JP5260913B2 - Iron-based mixed powder for powder metallurgy and sintered iron powder - Google Patents

Iron-based mixed powder for powder metallurgy and sintered iron powder Download PDF

Info

Publication number
JP5260913B2
JP5260913B2 JP2007203443A JP2007203443A JP5260913B2 JP 5260913 B2 JP5260913 B2 JP 5260913B2 JP 2007203443 A JP2007203443 A JP 2007203443A JP 2007203443 A JP2007203443 A JP 2007203443A JP 5260913 B2 JP5260913 B2 JP 5260913B2
Authority
JP
Japan
Prior art keywords
powder
iron
oxide
mass
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007203443A
Other languages
Japanese (ja)
Other versions
JP2009035796A (en
Inventor
高裕 工藤
智之 古田
祐司 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007203443A priority Critical patent/JP5260913B2/en
Priority to CN2008801015670A priority patent/CN101772389B/en
Priority to KR1020107002270A priority patent/KR101187136B1/en
Priority to PCT/JP2008/062407 priority patent/WO2009019952A1/en
Priority to TW97129415A priority patent/TWI392747B/en
Publication of JP2009035796A publication Critical patent/JP2009035796A/en
Application granted granted Critical
Publication of JP5260913B2 publication Critical patent/JP5260913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)

Description

本発明は、粉末冶金用鉄系混合粉末および鉄粉焼結体に係り、特に、自動車用の高強度焼結部材として好適な鉄粉焼結体を得ることのできる粉末冶金用鉄系混合粉末および鉄粉焼結体に関するものである。   The present invention relates to an iron-based mixed powder for powder metallurgy and an iron powder sintered body, and in particular, an iron-based mixed powder for powder metallurgy capable of obtaining an iron powder sintered body suitable as a high-strength sintered member for automobiles. And an iron powder sintered body.

金属粉を金型内で加圧・成形した後、焼結して焼結体とする粉末冶金法は、複雑な形状の機械部品も精度よく製造できることから、高い寸法精度が要求されるギヤ等の自動車部品の製造に広く適用されている。 The powder metallurgy method, in which metal powder is pressed and molded in a mold and then sintered to form a sintered body, can be used to accurately manufacture mechanical parts with complex shapes, so gears that require high dimensional accuracy, etc. Widely applied in the manufacture of automotive parts.

現実には、金型を使ったプレス成形の制約上、多くの焼結部品には、最終工程で何らかの機械加工が施される。しかしながら、焼結部品は、同一組成の溶製材に比べて被削性の悪いことが確認されている。そこで、その改善策として種々の手段が講じられており、例えば、粉末冶金用鉄系混合粉末や鉄粉焼結体等において、MnS粉や酸化物等の添加を行なう方法がある。   In reality, some sintered parts are subjected to some machining in the final process due to the limitations of press molding using a mold. However, it has been confirmed that sintered parts have poor machinability compared to melted materials having the same composition. Therefore, various measures have been taken as an improvement measure, for example, there is a method of adding MnS powder, oxide, or the like in an iron-based mixed powder for powder metallurgy, an iron powder sintered body, or the like.

例えば、特許文献1には、切削性改善用粉末としてピロリン酸カルシウムを用い、このピロリン酸カルシウムを、鉄基粉末、合金用粉末および切削性改善用粉末の合計量に対し、Ca換算で0.02〜0.40質量%含有した粉末冶金用鉄基混合粉(粉末冶金用鉄系混合粉末)が開示されている。   For example, in Patent Document 1, calcium pyrophosphate is used as the machinability improving powder, and this calcium pyrophosphate is added in an amount of 0.02 to Ca in terms of Ca with respect to the total amount of iron-based powder, alloy powder and machinability improving powder. An iron-based mixed powder for powder metallurgy (iron-based mixed powder for powder metallurgy) containing 0.40% by mass is disclosed.

特許文献2には、CaO−Al23−SiO2系複合酸化物を0.05〜0.15質量%含有した粉末冶金用鉄系混合粉末が開示されており、特許文献3には、CaO−Al23−SiO2系複合酸化物を0.02〜0.3質量%含有した粉末冶金用鉄系混合粉末が開示されている。また、特許文献4には、CaO−MgO−SiO2 系の複合酸化物を金属マトリックスに分散させた焼結材料(焼結体)が開示されている。 Patent Document 2 discloses an iron-based mixed powder for powder metallurgy containing 0.05 to 0.15% by mass of a CaO—Al 2 O 3 —SiO 2 based composite oxide. An iron-based mixed powder for powder metallurgy containing 0.02 to 0.3% by mass of a CaO—Al 2 O 3 —SiO 2 complex oxide is disclosed. Patent Document 4 discloses a sintered material (sintered body) in which a CaO—MgO—SiO 2 composite oxide is dispersed in a metal matrix.

特許文献5には、C:0.1〜0.6質量%の溶製材において、Na、Li、BおよびSiよりなる群から選択される酸化物の鋼中に含まれる個数を規定した機械構造用鋼(快削鋼)が開示されており、特許文献6には、C:0.02〜0.15質量%の溶製材において、Na、Li、BおよびSiよりなる群から選択される酸化物の鋼中に含まれる個数を規定した快削鋼が開示されている。   Patent Document 5 discloses a mechanical structure in which the number of oxides selected from the group consisting of Na, Li, B, and Si is specified in a melted material of C: 0.1 to 0.6% by mass. Steel (free-cutting steel) is disclosed, and Patent Document 6 discloses an oxidation selected from the group consisting of Na, Li, B and Si in a melted material of C: 0.02 to 0.15 mass%. A free-cutting steel in which the number of steel contained in a steel is specified is disclosed.

特許文献7には、パーライトを主体とする基地中に銅または銅錫系合金相および遊離黒鉛が分散した組織を呈する焼結バルブガイド材(焼結体)が開示されている。また、特許文献8には、混合粉末全体の質量比で、黒鉛粉末を0.1〜2.0質量%および酸化硼素粉末を0.01〜1.0質量%混合添加した快削性鉄系焼結合金(焼結体)が開示されている。
特開2004−115847号公報 特開平9-279203号公報 特開平9-279204号公報 特開平8-260113号公報 特開2001-214239号公報 特開2001-214240号公報 特開2002-069599号公報 特開2000-144350号公報
Patent Document 7 discloses a sintered valve guide material (sintered body) that exhibits a structure in which a copper or copper-tin alloy phase and free graphite are dispersed in a base mainly composed of pearlite. Patent Document 8 discloses a free-cutting iron system in which a graphite powder is added in an amount of 0.1 to 2.0% by mass and a boron oxide powder is added in an amount of 0.01 to 1.0% by mass in a mass ratio of the entire mixed powder. A sintered alloy (sintered body) is disclosed.
JP 2004-115847 A JP-A-9-279203 JP-A-9-279204 JP-A-8-260113 JP 2001-214239 A JP 2001-214240 A Japanese Patent Laid-Open No. 2002-069599 JP 2000-144350 A

しかしながら、従来の粉末冶金用鉄系混合粉末や鉄粉焼結体等には、以下に示す問題があった。
特許文献1〜4に記載の発明では、例えば特許文献2に記載のように、使用する酸化物は比較的低融点とはいうものの、実際の融点は1000℃を超えるものであり、これらの酸化物は高融点であるといえる。そのため、酸化物が溶融できるV200m/min程度以上の高速切削にしか適用できないという問題があった。
However, conventional iron-based mixed powders for powder metallurgy and iron powder sintered bodies have the following problems.
In the inventions described in Patent Documents 1 to 4, for example, as described in Patent Document 2, although the oxide to be used has a relatively low melting point, the actual melting point exceeds 1000 ° C. It can be said that the product has a high melting point. Therefore, there is a problem that it can be applied only to high-speed cutting of about V200 m / min or more at which oxide can be melted.

