carbonitriding treatment may be performed as necessary to obtain a product (sintered part or the like) having desired characteristics. Needless to say, processing such as cutting is performed as needed to obtain a product with a predetermined size.

また、ドリル加工等、比較的低速の切削速度(例えば300m/min未満、好ましくは200m/min以下の低速切削)で加工される焼結体を製造する場合には、被削性改善用粉末の融点を、焼結体を製造する際の焼結温度以下の温度とすることがより好ましい。一方、旋盤加工等、比較的高速の切削速度(例えば200m/min超、好ましくは300m/min以上の高速切削)で加工される焼結体を製造する場合には、被削性改善用粉末の融点を、焼結体を製造する際の焼結温度以上の温度とすることがより好ましい。   When manufacturing a sintered body processed at a relatively low cutting speed (for example, low speed cutting of less than 300 m / min, preferably 200 m / min or less), such as drilling, More preferably, the melting point is set to a temperature equal to or lower than the sintering temperature when the sintered body is produced. On the other hand, when manufacturing a sintered body processed at a relatively high cutting speed (for example, high-speed cutting of more than 200 m / min, preferably 300 m / min or more) such as lathe processing, More preferably, the melting point is set to a temperature equal to or higher than the sintering temperature when the sintered body is produced.

なお、前述のとおり、焼結処理の温度(焼結温度)は、鉄基粉末の融点の約70%の温度で行うことが好ましく、1000℃以上1300℃以下とすることが好ましい。また、焼結処理の温度(焼結温度)は、1050℃以上1250℃以下とすることがより好ましく、焼結体の強度、密度、寸法変化等の観点からは焼結処理の温度(焼結温度)を概ね1150℃とすることが特に好ましい。したがって、低速切削加工用焼結体の原料として使用する粉末冶金用鉄基混合粉の場合には、被削性改善用粉末の融点を800℃以上1300℃以下とすることが好ましく、800℃以上1250℃以下とすることがより好ましく、800℃以上1150℃以下とすることがより一層好ましい。一方、高速切削加工用焼結体の原料として使用する粉末冶金用鉄基混合粉の場合には、被削性改善用粉末の融点を1000℃以上1350℃以下とすることが好ましく、1050℃以上1350℃以下とすることがより好ましく、1150℃以上1350℃以下とすることがより一層好ましい。   As described above, the temperature for the sintering treatment (sintering temperature) is preferably about 70% of the melting point of the iron-based powder, and is preferably 1000 ° C. or higher and 1300 ° C. or lower. The temperature of the sintering process (sintering temperature) is more preferably 1050 ° C. or more and 1250 ° C. or less. From the viewpoint of the strength, density, dimensional change, etc. of the sintered body, the temperature of the sintering process (sintering) The temperature is particularly preferably about 1150 ° C. Therefore, in the case of an iron-based mixed powder for powder metallurgy used as a raw material for a sintered body for low speed cutting, it is preferable that the melting point of the machinability improving powder is 800 ° C. or higher and 1300 ° C. or lower, and 800 ° C. or higher. The temperature is more preferably 1250 ° C. or lower, and further preferably 800 ° C. or higher and 1150 ° C. or lower. On the other hand, in the case of an iron-based mixed powder for powder metallurgy used as a raw material for a sintered body for high-speed cutting, the machinability improving powder preferably has a melting point of 1000 ° C or higher and 1350 ° C or lower, and 1050 ° C or higher The temperature is more preferably 1350 ° C. or lower, and further preferably 1150 ° C. or higher and 1350 ° C. or lower.

以上のように、本発明では、鉄基粉末、合金用粉末および潤滑剤粉末に加え、更に被削性改善用粉末を混合してなる粉末冶金用鉄基混合粉とすることで、被削性に優れた焼結体が得られる。したがって、本発明によると、切削加工を必要とする焼結部材の生産性が顕著に向上するとともに、工具摩耗を抑制することで工具寿命が向上する。   As described above, in the present invention, in addition to the iron-base powder, the alloy powder and the lubricant powder, the machinability iron-base mixed powder obtained by mixing the machinability improving powder is further obtained. An excellent sintered body can be obtained. Therefore, according to the present invention, the productivity of sintered members that require cutting is significantly improved, and the tool life is improved by suppressing tool wear.

そして、本発明において特記すべき特徴は、被削性改善用粉末を、Ca、Al、Si、F、NaおよびCを含有する粉末とすることで、前記被削性改善用粉末の融点を所望の温度範囲(800℃以上1350℃以下)としている点である。このような所望の融点を有する被削性改善用粉末を混合した粉末冶金用鉄基混合粉を用いて成形体とし、更に焼結すると、低速切削および高速切削のいずれの場合においても優れた被削性、具体的には、切削速度が約100〜500m/minという広範囲において良好な被削性を示す焼結体が得られる。すなわち、本発明によると、切削条件や切削工具によらず被削性改善効果を発揮し、汎用性の高い焼結体が製造可能となり、産業上格段の効果を奏する。   In the present invention, it should be noted that the machinability improving powder is a powder containing Ca, Al, Si, F, Na, and C, so that the melting point of the machinability improving powder is desired. The temperature range (800 ° C to 1350 ° C). When an iron-base mixed powder for powder metallurgy mixed with such a machinability improving powder having a desired melting point is formed into a compact and further sintered, it is excellent in both low-speed cutting and high-speed cutting. A sintered body exhibiting good machinability in a wide range of machinability, specifically, a cutting speed of about 100 to 500 m / min is obtained. That is, according to the present invention, the machinability improving effect is exhibited regardless of the cutting conditions and the cutting tool, and a highly versatile sintered body can be manufactured.

また、本発明によると、被削性改善用粉末の融点を、焼結体を製造する際の焼結温度以下の温度とすることにより、特にドリル加工等、比較的低速の切削速度(例えば300m/min未満、好ましくは200m/min以下の低速切削)で加工される焼結体の被削性を大幅に改善することができる。また、本発明によると、被削性改善用粉末の融点を、焼結体を製造する際の焼結温度以上の温度とすることにより、特に旋盤加工等、比較的高速の切削速度(例えば200m/min超、好ましくは300m/min以上の高速切削)で加工される焼結体の被削性を大幅に改善することができる。
以下、実施例に基づき、さらに本発明を具体的に説明する。
In addition, according to the present invention, the melting point of the machinability improving powder is set to a temperature equal to or lower than the sintering temperature at the time of producing the sintered body, so that a relatively low cutting speed (for example, 300 m, particularly drilling). The machinability of the sintered body processed at a low speed of less than / min, preferably 200 m / min or less) can be greatly improved. In addition, according to the present invention, by setting the melting point of the machinability improving powder to a temperature equal to or higher than the sintering temperature at the time of producing the sintered body, a relatively high cutting speed (for example, 200 m), such as lathe processing. The machinability of the sintered body processed at a high speed of more than / min, preferably 300 m / min or higher) can be greatly improved.
Hereinafter, based on an Example, this invention is demonstrated further more concretely.

実施例1
鉄基粉末、合金用粉末、被削性改善用粉末および潤滑剤粉末を混合した粉末冶金用鉄基混合粉を、圧粉成形して成形体とし、該成形体に焼結処理を施して焼結体とした。そして、得られた焼結体について、旋盤切削試験およびドリル切削試験を実施した。
Example 1
Powder-metallurgical iron-base mixed powder, which is a mixture of iron-base powder, alloy powder, machinability improving powder and lubricant powder, is compacted into a compact, and the compact is sintered and sintered. It was a ligation. And the lathe cutting test and the drill cutting test were implemented about the obtained sintered compact.