特許文献5、6に記載の快削鋼は、溶製材を対象とするものであり、焼結部品とは材料的に異なるため、焼結部品における技術とは基本的に異なるものである。よって、特許文献5、6に記載の技術を焼結部品にそのまま適用できるものではない。   The free-cutting steels described in Patent Documents 5 and 6 are intended for melted materials, and are basically different from the technology for sintered parts because they are different in material from sintered parts. Therefore, the techniques described in Patent Documents 5 and 6 cannot be applied to sintered parts as they are.

すなわち、特許文献5、6に記載の発明では、酸化物は鉄マトリックス中に球もしくは楕円形状で均一に存在しているのに対し、焼結体には気孔が存在するため、酸化物は焼結中に溶融して鉄粉表面を覆うように(つまり鉄中ではなく)気孔中に存在している。さらに、特許文献5、6に記載の発明の効果は、溶融脆化による切り屑分断性が向上する点にある。この点では、鉄粉焼結体には元々気孔が存在するため、溶融脆化を狙いとしたものではなく、効果も異なるものといえる。また、鉄粉焼結体は、気孔を有するため、強度的に不利であることから、C量を溶製材よりも多くして強度を確保している。   That is, in the inventions described in Patent Documents 5 and 6, the oxide is uniformly present in a spherical or elliptical shape in the iron matrix, whereas the sintered body has pores. It exists in the pores so that it melts during sintering and covers the surface of the iron powder (that is, not in iron). Furthermore, the effect of the invention described in Patent Documents 5 and 6 is that the chip breaking property due to melt embrittlement is improved. In this respect, since the iron powder sintered body originally has pores, it is not aimed at melt embrittlement and can be said to have a different effect. In addition, since the iron powder sintered body has pores and is disadvantageous in terms of strength, the C amount is made larger than that of the smelted material to ensure the strength.

特許文献7、8に記載の発明では、例えば特許文献8に記載のように、添加されたBが焼結中に溶融して黒鉛の鉄粉中への浸炭を抑制し、遊離黒鉛を焼結体の気孔中に残留させる。この遊離黒鉛の潤滑効果により被削性は向上するものの、浸炭が抑制されるため、強度が低下するという問題があった。 In the inventions described in Patent Documents 7 and 8, for example, as described in Patent Document 8, the added B 2 O 3 melts during sintering to suppress carburization of graphite into iron powder, and free graphite Is left in the pores of the sintered body. Although the machinability is improved by the lubricating effect of the free graphite, there is a problem that the strength is lowered because carburization is suppressed.

その他、被削性を向上させるために一般的に行なわれるMnS添加では、Sにより、作業環境が汚染されるという問題や強度低下の原因になるという問題があった。   In addition, MnS addition generally performed to improve machinability has a problem that the work environment is contaminated by S and causes a decrease in strength.

本発明は前記事情に鑑みてなされたものであって、その目的は、強度を低下させることなく、一般的な切削条件域であるV100〜200m/min程度の切削においても、良好な被削性を有する鉄粉焼結体を得ることのできる粉末冶金用鉄系混合粉末および鉄粉焼結体を提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is good machinability even in cutting of about V100 to 200 m / min, which is a general cutting condition range, without reducing the strength. It is an object to provide an iron-based mixed powder for powder metallurgy and an iron powder sintered body capable of obtaining an iron powder sintered body having the following.

前記目的を達成するために、本発明者らは、以下に述べる事項について検討を行なった。
切削時に生成する切り屑は工具すくい面直前のせん断域でせん断変形するが、鉄粉焼結体は気孔を有しているため、切り屑のせん断変形時に気孔を起点とした亀裂が切り屑中の鉄粉界面に沿ってせん断変形方向に生じる。そこで、本発明者らは、この挙動に着目し、鉄粉界面を滑らかにすることで、この切り屑内のせん断変形力の低減、つまり切削抵抗の低減につながり、工具摩耗を抑制できるのではないかと考えた。その結果、鉄粉界面を滑らかにする手段として、複合酸化物による潤滑効果を見出したことにより本発明を成すに至った。
In order to achieve the above object, the present inventors have studied the following matters.
Chips generated during cutting undergo shear deformation in the shear region immediately before the tool rake face, but since the iron powder sintered body has pores, cracks originating from the pores are generated in the chips during shear deformation of the chips. It occurs in the direction of shear deformation along the iron powder interface. Therefore, the present inventors pay attention to this behavior, and by smoothing the iron powder interface, the shear deformation force in the chip can be reduced, that is, the cutting resistance can be reduced, and the tool wear can be suppressed. I thought. As a result, as a means for smoothing the iron powder interface, the present inventors have achieved the present invention by finding a lubricating effect by the composite oxide.

すなわち、請求項1に係る粉末冶金用鉄系混合粉末は、鉄基粉末に、黒鉛粉、Cu粉および複合酸化物(ただし、珪酸ソーダを除く)を混合した粉末冶金用鉄系混合粉末であって、前記黒鉛粉の含有量は、前記混合粉末全質量に対し、0.4〜3.0質量%、前記Cu粉の含有量は、前記混合粉末全質量に対し、0.5〜3.5質量%であり、前記複合酸化物は、800℃における粘性が10(poise)以下であり、前記複合酸化物の含有量は、前記混合粉末全質量に対し、0.05〜1.5質量%であることを特徴とする。
また、請求項2に係る粉末冶金用鉄系混合粉末は、請求項1に記載の粉末冶金用鉄系混合粉末において、前記複合酸化物が、複合酸化物(ただし、珪酸アルカリを除く)であることを特徴とする。
That is, the iron-based mixed powder for powder metallurgy according to claim 1 is an iron-based mixed powder for powder metallurgy in which graphite powder, Cu powder and composite oxide (excluding sodium silicate) are mixed with iron-based powder. In addition, the content of the graphite powder is 0.4 to 3.0 mass% with respect to the total mass of the mixed powder, and the content of the Cu powder is 0.5 to 3 with respect to the total mass of the mixed powder. is 5 wt%, the composite oxide is a viscosity at 800 ° C. is 10 5 (poise) or less, the content of the composite oxide, the mixed powder total weight to 0.05 to 1.5 It is characterized by mass%.
Moreover, the iron-based mixed powder for powder metallurgy according to claim 2 is the iron-based mixed powder for powder metallurgy according to claim 1, wherein the complex oxide is a complex oxide (excluding alkali silicate). It is characterized by that.

このように構成すれば、粉末冶金用鉄系混合粉末が、800℃における粘性が10(poise)以下である複合酸化物を含有することで、この複合酸化物が粉末冶金用鉄系混合粉末から製造される鉄粉焼結体の切削中に溶融して鉄粉界面が滑らかになる。これにより、鉄粉焼結体の切削時における切り屑内のせん断変形力が低減して、工具摩耗が抑制される。さらに、複合酸化物の含有量を、混合粉末全質量に対し、0.05〜1.5質量%とすることで、機械的特性(強度等)が低下することなく被削性が向上する。 If comprised in this way, the iron-type mixed powder for powder metallurgy will contain the complex oxide whose viscosity in 800 degreeC is 10 < 5 > (poise) or less, and this complex oxide is iron-type mixed powder for powder metallurgy. The iron powder interface is smoothed by melting during cutting of the iron powder sintered body manufactured from the above. Thereby, the shear deformation force in the chips at the time of cutting the iron powder sintered body is reduced, and the tool wear is suppressed. Furthermore, by making the content of the complex oxide 0.05 to 1.5% by mass with respect to the total mass of the mixed powder, machinability is improved without deteriorating mechanical properties (strength and the like).