鉄基粉末(F1)として、アトマイズ純鉄粉(JFEスチール社製、商品名:JIP-301A)を使用した。
また、前記の方法によりa〜nの被削性改善用粉末を調製した。被削性改善用粉末全質量に対する各元素の質量%、並びに被削性改善用粉末の融点を表1に示す。
Atomized pure iron powder (manufactured by JFE Steel, trade name: JIP-301A) was used as the iron-based powder (F1).
Also, machinability improving powders a to n were prepared by the method described above. Table 1 shows the mass% of each element with respect to the total mass of the machinability improving powder and the melting point of the machinability improving powder.

<被削性改善用粉末a〜n>
Ca源としてCaCO3またはCaO、Al源としてNa3AlF6またはAl2O3、Si源としてMgSiO3またはSiO2、F源としてCaF2、Na源としてNa2CO3またはNa2O、C源として黒鉛、Ti源としてTiO2、B源としてB(ほう素)またはB2O3、Mg源としてMg(金属マグネシウム)、Fe源としてFeOまたはFe2O3、S源としてS(硫黄)を用い、表1に記載の含有量になるように配合量を調整し、平均粒子径が100μmとなるように混合機を用いて粒子径を調整した。使用する原料の性状にもよるが、必要に応じて篩いを混合機とともに用いて調整した。
<Machinability improving powders a to n>
CaCO 3 or CaO as Ca source, Na 3 AlF 6 or Al 2 O 3 as Al source, MgSiO 3 or SiO 2 as Si source, CaF 2 as F source, Na 2 CO 3 or Na 2 O as C source, C source As graphite, Ti source as TiO 2 , B source as B (boron) or B 2 O 3 , Mg source as Mg (metallic magnesium), Fe source as FeO or Fe 2 O 3 , S source as S (sulfur) The blending amount was adjusted so that the content described in Table 1 was obtained, and the particle size was adjusted using a mixer so that the average particle size was 100 μm. Although it depends on the properties of the raw materials used, it was adjusted using a sieve together with a mixer as necessary.

上記した鉄基粉末(F1)に、表2に示す種類、配合量の合金用粉末(黒鉛粉、銅粉)と、表2に示す種類、配合量の被削性改善用粉末と、さらに、表2に示す種類、配合量の潤滑剤粉末とを、配合し、高速底部撹拌式混合機を利用して混合することにより混合粉を製造した。なお、表2の被削性改善用粉末の種類(a〜n)は、表1に示す各種の被削性改善用粉末である。また、合金用粉末として配合した黒鉛粉は平均粒径が5μmの粉末であり、銅粉は平均粒径が25μmの粉末とした。   In the iron-based powder (F1) described above, the alloy powders (graphite powder, copper powder) shown in Table 2 and the types and amounts shown, the machinability improving powder shown in Table 2 and the types shown in Table 2, The types and blending amounts of lubricant powder shown in Table 2 were blended and mixed using a high speed bottom stirring mixer to produce a mixed powder. In addition, the types (a to n) of the machinability improving powders in Table 2 are various machinability improving powders shown in Table 1. The graphite powder blended as the alloy powder was a powder having an average particle diameter of 5 μm, and the copper powder was a powder having an average particle diameter of 25 μm.

表2において、合金用粉末の配合量は、鉄基粉末、合金用粉末、被削性改善用粉末の合計量に対する質量%で表示した。被削性改善用粉末の配合量も、鉄基粉末、合金用粉末、被削性改善用粉末の合計量に対する質量%で表示した。潤滑剤粉末の配合量は鉄基粉末、合金用粉末、被削性改善用粉末の合計量100質量部に対する質量部で表示した。   In Table 2, the compounding amount of the alloy powder is expressed in mass% with respect to the total amount of the iron-based powder, the alloy powder, and the machinability improving powder. The compounding amount of the machinability improving powder was also expressed in mass% with respect to the total amount of the iron base powder, the alloy powder, and the machinability improving powder. The blending amount of the lubricant powder was expressed in parts by mass with respect to 100 parts by mass of the total amount of iron-based powder, alloy powder, and machinability improving powder.