請求項に係る粉末冶金用鉄系混合粉末は、請求項1または請求項2に記載の粉末冶金用鉄系混合粉末において、前記複合酸化物が、B、Na、Li、K、Mn、Mg、Ca、Ba、Siのうち少なくとも1種の酸化物を含有することを特徴とする。
請求項4に係る粉末冶金用鉄系混合粉末は、請求項1に記載の粉末冶金用鉄系混合粉末において、前記複合酸化物が、B −Na O−SiO 、B −K O、B −Li O、B −Na O、B −MnO、B −CaO、Li O−MnO、Na O−BaO−SiO のいずれかであることを特徴とする。
このように構成すれば、被削性がさらに向上するとともに、強度の低下が抑制される。
The iron-based mixed powder for powder metallurgy according to claim 3 is the iron-based mixed powder for powder metallurgy according to claim 1 or 2 , wherein the composite oxide is B, Na, Li, K, Mn, Mg , Ca, Ba, Si, containing at least one oxide.
The iron-based mixed powder for powder metallurgy according to claim 4 is the iron-based mixed powder for powder metallurgy according to claim 1, wherein the complex oxide is B 2 O 3 —Na 2 O—SiO 2 , B 2 O. 3 -K 2 O, B 2 O 3 -Li 2 O, B 2 O 3 -Na 2 O, B 2 O 3 -MnO, B 2 O 3 -CaO, Li 2 O-MnO, Na 2 O-BaO- It is any one of SiO 2 .
If comprised in this way, while machinability improves further, the fall of intensity | strength is suppressed.

請求項に係る鉄粉焼結体は、請求項1から請求項4のいずれか一項に記載の粉末冶金用鉄系混合粉末の圧粉体を焼結することにより得られることを特徴とする。
このように構成すれば、本発明の鉄粉焼結体は、前記した粉末冶金用鉄系混合粉末の圧粉体を焼結することにより得られるため、強度が低下することなく、良好な被削性を有する。
Iron powder sintered body according to claim 5, and characterized in that it is obtained by sintering a green compact of a powder metallurgical iron-based mixed powder as claimed in any one of claims 4 To do.
With this configuration, the iron powder sintered body of the present invention can be obtained by sintering the green compact of the iron-based mixed powder for powder metallurgy described above. Has machinability.

本発明の粉末冶金用鉄系混合粉末によれば、強度を低下させずに、被削性が向上した鉄粉焼結体を得ることができる。そして、この鉄粉焼結体は、鉄粉焼結体に含まれる複合酸化物が切削中に溶融して潤滑効果を発揮するため、工具摩耗を抑制することができ、工具寿命を向上させることができる。
本発明の鉄粉焼結体によれば、焼結体の強度を低下させずに、被削性を向上させることができる。そのため、工具摩耗を抑制することができ、工具寿命を向上させることができる。
According to the iron-based mixed powder for powder metallurgy of the present invention, an iron powder sintered body with improved machinability can be obtained without reducing the strength. And this iron powder sintered body can suppress tool wear and improve the tool life because the complex oxide contained in the iron powder sintered body melts during cutting and exhibits a lubricating effect. Can do.
According to the iron powder sintered body of the present invention, the machinability can be improved without reducing the strength of the sintered body. Therefore, tool wear can be suppressed and the tool life can be improved.

以下、本発明に係る粉末冶金用鉄系混合粉末(以下、適宜、混合粉末ともいう)および鉄粉焼結体(以下、適宜、焼結体ともいう)について、詳細に説明する。
≪粉末冶金用鉄系混合粉末≫
粉末冶金用鉄系混合粉末は、鉄基粉末に、黒鉛粉、Cu粉および複合酸化物を混合したものである。以下、各構成について説明する。
Hereinafter, the iron-based mixed powder for powder metallurgy according to the present invention (hereinafter also referred to as a mixed powder) and an iron powder sintered body (hereinafter also referred to as a sintered body) will be described in detail.
≪Iron-based mixed powder for powder metallurgy≫
The iron-based mixed powder for powder metallurgy is obtained by mixing iron powder and graphite powder, Cu powder and composite oxide. Each configuration will be described below.

<鉄基粉末>
鉄基粉末(鉄粉)としては、アトマイズ鉄粉、還元鉄粉等の純鉄粉、あるいは純鉄粉に代えて、合金元素を予め合金した鋼粉(予合金鋼粉)や合金元素が部分合金化された鋼粉(部分合金化鋼粉)を好適に用いることができる。また、これらを単独で使用してもよいし、混合して使用してもよい。
<Iron-based powder>
As iron-based powder (iron powder), pure iron powder such as atomized iron powder and reduced iron powder, or steel powder (pre-alloyed steel powder) or alloy element pre-alloyed with alloy elements instead of pure iron powder Alloyed steel powder (partial alloyed steel powder) can be suitably used. These may be used alone or in combination.

<黒鉛粉>
Cから成る元素鉱物である黒鉛粉は、固溶強化により、焼結体の強度を高くする効果がある。
本発明は、黒鉛粉の含有量は特に規定しない。しかし、黒鉛粉の含有量と焼結体の強度とは相関があり、被削性の観点からも含有量はおおよそ規定される。
<Graphite powder>
Graphite powder, which is an elemental mineral composed of C, has the effect of increasing the strength of the sintered body by solid solution strengthening.
In the present invention, the content of graphite powder is not particularly specified. However, there is a correlation between the content of graphite powder and the strength of the sintered body, and the content is roughly defined from the viewpoint of machinability.

通常、焼結体においては、圧環強度630MPa程度が必要であるので、強度面における実用的な観点から、黒鉛粉の含有量(Cの含有量)は0.4質量%以上で適用されることが多い。本発明における複合酸化物添加材(焼結体)においては、酸化物無添加材と比較して、強度の低下が無い上に、被削性を向上させることを目的とするが、黒鉛粉の含有量が0.4質量%未満であると、強度が低すぎて実用的ではない。したがって、黒鉛粉の含有量は、0.4質量%以上とすることが好ましい。また、強度の向上を図る観点からは、0.6質量%以上が好ましい。   Usually, in a sintered body, a crushing strength of about 630 MPa is necessary, so from a practical viewpoint in terms of strength, the content of graphite powder (content of C) should be 0.4% by mass or more. There are many. In the composite oxide additive (sintered body) in the present invention, there is no decrease in strength as compared with the oxide-free additive, and the objective is to improve machinability. If the content is less than 0.4% by mass, the strength is too low to be practical. Therefore, the content of graphite powder is preferably 0.4% by mass or more. Further, from the viewpoint of improving the strength, 0.6% by mass or more is preferable.

上限についても、特に規定はないが、3.0質量%を超えると、初析セメンタイトの影響で強度が低下しやすくなるため、3.0質量%以下とすることが好ましい。また、Fe−C系の焼結体以上に強度が必要な場合、必要な強度レベルに応じて、Mo、Ni等の合金元素を添加することがあるが、この場合においても強度が低下することなく、被削性を向上させることができる。   The upper limit is not particularly specified, but if it exceeds 3.0% by mass, the strength tends to decrease due to the effect of pro-eutectoid cementite. In addition, when strength is required more than the Fe-C sintered body, alloy elements such as Mo and Ni may be added depending on the required strength level. In this case, however, the strength is reduced. Therefore, machinability can be improved.

<Cu粉>
Cu粉は、焼結性の向上ひいては焼結体の強度および疲労特性の向上に有効に寄与するが、そのためには0.5質量%以上含有することが好ましい。一方、3.5質量%を超えると、強度および疲労特性の低下を招きやすくなる。したがって、Cu粉の含有量は、0.5〜3.5質量%とすることが好ましい。なお、このCu粉は、CuP、CuSi、CuMn粉として含有させても同等の役割となる。
<Cu powder>
The Cu powder contributes effectively to the improvement of the sinterability and, consequently, the strength and fatigue characteristics of the sintered body. For this purpose, the Cu powder is preferably contained in an amount of 0.5% by mass or more. On the other hand, when it exceeds 3.5 mass%, it will become easy to cause the fall of intensity | strength and a fatigue characteristic. Therefore, the content of the Cu powder is preferably 0.5 to 3.5% by mass. In addition, even if this Cu powder is contained as CuP, CuSi, or CuMn powder, it has an equivalent role.