得られた混合粉を、金型(旋盤切削試験用およびドリル切削試験用の2種)に装入し、加圧力:590MPaで圧粉成形し、成形体を得た。次いで、得られた成形体に、RXガス雰囲気中で、1150℃×20minの焼結処理を施して、焼結体(旋盤切削試験用:外径60mm×内径20mm×長さ20mm、ドリル切削試験用:外径60mm×厚さ10mm)を得た。
得られた焼結体について、旋盤切削試験(高速切削試験)、ドリル切削試験(低速切削試験)を実施した。試験方法は次のとおりとした。
The obtained mixed powder was charged into a mold (two types for lathe cutting test and drill cutting test) and compacted at a pressure of 590 MPa to obtain a molded body. Next, the obtained compact was sintered in RX gas atmosphere at 1150 ° C x 20 min, and the sintered compact (for lathe cutting test: outer diameter 60 mm x inner diameter 20 mm x length 20 mm, drill cutting test Use: outer diameter 60 mm × thickness 10 mm).
About the obtained sintered compact, the lathe cutting test (high-speed cutting test) and the drill cutting test (low-speed cutting test) were implemented. The test method was as follows.

(1)旋盤切削試験
得られた焼結体(リング状:外径60mm×内径20mm×長さ20mm)を3個重ねて、その側面を、旋盤を用いて切削した。切削条件は、超硬の切削工具を用いて、切削速度:200m/min、送り量:0.1mm/回、切込み深さ:0.5mm、切削距離:1000mとし、切削後、切削工具の逃げ面の摩耗量を測定した。切削工具の逃げ面の摩耗量が小さいほど、旋削性に優れていると評価した。
(1) Lathe cutting test Three of the obtained sintered bodies (ring shape: outer diameter 60 mm x inner diameter 20 mm x length 20 mm) were stacked and the side surfaces were cut using a lathe. Cutting conditions were as follows: using a carbide cutting tool, cutting speed: 200 m / min, feed rate: 0.1 mm / turn, depth of cut: 0.5 mm, cutting distance: 1000 m. The amount of wear was measured. The smaller the amount of wear on the flank of the cutting tool, the better the turning performance.

(2)ドリル切削試験
得られた焼結体(円盤状:外径60mm×厚さ10mm)に、高速度鋼製ドリル(直径:1.2mmのシャンクドリル)で、回転数:10,000rpm、送り速度:300mm/minの条件で貫通穴を穿孔し、ドリルが破損するまでの穿孔数を調査し、穿孔数が多いほどドリル被削性に優れていると評価した。なお、穿孔部表面のバリ発生の有無を目視で調査した。
得られた結果を、表3に示す。
(2) Drill cutting test The obtained sintered body (disk shape: outer diameter 60 mm x thickness 10 mm) was rotated with a high-speed steel drill (diameter: 1.2 mm shank drill), rotation speed: 10,000 rpm, feed rate : Drilled through holes at 300mm / min and investigated the number of drill holes until the drill breaks. The larger the number of holes, the better the drill machinability. In addition, the presence or absence of burr | flash generation | occurrence | production of the perforated part surface was investigated visually.
The results obtained are shown in Table 3.

Figure 0005874700
Figure 0005874700

Figure 0005874700
Figure 0005874700

Figure 0005874700
Figure 0005874700

本発明はいずれも、切削工具の逃げ面の摩耗量が小さく、旋盤加工時の被削性に優れ、しかもドリルが破損するまでの穿孔数が多く、またバリの発生もなくドリル加工時の被削性にも優れた焼結体となっている。一方、本発明の範囲を外れる比較例は、旋盤加工時、ドリル加工時のいずれか一方の被削性が低下しているか、旋盤加工時、ドリル加工時のいずれにおいても被削性が低下している。   In any of the present inventions, the amount of wear on the flank of the cutting tool is small, the machinability during lathe machining is excellent, and the number of drill holes until the drill breaks is large. It is a sintered body with excellent machinability. On the other hand, in the comparative example that is outside the scope of the present invention, the machinability of either one of lathe machining or drilling is reduced, or the machinability is lowered in both lathe machining or drilling. ing.

実施例2
実施例1で得られた焼結体のうち、本発明例の混合粉を成形、焼結することにより得られた焼結体(表3の焼結体No.1〜9)について、切削速度:100m/min、200m/min、300m/min、500m/minで旋盤切削試験を実施し、切削工具の逃げ面の摩耗量を測定した。旋盤切削試験は、切削速度を種々の速度に変更した点を除き、実施例1の(1)旋盤切削試験と同条件で実施した。
得られた結果を、表4に示す。
Example 2
Of the sintered bodies obtained in Example 1, the cutting speed of the sintered bodies (sintered bodies No. 1 to 9 in Table 3) obtained by molding and sintering the mixed powder of the present invention example. : Lathe cutting test was conducted at 100m / min, 200m / min, 300m / min, and 500m / min, and the amount of wear on the flank of the cutting tool was measured. The lathe cutting test was performed under the same conditions as the (1) lathe cutting test of Example 1 except that the cutting speed was changed to various speeds.
Table 4 shows the obtained results.

Figure 0005874700
Figure 0005874700

表4のとおり、いずれの焼結体も切削速度:100〜500m/minの範囲で良好な被削性を示している。そして、焼結温度(1150℃)を境に、被削性改善用粉末の融点が焼結温度未満のものは低速側(切削速度:100m/min、200m/min)で焼結体の被削性がより良好であり、被削性改善用粉末の融点が焼結温度超えのものは高速側(切削速度:300 m/min、500m/min)で焼結体の被削性がより良好であることがわかる。また、被削性改善用粉末の融点が焼結温度と同温(1150℃)のものは、切削工具の逃げ面の摩耗量が特に切削速度に依存せず全切削速度に亘り均一であり、いずれの切削速度においても焼結体の被削性が良好であることがわかる。   As shown in Table 4, all of the sintered bodies show good machinability at a cutting speed of 100 to 500 m / min. Then, with the sintering temperature (1150 ° C) as the boundary, if the melting point of the machinability improving powder is lower than the sintering temperature, the sintered body will be cut at the lower speed (cutting speed: 100m / min, 200m / min). If the melting point of the machinability improving powder exceeds the sintering temperature, the machinability of the sintered body is better on the high speed side (cutting speed: 300 m / min, 500 m / min). I know that there is. In addition, when the melting point of the machinability improving powder is the same temperature (1150 ° C) as the sintering temperature, the amount of wear on the flank of the cutting tool is not dependent on the cutting speed and is uniform over the entire cutting speed. It can be seen that the machinability of the sintered body is good at any cutting speed.

Claims (4)

鉄基粉末と、合金用粉末と、被削性改善用粉末と、潤滑剤粉末とを混合してなる粉末冶金用鉄基混合粉であって、前記被削性改善用粉末がCa、Al、Si、F、NaおよびCを含有する粉末であり、前記被削性改善用粉末の融点が800℃以上1350℃以下であることを特徴とする粉末冶金用鉄基混合粉。   An iron-base powder, an alloy powder, a machinability improving powder, and an iron-base mixed powder for powder metallurgy obtained by mixing a lubricant powder, wherein the machinability improving powder is Ca, Al, An iron-based mixed powder for powder metallurgy, wherein the powder contains Si, F, Na and C, and the melting point of the machinability improving powder is 800 ° C or higher and 1350 ° C or lower. 前記被削性改善用粉末が、更にTi、B、Mg、Fe、Sのうちの1種または2種以上を含有する粉末であることを特徴とする請求項1に記載の粉末冶金用鉄基混合粉。   The iron base for powder metallurgy according to claim 1, wherein the machinability improving powder is a powder further containing one or more of Ti, B, Mg, Fe, and S. Mixed powder. 前記被削性改善用粉末の融点が、800℃以上1150℃以下であることを特徴とする請求項1または2に記載の粉末冶金用鉄基混合粉。   3. The iron-based mixed powder for powder metallurgy according to claim 1, wherein the machinability improving powder has a melting point of 800 ° C. or higher and 1150 ° C. or lower. 前記被削性改善用粉末の融点が、1150℃以上1350℃以下であることを特徴とする請求項1または2に記載の粉末冶金用鉄基混合粉。   3. The iron-based mixed powder for powder metallurgy according to claim 1, wherein the machinability improving powder has a melting point of 1150 ° C. or higher and 1350 ° C. or lower.
JP2013196620A 2012-09-27 2013-09-24 Iron-based mixed powder for powder metallurgy Active JP5874700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013196620A JP5874700B2 (en) 2012-09-27 2013-09-24 Iron-based mixed powder for powder metallurgy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012213466 2012-09-27
JP2012213466 2012-09-27
JP2013196620A JP5874700B2 (en) 2012-09-27 2013-09-24 Iron-based mixed powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JP2014080683A JP2014080683A (en) 2014-05-08
JP5874700B2 true JP5874700B2 (en) 2016-03-02