<複合酸化物>
本発明において複合酸化物とは、所定元素の酸化物を2種以上混合したものである。
混合粉末が複合酸化物(以下、適宜、酸化物ともいう)を含有することで、この複合酸化物の潤滑効果により、鉄粉界面を滑らかにすることができる。これにより、焼結体の切削時における切削抵抗を低減させることができ、工具摩耗を抑制することができる。
<Composite oxide>
In the present invention, a composite oxide is a mixture of two or more oxides of a predetermined element.
When the mixed powder contains a composite oxide (hereinafter also referred to as an oxide as appropriate), the iron powder interface can be smoothed by the lubricating effect of the composite oxide. Thereby, the cutting resistance at the time of cutting of a sintered compact can be reduced, and tool wear can be suppressed.

なお、酸化物を単独で添加した場合には、酸化物の融点が高いため、切削時および焼結時に酸化物が溶融できない。そのため、被削性の向上効果がなく、また、酸化物の粒径が大きい場合には、強度低下の要因となる。ただし、Bを含有する単独の酸化物(例えば、B)は、低融点ではあるが(Bの融点:450℃)、鉄粉中への黒鉛の浸炭を抑制する浸炭抑制作用により、強度を低下させる。
本発明においては、複合酸化物とすることで、低融点化を図ることができる。
When an oxide is added alone, the oxide cannot be melted during cutting and sintering because the melting point of the oxide is high. Therefore, there is no effect of improving machinability, and when the particle size of the oxide is large, it becomes a factor of strength reduction. However, although a single oxide containing B (for example, B 2 O 3 ) has a low melting point (melting point of B 2 O 3 : 450 ° C.), it suppresses carburization to suppress carburization of graphite into iron powder. The strength is lowered by the action.
In the present invention, a low melting point can be achieved by using a composite oxide.

複合酸化物は、800℃における粘性が10(poise)以下である。
焼結体の切削時における刃先温度は、鋼材組成にもよるが、乾式のV150m/minで、せいぜい800℃である。本発明においては、前記の複合酸化物の潤滑効果により工具寿命を向上させているが、被削性向上には刃先温度域における酸化物粘性が重要であり、800℃における粘性を10(poise)以下にする必要性がある。800℃における粘性が10(poise)を超えると、複合酸化物が硬質化し、潤滑効果を発揮できない。
The complex oxide has a viscosity at 800 ° C. of 10 5 (poise) or less.
The cutting edge temperature at the time of cutting the sintered body depends on the steel composition, but is a dry type V150 m / min and is at most 800 ° C. In the present invention, the tool life is improved by the lubricating effect of the composite oxide, but the oxide viscosity in the blade temperature range is important for improving the machinability, and the viscosity at 800 ° C. is 10 5 (poise). ) There is a need to: When the viscosity at 800 ° C. exceeds 10 5 (poise), the composite oxide becomes hard and the lubricating effect cannot be exhibited.

また、下限は、特に規定はないが、10-2(poise)未満であると、粘り気がなく、潤滑効果が得られにくいため、10-2(poise)以上が好ましい。なお、従来の酸化物を活用した快削鋼は、ベラーグと呼ばれる酸化皮膜が工具刃先に付着して、この酸化皮膜の保護作用により工具摩耗を抑制していた。この場合の酸化物粘性は、およそ軟化点にあるといわれており、10(poise)程度となる。 Further, the lower limit is not particularly defined, but if it is less than 10 −2 (poise), there is no stickiness and it is difficult to obtain a lubricating effect, and it is preferably 10 −2 (poise) or more. In the free-cutting steel using the conventional oxide, an oxide film called belag adheres to the tool blade edge, and the tool wear is suppressed by the protective action of this oxide film. The oxide viscosity in this case is said to be approximately at the softening point, and is about 10 8 (poise).

複合酸化物の含有量は、混合粉末全質量に対し、0.05〜1.5質量%とする。
複合酸化物の含有量が0.05質量%未満では、潤滑効果を得るには含有量が不十分であり、被削性向上効果が得られない。一方、1.5質量%を超えると、この複合酸化物が、機械的特性(強度等)の低下等の焼結体における欠陥の原因となる。なお、より好ましくは、0.1〜0.5質量%である。
The content of the composite oxide is 0.05 to 1.5 mass% with respect to the total mass of the mixed powder.
If the content of the composite oxide is less than 0.05% by mass, the content is insufficient to obtain a lubricating effect, and the machinability improving effect cannot be obtained. On the other hand, when it exceeds 1.5 mass%, this complex oxide causes defects in the sintered body such as a decrease in mechanical properties (strength and the like). In addition, More preferably, it is 0.1-0.5 mass%.

ここで、複合酸化物は、B、Na、Li、K、Mn、Mg、Ca、Ba、Siのうち少なくとも1種の酸化物を含有するのが好ましい。
すなわち、複合酸化物は2種以上の酸化物からなるものであるが、そのうちの少なくとも一種の酸化物が、前記の元素からなる酸化物であることが好ましい。
本発明者らの検討により、前記の元素の酸化物を複合化して含有させることで、強度を低下させることなく、被削性がさらに向上することがわかった。
Here, the composite oxide preferably contains at least one oxide of B, Na, Li, K, Mn, Mg, Ca, Ba, and Si.
That is, the composite oxide is composed of two or more kinds of oxides, and at least one of them is preferably an oxide composed of the above-described elements.
As a result of the study by the present inventors, it was found that the machinability is further improved without reducing the strength by compounding and containing the oxides of the above elements.

前記の条件を満たす複合酸化物としては、例えば、NaO−SiO、B−NaO−SiO、B−KO、B−LiO、B−NaO等が挙げられるが、他に、粘性が10(poise)以下となる複合酸化物として、B−MnO、B−CaO、LiO−MnO、NaO−BaO−SiO等が挙げられる。
なお、複合酸化物が2種以上の酸化物よりなるとした場合、前記したB、Na、Li、K、Mn、Mg、Ca、Ba、Siの酸化物以外の酸化物は、AlやFeO等であってもよい。
Examples of the composite oxide that satisfies the above conditions include Na 2 O—SiO 2 , B 2 O 3 —Na 2 O—SiO 2 , B 2 O 3 —K 2 O, B 2 O 3 —Li 2 O, B 2 O 3 —Na 2 O and the like can be mentioned. In addition, as complex oxides having a viscosity of 10 5 (poise) or less, B 2 O 3 —MnO, B 2 O 3 —CaO, Li 2 O— MnO, include Na 2 O-BaO-SiO 2 or the like.
When the composite oxide is composed of two or more oxides, the oxides other than the oxides of B, Na, Li, K, Mn, Mg, Ca, Ba, and Si described above are Al 2 O 3 and FeO or the like may be used.

ここで、複合酸化物の潤滑効果により被削性向上効果を上げるには、複合酸化物が軟化もしくは溶融する必要がある。例えば、複合酸化物の融点は、おおむね1000℃以下であり、複合酸化物の軟化点は、一般的に融点の70%程度の温度といわれている。よって、複合酸化物が軟化するためには融点1000℃が目安となる。なお、複合酸化物の融点と粘性は必ずしも比例関係にはないが、相関関係はある。よって、複合酸化物を適切な粘性とする観点から、融点は、おおむね1000℃以下であることが好ましい。   Here, in order to increase the machinability improving effect by the lubricating effect of the composite oxide, the composite oxide needs to be softened or melted. For example, the melting point of the composite oxide is approximately 1000 ° C. or less, and the softening point of the composite oxide is generally said to be about 70% of the melting point. Therefore, a melting point of 1000 ° C. is a standard for softening the composite oxide. Note that the melting point and viscosity of the composite oxide are not necessarily in a proportional relationship but have a correlation. Therefore, the melting point is preferably about 1000 ° C. or less from the viewpoint of making the composite oxide have an appropriate viscosity.

また、複合酸化物の粒径は、80μm以下が好ましい。本発明における複合酸化物の融点はおおむね1000℃以下と想定しているが、通常の鉄粉の焼結は1120〜1250℃で行なわれるため、焼結時に溶融軟化し、焼結後には添加時の原形をとどめていない。そのため、添加した複合酸化物の粒径が被削性、強度へ直接およぼす影響は大きくはない。ただし、添加時の複合酸化物の大きさが焼結後に気孔となりかねないので、複合酸化物の粒径は、約100μmである鉄基粉末の径より小さくなる80μmを上限とするのが好ましく、50μm以下がより好ましい。なお、下限は、特に規定はないが、粒径を微細にすれば、それだけ粉砕コストもかかる。   The particle size of the composite oxide is preferably 80 μm or less. Although the melting point of the composite oxide in the present invention is assumed to be approximately 1000 ° C. or less, since ordinary iron powder is sintered at 1120 to 1250 ° C., it melts and softens during sintering, and is added after sintering. The original form is not kept. For this reason, the particle size of the added composite oxide does not directly affect the machinability and strength. However, since the size of the composite oxide at the time of addition may become pores after sintering, the composite oxide preferably has an upper limit of 80 μm, which is smaller than the diameter of the iron-based powder, which is about 100 μm. More preferably, it is 50 μm or less. The lower limit is not particularly specified, but if the particle size is made finer, the cost for the grinding increases accordingly.

なお、前記複合酸化物を作製するにあたり、複合酸化物の作製温度は必ずしも融点以上として溶融する必要はなく(いわゆるプリメルト)、融点から約100℃程度低い温度より高ければよい(例えば、融点が1000℃ならば、作製温度はおおむね900℃以上で特に上限はない)。なお、「複合酸化物を作製」とは、原料を溶融させて均一化させずとも、高温保持して拡散させ、均一化に近い状態にすることをいう。   In preparing the composite oxide, the composite oxide does not necessarily need to be melted at a melting point or higher (so-called premelt), and may be higher than a temperature lower than the melting point by about 100 ° C. (for example, the melting point is 1000). If it is ° C., the production temperature is generally 900 ° C. or higher and there is no upper limit). Note that “preparing a composite oxide” means that a raw material is not melted and homogenized, but kept at a high temperature and diffused to a state close to homogenization.

本発明に係る混合粉末は、前記した黒鉛粉、Cu粉および複合酸化物以外にも潤滑剤である有機物を成形用として混合する構成としても構わない。有機物としては、例えば、ステアリン酸亜鉛、エチレンビスステアリルアミド等である。また、有機物の混合量は、有機物の全混合粉末中の配合質量%として、0.5〜1.2質量%の範囲であることが好ましい。含有量が0.5質量%未満では、焼結体の製造の際に潤滑剤としての機能を発揮しにくく、一方、1.2質量%を超えると、焼結体の密度低下の原因となりやすい。   The mixed powder according to the present invention may have a configuration in which an organic substance as a lubricant is mixed for molding in addition to the above-described graphite powder, Cu powder, and composite oxide. Examples of the organic substance include zinc stearate and ethylene bisstearylamide. Moreover, it is preferable that the mixture amount of organic substance is the range of 0.5-1.2 mass% as the mixing | blending mass% in all the mixed powders of organic substance. When the content is less than 0.5% by mass, the function as a lubricant is hardly exhibited during the production of the sintered body. On the other hand, when the content exceeds 1.2% by mass, the density of the sintered body tends to decrease. .

次に、本発明に係る鉄粉焼結体について、詳細に説明する。
≪鉄粉焼結体≫
鉄粉焼結体は、前記説明した粉末冶金用鉄系混合粉末の圧粉体を焼結することにより得られるものである。
Next, the iron powder sintered body according to the present invention will be described in detail.
≪Sintered iron powder≫
The iron powder sintered body is obtained by sintering the green compact of the iron-based mixed powder for powder metallurgy described above.

鉄粉焼結体の製造方法の一例としては、まず、混合機等を用い、前記した鉄基粉末、黒鉛粉、Cu粉および複合酸化物を混合し、粉末冶金用鉄系混合粉末とする。混合の際には、潤滑剤として、ステアリン酸亜鉛0.75質量%を加えてもよい。次に、この粉末冶金用鉄系混合粉末を、例えば、5t/cmの成形圧で成形し、圧粉体とする。そして、この圧粉体を、弱酸化性であるRXガス、Nガス、AXガス等の雰囲気中で、温度:1100〜1250℃、時間:15〜60分の条件で焼結することにより、鉄粉焼結体を得ることができる。 As an example of a method for producing an iron powder sintered body, first, using a mixer or the like, the iron-based powder, graphite powder, Cu powder, and composite oxide are mixed to obtain an iron-based mixed powder for powder metallurgy. In mixing, 0.75% by mass of zinc stearate may be added as a lubricant. Next, this iron-based mixed powder for powder metallurgy is formed, for example, with a forming pressure of 5 t / cm 2 to obtain a green compact. Then, the green compact, RX gas is a weak oxidizing, N 2 gas, in an atmosphere such as AX gas, temperature: 1100 to 1250 ° C., time: by sintering at 15-60 minutes of conditions, An iron powder sintered body can be obtained.

以上説明したように、本発明にかかる粉末冶金用鉄系混合粉末によれば、強度を低下させることなく、一般的な切削条件域であるV100〜200m/min程度の切削においても、良好な被削性を有する鉄粉焼結体を得ることができる。
また、本発明にかかる鉄粉焼結体は、強度が低下することなく、一般的な切削条件域であるV100〜200m/min程度の切削においても、良好な被削性を有する。そのため、工具摩耗を抑制することができ、工具寿命を向上させることができる。
As described above, according to the iron-based mixed powder for powder metallurgy according to the present invention, a good coverage can be obtained even in cutting of about 100 to 200 m / min, which is a general cutting condition range, without reducing the strength. An iron powder sintered body having machinability can be obtained.
Moreover, the iron powder sintered body according to the present invention has good machinability even in cutting of about V100 to 200 m / min, which is a general cutting condition range, without reducing the strength. Therefore, tool wear can be suppressed and the tool life can be improved.

以下、本発明に係る粉末冶金用鉄系混合粉末および鉄粉焼結体の実施例について、その比較例と比較して具体的に説明する。   Examples of the iron-based mixed powder for powder metallurgy and the iron powder sintered body according to the present invention will be specifically described below in comparison with comparative examples.

[第1実施例]
表1に示す成分組成の鉄粉に、黒鉛粉末0.8質量%、Cu粉2.0質量%、表2に示す酸化物粉末を所定量加え(表3参照)、さらに潤滑剤としてステアリン酸亜鉛0.75質量%を加え、60分間、V型混合機で混合し、粉末冶金用鉄系混合粉末とした。次に、この粉末冶金用鉄系混合粉末を金型成形して、寸法:外径64mm、内径24mm、高さ20mmのリング状の圧粉体とし、この圧粉体を10%の水素を含む窒素雰囲気中で、1120℃・30分の焼結を行った。焼結体の密度は、成形時の成形圧力を調整し、6.8〜6.85g/cmとなるようにした。
なお、表2における酸化物の融点は状態図、液相粘性は主に文献値を用いた。
[First embodiment]
A predetermined amount of graphite powder 0.8% by mass, Cu powder 2.0% by mass and oxide powder shown in Table 2 is added to the iron powder having the component composition shown in Table 1 (see Table 3), and stearic acid as a lubricant. Zinc (0.75% by mass) was added and mixed with a V-type mixer for 60 minutes to obtain an iron-based mixed powder for powder metallurgy. Next, this iron-based mixed powder for powder metallurgy is molded into a ring-shaped green compact with dimensions: outer diameter 64 mm, inner diameter 24 mm, and height 20 mm, and the green compact contains 10% hydrogen. Sintering was performed at 1120 ° C. for 30 minutes in a nitrogen atmosphere. The density of the sintered body was adjusted to the molding pressure at the time of molding so as to be 6.8 to 6.85 g / cm 3 .
In Table 2, the melting point of the oxide is a phase diagram, and the liquid phase viscosity is mainly a literature value.