Family

ID=50785135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013196620A Active JP5874700B2 (en) 2012-09-27 2013-09-24 Iron-based mixed powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP5874700B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102543070B1 (en) 2015-02-03 2023-06-12 회가내스 아베 (피유비엘) Powdered metal compositions for easy machining
JP6480265B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy, method for producing the same, sintered body and method for producing the same
JP6480266B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder for iron-based powder metallurgy, method for producing the same, and sintered body
JP6480264B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder and sintered body for iron-based powder metallurgy
CN105132830A (en) * 2015-09-10 2015-12-09 苏州莱特复合材料有限公司 Powder metallurgy material for brake and preparation method for powder metallurgy material
JP6380501B2 (en) * 2015-12-01 2018-08-29 Jfeスチール株式会社 Mixed powder for powder metallurgy, method for producing mixed powder for powder metallurgy, and sintered body
JP6493357B2 (en) * 2015-12-08 2019-04-03 Jfeスチール株式会社 Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3449110B2 (en) * 1996-04-17 2003-09-22 株式会社神戸製鋼所 Iron-based mixed powder for powder metallurgy and method for producing sintered body using the same
JP3862392B2 (en) * 1997-02-25 2006-12-27 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy
JP5260913B2 (en) * 2007-08-03 2013-08-14 株式会社神戸製鋼所 Iron-based mixed powder for powder metallurgy and sintered iron powder
JP5504971B2 (en) * 2010-02-26 2014-05-28 Jfeスチール株式会社 Mixed powder for powder metallurgy and sintered metal powder with excellent machinability

Also Published As

Publication number Publication date
JP2014080683A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5874700B2 (en) Iron-based mixed powder for powder metallurgy
JP5904234B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
CA2676513A1 (en) Composite sintered body
JP6766399B2 (en) Sintering powder and sintered body
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5962787B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
CN107614157B (en) Ferrous based powder metallurgical mixed powder and the sintered body made using it
JP5962691B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP6380501B2 (en) Mixed powder for powder metallurgy, method for producing mixed powder for powder metallurgy, and sintered body
WO2018100955A1 (en) Powder mixture for iron-based powder metallurgy, and method for manufacturing sintered compact using same
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP2014025109A (en) Mixed powder for powder metallurgy
JP6493357B2 (en) Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body
JP6007928B2 (en) Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
JP2007169713A (en) Iron-based powdery mixture for powder metallurgy
JP2009242887A (en) Iron-based powdery mixture
JP5310074B2 (en) Iron-based powder mixture for high-strength sintered parts of automobiles
CN111344090B (en) Mixed powder for powder metallurgy
JP2017101280A (en) Mixed powder for powder metallurgy, production method for mixed powder for powder metallurgy, and iron-based powder-made sintered compact
JP2007211329A (en) Iron-based powdery mixture for powder metallurgy
JP2017106060A (en) Mixture powder for powder metallurgy, manufacturing method therefor and manufacturing method of iron-based powder-made sintered body
JP2004083948A (en) Ferrous sintered alloy having excellent machinability and production method therefor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5874700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250