Figure 0005260913
Figure 0005260913

Figure 0005260913
Figure 0005260913

このようにして得られた鉄粉焼結体の強度および被削性を評価した。
≪被削性≫
被削性は、切削試験により行なった。
<切削試験>
まず、焼結体3個をボルトに通し、予備リングを両側に配置させてナットにより挟み込み、その後、ボルトを施盤のセンターに固定した。使用した切削工具は、住友電工ハードメタル社製G10E(K種超硬)である。切削条件は、切削速度:150m/min、送り速度:0.1mm/rev、切り込み量:0.5mm、切削長:100m、切削様式:乾式連続切削である。この切削試験により、切削工具の最大逃げ面摩耗幅Vbmaxを測定した。合格判定基準は、摩耗幅が70μm以下のものを合格とした。
The strength and machinability of the iron powder sintered body thus obtained were evaluated.
«Machinability»
Machinability was performed by a cutting test.
<Cutting test>
First, three sintered bodies were passed through bolts, spare rings were arranged on both sides and sandwiched by nuts, and then the bolts were fixed to the center of the lathe. The cutting tool used is G10E (K-type carbide) manufactured by Sumitomo Electric Hardmetal Corporation. Cutting conditions are cutting speed: 150 m / min, feeding speed: 0.1 mm / rev, cutting depth: 0.5 mm, cutting length: 100 m, cutting style: dry continuous cutting. By this cutting test, the maximum flank wear width Vbmax of the cutting tool was measured. The acceptance criterion was that the wear width was 70 μm or less.

≪強度≫
強度は、JIS Z 2507に規定する焼結含油軸受けの圧環強さ試験方法に準拠して行なった。第1実施例では、より強度が要求される焼結部材への適用を想定し、黒鉛粉末を0.8質量%添加した場合の効果を確認するため、合格判定基準は、圧環強度が780MPa以上のものを合格とした。
これらの試験結果を表3に示す。なお、表3において、本発明の範囲を満たさないものについては、数値に下線を引いて示す。
≪Strength≫
The strength was determined in accordance with the crushing strength test method for sintered oil-impregnated bearings specified in JIS Z 2507. In the first example, assuming the application to a sintered member that requires more strength and confirming the effect when adding 0.8% by mass of graphite powder, the acceptance criterion is that the crushing strength is 780 MPa or more. Was accepted.
These test results are shown in Table 3. In Table 3, those not satisfying the scope of the present invention are indicated by underlining the numerical values.

Figure 0005260913
Figure 0005260913

表3に示すように、実施例〜10、参考例1は、本発明の範囲を満足しているため、あるいは参考例のため、十分な強度を有するとともに、被削性に優れていた。
一方、比較例1は、複合酸化物を含有していないため、摩耗幅が大きく被削性に劣った。比較例2は、Bを単独で添加したものであるため、浸炭抑制により、強度が低下した。比較例3は、複合酸化物の含有量が下限値未満のため、摩耗幅が大きく被削性に劣った。比較例4は、複合酸化物の含有量が上限値を超えるため、強度が低下した。比較例5は、複合酸化物の800℃における粘性が上限値を超えるため(表2のNo.1の複合酸化物を使用)、摩耗幅が大きく被削性に劣った。
As shown in Table 3, Examples 2 to 10 and Reference Example 1 satisfied the scope of the present invention or were a reference example, and thus had sufficient strength and excellent machinability.
On the other hand, since Comparative Example 1 did not contain a complex oxide, the wear width was large and the machinability was inferior. Comparative Example 2 because it was added B 2 O 3 alone, the carburization suppression strength deteriorated. In Comparative Example 3, since the content of the complex oxide was less than the lower limit value, the wear width was large and the machinability was inferior. In Comparative Example 4, the strength decreased because the content of the composite oxide exceeded the upper limit. In Comparative Example 5, since the viscosity of the composite oxide at 800 ° C. exceeded the upper limit (use of the composite oxide No. 1 in Table 2), the wear width was large and the machinability was inferior.

[第2実施例]
次に、黒鉛粉の含有量の影響を調べるため、黒鉛粉末の添加量(Cの添加量)を0.4質量%、0.6質量%または0.8質量%とし、複合酸化物を無添加あるいは0.3質量%として試験を行なった。なお、焼結体の作製方法や、強度および被削性の評価方法は、前記第1実施例と同様である。ただし、第2実施例においては、黒鉛粉の含有量の影響を調べるものであり、強度および被削性の合格判定基準は、特に規定しない。
これらの試験結果を表4に示す(試験No.1〜6)。
[Second Embodiment]
Next, in order to investigate the influence of the content of graphite powder, the addition amount of graphite powder (addition amount of C) was set to 0.4 mass%, 0.6 mass%, or 0.8 mass%, and no composite oxide was added. The test was conducted with addition or 0.3% by weight. The method for producing the sintered body and the method for evaluating the strength and machinability are the same as in the first embodiment. However, in the second example, the influence of the graphite powder content is examined, and the acceptance criteria for strength and machinability are not particularly specified.
These test results are shown in Table 4 (Test Nos. 1 to 6).

Figure 0005260913
Figure 0005260913

表4に示すように、黒鉛粉末の添加量が、0.4質量%、0.6質量%、0.8質量%のいずれにおいても、複合酸化物を添加した場合には、強度が低下せずに、被削性が向上していた。   As shown in Table 4, when the composite powder is added at any of 0.4 mass%, 0.6 mass%, and 0.8 mass%, the strength decreases. The machinability was improved.

以上の結果について、焼結体における酸化物の含有量と、摩耗幅(μm)の関係を図1に、焼結体における酸化物の含有量と、圧環強度(MPa)の関係を図2に、圧環強度(MPa)と、摩耗幅(μm)の関係を図3に、酸化物の800℃における粘性と、摩耗幅(μm)の関係を図4に、焼結体における黒鉛粉(C)の含有量と、圧環強度(MPa)の関係を図5に示す。なお、図3、5において、図作成の都合上、プロットした点が一部重複している箇所がある。また、図3の「実施例」のうち、表3のNo.1に対応するものは参考例である。 Regarding the above results, the relationship between the oxide content in the sintered body and the wear width (μm) is shown in FIG. 1, and the relationship between the oxide content in the sintered body and the crushing strength (MPa) is shown in FIG. FIG. 3 shows the relationship between the crushing strength (MPa) and the wear width (μm), FIG. 4 shows the relationship between the viscosity of the oxide at 800 ° C. and the wear width (μm), and graphite powder (C) in the sintered body. The relationship between the content of and the crushing strength (MPa) is shown in FIG. 3 and 5, there are some points where the plotted points partially overlap for the convenience of drawing. In addition, among the “Examples” in FIG. Those corresponding to 1 are reference examples.

表3と合わせて図1〜4に示すように、酸化物を0.05〜1.5質量%添加した焼結体は、工具摩耗が抑制され、また、十分な強度を有している。ただし、酸化物の含有量が1.5質量%を超えると、強度は大きく低下し、0.05質量%未満であると、被削性が大きく低下している。また、酸化物を全く添加しない場合は、被削性が低下し(摩耗幅が大きくなる)、Bを単独で添加した場合は、浸炭抑制により強度が低下している。更には、800℃における粘性が10(poise)を超える酸化物を添加した場合は、被削性が低下している。 As shown in FIGS. 1 to 4 together with Table 3, the sintered body added with 0.05 to 1.5 mass% of oxide has suppressed tool wear and has sufficient strength. However, if the oxide content exceeds 1.5% by mass, the strength is greatly reduced, and if it is less than 0.05% by mass, the machinability is greatly reduced. In addition, when no oxide is added, the machinability is reduced (the wear width is increased), and when B 2 O 3 is added alone, the strength is reduced due to suppression of carburization. Furthermore, when an oxide having a viscosity at 800 ° C. exceeding 10 5 (poise) is added, the machinability is lowered.

表4と合わせて図5に示すように、強度は、黒鉛粉末添加量に応じて向上している。また、複合酸化物を添加しないと被削性が低下するが、複合酸化物を添加すると、強度は低下せずに、被削性が向上する。そして、本発明の範囲を満足する焼結体においては、黒鉛粉末が0.4質量%や0.6質量%の場合においても、通常要求される強度の焼結部材に適用できることがわかる。   As shown in FIG. 5 together with Table 4, the strength is improved according to the amount of graphite powder added. Further, if the composite oxide is not added, the machinability is lowered. However, if the composite oxide is added, the machinability is improved without decreasing the strength. And in the sintered compact which satisfies the range of this invention, even when a graphite powder is 0.4 mass% or 0.6 mass%, it turns out that it can apply to the sintered member of the intensity | strength normally requested | required.

以上、本発明に係る粉末冶金用鉄系混合粉末および鉄粉焼結体について最良の実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されるものではない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することができることはいうまでもない。   As described above, the iron-based mixed powder for powder metallurgy and the iron powder sintered body according to the present invention have been described in detail with reference to the best mode and examples. However, the gist of the present invention is limited to the contents described above. is not. Needless to say, the contents of the present invention can be widely modified and changed based on the above description.

焼結体における酸化物の含有量と、摩耗幅(μm)の関係を示すグラフ図である。It is a graph which shows the content of the oxide in a sintered compact, and the relationship of wear width (micrometer). 焼結体における酸化物の含有量と、圧環強度(MPa)の関係を示すグラフ図である。It is a graph which shows the relationship between content of the oxide in a sintered compact, and crushing strength (MPa). 圧環強度(MPa)と、摩耗幅(μm)の関係を示すグラフ図である。It is a graph which shows the relationship between crushing strength (MPa) and wear width (micrometer). 酸化物の800℃における粘性と、摩耗幅(μm)の関係を示すグラフ図である。It is a graph which shows the relationship of the viscosity in 800 degreeC of an oxide, and a wear width (micrometer). 焼結体における黒鉛粉(C)の含有量と、圧環強度(MPa)の関係を示すグラフ図である。It is a graph which shows the relationship between content of graphite powder (C) in a sintered compact, and crushing strength (MPa).

Claims (5)

鉄基粉末に、黒鉛粉、Cu粉および複合酸化物(ただし、珪酸ソーダを除く)を混合した粉末冶金用鉄系混合粉末であって、
前記黒鉛粉の含有量は、前記混合粉末全質量に対し、0.4〜3.0質量%、前記Cu粉の含有量は、前記混合粉末全質量に対し、0.5〜3.5質量%であり、
前記複合酸化物は、800℃における粘性が10(poise)以下であり、
前記複合酸化物の含有量は、前記混合粉末全質量に対し、0.05〜1.5質量%であることを特徴とする粉末冶金用鉄系混合粉末。
An iron-based mixed powder for powder metallurgy in which graphite powder, Cu powder, and composite oxide (excluding sodium silicate) are mixed with iron-based powder,
The content of the graphite powder is 0.4 to 3.0 mass% with respect to the total mass of the mixed powder, and the content of the Cu powder is 0.5 to 3.5 mass with respect to the total mass of the mixed powder. %
The composite oxide has a viscosity at 800 ° C. of 10 5 (poise) or less,
Content of the said complex oxide is 0.05-1.5 mass% with respect to the said mixed powder total mass, The iron-type mixed powder for powder metallurgy characterized by the above-mentioned .
前記複合酸化物は、複合酸化物(ただし、珪酸アルカリを除く)であることを特徴とする請求項1に記載の粉末冶金用鉄系混合粉末。   The iron-based mixed powder for powder metallurgy according to claim 1, wherein the complex oxide is a complex oxide (excluding alkali silicate). 前記複合酸化物は、B、Na、Li、K、Mn、Mg、Ca、Ba、Siのうち少なくとも1種の酸化物を含有することを特徴とする請求項1または請求項2に記載の粉末冶金用鉄系混合粉末。   3. The powder according to claim 1, wherein the composite oxide contains at least one oxide of B, Na, Li, K, Mn, Mg, Ca, Ba, and Si. Iron-based mixed powder for metallurgy. 前記複合酸化物が、B−NaO−SiO、B−KO、B−LiO、B−NaO、B−MnO、B−CaO、LiO−MnO、NaO−BaO−SiOのいずれかであることを特徴とする請求項1に記載の粉末冶金用鉄系混合粉末。 The composite oxide, B 2 O 3 -Na 2 O -SiO 2, B 2 O 3 -K 2 O, B 2 O 3 -Li 2 O, B 2 O 3 -Na 2 O, B 2 O 3 - The iron-based mixed powder for powder metallurgy according to claim 1, which is any one of MnO, B 2 O 3 —CaO, Li 2 O—MnO, and Na 2 O—BaO—SiO 2 . 請求項1から請求項4のいずれか一項に記載の粉末冶金用鉄系混合粉末の圧粉体を焼結することにより得られることを特徴とする鉄粉焼結体。   An iron powder sintered body obtained by sintering a green compact of the iron-based mixed powder for powder metallurgy according to any one of claims 1 to 4.
JP2007203443A 2007-08-03 2007-08-03 Iron-based mixed powder for powder metallurgy and sintered iron powder Expired - Fee Related JP5260913B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007203443A JP5260913B2 (en) 2007-08-03 2007-08-03 Iron-based mixed powder for powder metallurgy and sintered iron powder
CN2008801015670A CN101772389B (en) 2007-08-03 2008-07-09 Iron-containing mixed powder for powder metallurgy and sintered iron powder compact
KR1020107002270A KR101187136B1 (en) 2007-08-03 2008-07-09 Iron-based mixed powder for powder metallurgy and iron powder sinter
PCT/JP2008/062407 WO2009019952A1 (en) 2007-08-03 2008-07-09 Iron-based mixed powder for powder metallurgy and iron powder sinter
TW97129415A TWI392747B (en) 2007-08-03 2008-08-01 Iron powder for powder metallurgy and powder sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007203443A JP5260913B2 (en) 2007-08-03 2007-08-03 Iron-based mixed powder for powder metallurgy and sintered iron powder

Publications (2)

Publication Number Publication Date
JP2009035796A JP2009035796A (en) 2009-02-19
JP5260913B2 true JP5260913B2 (en) 2013-08-14

Family

ID=40341189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007203443A Expired - Fee Related JP5260913B2 (en) 2007-08-03 2007-08-03 Iron-based mixed powder for powder metallurgy and sintered iron powder

Country Status (5)

Country Link
JP (1) JP5260913B2 (en)
KR (1) KR101187136B1 (en)
CN (1) CN101772389B (en)
TW (1) TWI392747B (en)
WO (1) WO2009019952A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104368806A (en) * 2014-10-27 2015-02-25 苏州莱特复合材料有限公司 Copper-based composite material and preparation method thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU0900560D0 (en) * 2009-09-08 2009-10-28 Dutkay Gyoergy Dr Low porosity powder metallurgical details and method for producing them
JP5874700B2 (en) * 2012-09-27 2016-03-02 Jfeスチール株式会社 Iron-based mixed powder for powder metallurgy
CN103406536B (en) * 2013-07-03 2015-12-09 安徽方兴实业有限公司 A kind of powder metallurgy valve rod and preparation method thereof
WO2015008406A1 (en) * 2013-07-18 2015-01-22 Jfeスチール株式会社 Mixed powder for powder metallurgy, method for producing same, and method for producing sintered compact of iron-based powder formulation
CN103540847A (en) * 2013-10-11 2014-01-29 芜湖市鸿坤汽车零部件有限公司 Powder metallurgy automobile brake pad steel back and preparation method thereof
JP6007928B2 (en) * 2014-02-21 2016-10-19 Jfeスチール株式会社 Mixed powder for powder metallurgy, production method thereof, and sintered body made of iron-based powder
CN103934449A (en) * 2014-03-17 2014-07-23 昌利锻造有限公司 High-manganese-steel powder metallurgy balancing weight for compressor and preparation method of high-manganese-steel powder metallurgy balancing weight
CN104384502A (en) * 2014-10-30 2015-03-04 苏州莱特复合材料有限公司 Ferrum-based powder metallurgy antifriction material and preparation method thereof
CN104325135B (en) * 2014-11-14 2016-09-14 武汉钢铁(集团)公司 Nanometer iron powder sintered body containing nanometer iron sesquioxide and preparation method thereof
CN104325134B (en) * 2014-11-14 2016-08-24 武汉钢铁(集团)公司 Nanometer iron powder sintered body containing nano ferrous iron oxide and preparation method thereof
CN104325133B (en) * 2014-11-14 2016-09-21 武汉钢铁(集团)公司 Nanometer iron powder sintered body containing nano ferriferrous oxide and preparation method thereof
CN104399970B (en) * 2014-11-26 2016-08-24 西安航空制动科技有限公司 A kind of iron-based powder metallurgy friction material and preparation method thereof
JP6480264B2 (en) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 Mixed powder and sintered body for iron-based powder metallurgy
EP3214192B1 (en) * 2016-02-08 2018-12-26 Sumitomo Electric Industries, Ltd. Iron-based sintered body
JP6392797B2 (en) * 2016-02-08 2018-09-19 住友電気工業株式会社 Iron-based powder for powder metallurgy and method for producing iron-based powder for powder metallurgy
KR102404084B1 (en) * 2016-03-18 2022-05-30 회가내스 아베 (피유비엘) Powdered metal composition for easy machining
CN105642901A (en) * 2016-03-31 2016-06-08 陕西省机械研究院 Preparation method of nano ceramic iron-based powder metallurgical cycloidal oil pump rotor
JP6634365B2 (en) * 2016-12-02 2020-01-22 株式会社神戸製鋼所 Method for producing mixed powder for iron-based powder metallurgy and sintered body
KR20190029248A (en) 2017-09-12 2019-03-20 (주)페레코 Iron-based powder mixture for powder metallurgy by recycling wasteiron oxide and manufacturing method the same
MX2020002256A (en) 2017-10-30 2020-07-13 Tpr Co Ltd Iron-based sintered alloy valve guide and method for manufacturing same.

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152152A (en) * 1979-05-17 1980-11-27 Daido Steel Co Ltd Free cutting steel including adjusted interposing material
JPS60145353A (en) * 1983-12-30 1985-07-31 Dowa Teppun Kogyo Kk Manufacture of iron-base sintered body having superior machinability
JPS6115902A (en) * 1984-06-30 1986-01-24 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of sintered machine parts
JPH0711006B2 (en) * 1988-04-05 1995-02-08 川崎製鉄株式会社 Iron-based mixed powder for powder metallurgy with excellent machinability and mechanical properties after sintering
JPH07138693A (en) * 1993-11-12 1995-05-30 Daido Steel Co Ltd Production of sintered magnetic alloy
JP3841455B2 (en) * 1994-11-01 2006-11-01 日立粉末冶金株式会社 Method for producing high density sintered stainless steel
JP3449110B2 (en) * 1996-04-17 2003-09-22 株式会社神戸製鋼所 Iron-based mixed powder for powder metallurgy and method for producing sintered body using the same
JPH11293420A (en) * 1998-04-08 1999-10-26 Tdk Corp Ferrous soft magnetic sintered body and its production
JP3527110B2 (en) 1998-11-17 2004-05-17 日立粉末冶金株式会社 Manufacturing method of free-cutting iron-based sintered parts
JP4127739B2 (en) * 1999-04-14 2008-07-30 株式会社神戸製鋼所 Aluminum alloy melt filter
JP4264175B2 (en) * 2000-01-28 2009-05-13 株式会社神戸製鋼所 Free-cutting steel bar with excellent machinability and its manufacturing method
US6264718B1 (en) * 2000-05-26 2001-07-24 Kobelco Metal Powder Of America, Inc. Powder metallurgy product and method for manufacturing the same
JP4133078B2 (en) * 2001-07-27 2008-08-13 新日本製鐵株式会社 Method for producing fiber reinforced metal
JP2003239002A (en) * 2002-02-18 2003-08-27 Kobe Steel Ltd Iron based powdery mixture and method of producing iron based sintered compact
SE0401042D0 (en) * 2004-04-21 2004-04-21 Hoeganaes Ab Lubricants for metallurgical powder compositions
JP2006035633A (en) * 2004-07-27 2006-02-09 Eco Life Labo:Kk Cover for ballpoint pen
JP4497368B2 (en) * 2005-03-16 2010-07-07 日立粉末冶金株式会社 Manufacturing method of iron-based sintered member and iron-based sintered member obtained thereby
JP2007131886A (en) * 2005-11-09 2007-05-31 Nippon Steel Corp Method for producing fiber-reinforced metal superior in abrasion resistance
JP7011007B2 (en) 2020-08-07 2022-01-26 株式会社キーエンス Photoelectric sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104368806A (en) * 2014-10-27 2015-02-25 苏州莱特复合材料有限公司 Copper-based composite material and preparation method thereof

Also Published As

Publication number Publication date
CN101772389A (en) 2010-07-07
TW200936780A (en) 2009-09-01
CN101772389B (en) 2012-02-08
TWI392747B (en) 2013-04-11
KR101187136B1 (en) 2012-09-28
KR20100039380A (en) 2010-04-15
JP2009035796A (en) 2009-02-19
WO2009019952A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5260913B2 (en) Iron-based mixed powder for powder metallurgy and sintered iron powder
JP4412133B2 (en) Iron-based mixed powder for powder metallurgy
KR101101734B1 (en) Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
JPWO2015008406A1 (en) Mixed powder for powder metallurgy, method for producing the same, and method for producing a sintered body made of iron-based powder
JP3449110B2 (en) Iron-based mixed powder for powder metallurgy and method for producing sintered body using the same
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
KR102060955B1 (en) Mixed powder for iron-based powder metallurgy and sintered body produced using same
JP4839275B2 (en) Mixed powder for powder metallurgy and sintered iron powder
JP6407319B2 (en) Iron-based sintered body
CN107614158B (en) Mixed powder for iron-based powder metallurgy, method for producing same, sintered body produced using same, and method for producing sintered body
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
KR20180008730A (en) A mixed powder for iron powder metallurgy, a method for producing the same, and a sintered body
JP4640162B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JP5200768B2 (en) Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same
EP1582603A1 (en) Iron base sintered alloy, iron base sintered alloy member, method for production thereof, and oil pump rotor
JP2014025109A (en) Mixed powder for powder metallurgy
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5358131B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4704949B2 (en) Mixed powder for producing iron-based sintered body and iron-based sintered body
CN111344090B (en) Mixed powder for powder metallurgy
JP2007211329A (en) Iron-based powdery mixture for powder metallurgy
JPH11302804A (en) Synchronizer ring made of iron-base sintered alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees