JP6038460B2 - Manufacturing method of sintered bearing - Google Patents

Manufacturing method of sintered bearing Download PDF

Info

Publication number
JP6038460B2
JP6038460B2 JP2012020858A JP2012020858A JP6038460B2 JP 6038460 B2 JP6038460 B2 JP 6038460B2 JP 2012020858 A JP2012020858 A JP 2012020858A JP 2012020858 A JP2012020858 A JP 2012020858A JP 6038460 B2 JP6038460 B2 JP 6038460B2
Authority
JP
Japan
Prior art keywords
powder
copper
iron
copper powder
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012020858A
Other languages
Japanese (ja)
Other versions
JP2013159796A (en
Inventor
容敬 伊藤
容敬 伊藤
素直 清水
素直 清水
島津 英一郎
英一郎 島津
孝洋 奥野
孝洋 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2012020858A priority Critical patent/JP6038460B2/en
Priority to US14/346,447 priority patent/US10081056B2/en
Priority to CN201610806753.0A priority patent/CN106402145B/en
Priority to CN201280045531.1A priority patent/CN103813874B/en
Priority to PCT/JP2012/073848 priority patent/WO2013042664A1/en
Publication of JP2013159796A publication Critical patent/JP2013159796A/en
Application granted granted Critical
Publication of JP6038460B2 publication Critical patent/JP6038460B2/en
Priority to US16/106,528 priority patent/US11433455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、焼結金属からなる焼結軸受の製造方法に関する。   The present invention relates to a method for manufacturing a sintered bearing made of a sintered metal.

例えばハードディスクドライブ等の情報機器に搭載される精密小型モータ用の軸受として、静粛性に優れた焼結軸受を用いる場合がある。近年のモータの高性能化に伴い、この種の焼結軸受では、限界PV値をPV>200MPa・m/minまで向上させることが要請されている。また、トルク変動の削減(初期なじみ特性の向上)、耐久性の向上(耐焼付き性の向上)、静粛性の向上(音響特性の改善)等も併せて必要になっている。   For example, as a bearing for a precision small motor mounted on an information device such as a hard disk drive, a sintered bearing excellent in quietness may be used. With the recent high performance of motors, this type of sintered bearing is required to improve the limit PV value to PV> 200 MPa · m / min. Further, it is also necessary to reduce torque fluctuations (improvement of initial conformability), improve durability (improve seizure resistance), improve quietness (improve acoustic characteristics), and the like.

焼結軸受として鉄系焼結軸受が公知であるが、鉄系では、耐久性には優れるものの、初期なじみ特性や静粛性に劣るというデメリットがある。そのため、精密小型モータ用の軸受として青銅系焼結軸受を使用する場合が多い。青銅系焼結含油軸受の一例として、例えば特開2001−107162号公報(特許文献1)に、Snを6〜11重量%、Fe及び/又はNiを1〜5重量%含有し、残部を銅としたものが開示されている(請求項1)。   Iron-based sintered bearings are known as sintered bearings, but iron-based ones have the disadvantage that they are inferior in initial conformability and quietness, although they are excellent in durability. Therefore, bronze sintered bearings are often used as bearings for precision small motors. As an example of a bronze-based sintered oil-impregnated bearing, for example, JP 2001-107162 A (Patent Document 1) contains 6 to 11% by weight of Sn, 1 to 5% by weight of Fe and / or Ni, and the balance is copper. Is disclosed (claim 1).

また、特許第3873275号(特許文献2)には、鉄系と銅系の原料粉末を用い、銅系の原料粉末を扁平粉とし、表面側に銅を偏析させ、表面側から内部に向って銅の割合を低くすると共に鉄の割合を高くした摺動部品が開示されている(請求項1)。また、銅系の原料粉末と鉄系の原料粉末とを充填部に充填して振動を加えることにより、銅系の扁平粉を表面側に偏析させ、表面側が銅に覆われ、表面側から内部に向って銅より鉄の割合が高くなる濃度勾配をなした軸受を得るようにしている(段落0028)。   Patent No. 3873275 (Patent Document 2) uses iron-based and copper-based raw material powder, the copper-based raw material powder is a flat powder, segregates copper on the surface side, and moves from the surface side toward the inside. A sliding component in which the ratio of copper is reduced and the ratio of iron is increased is disclosed (claim 1). Also, by filling the filling part with copper-based raw material powder and iron-based raw material powder and applying vibration, the copper-based flat powder is segregated to the surface side, the surface side is covered with copper, and from the surface side to the inside Thus, a bearing having a concentration gradient in which the ratio of iron is higher than copper is obtained (paragraph 0028).

特開2001−107162号公報JP 2001-107162 A 特許第3873275号公報Japanese Patent No. 3873275

近年では銅価格が高騰しており、特許文献1に記載されたような多量の銅を含む青銅系焼結軸受では低コスト化の要求に対応できない。また、青銅系焼結軸受では耐荷重性や耐久性に難がある。   In recent years, the price of copper has soared, and bronze sintered bearings containing a large amount of copper as described in Patent Document 1 cannot meet the demand for cost reduction. Also, bronze-based sintered bearings have difficulty in load resistance and durability.

その一方、特許文献2に記載の構成では、扁平粉と銅粉からなる原料粉に振動を与えているため、成形工程が煩雑化する。また、「回転体が摺動する摺動面が摩耗しても、摺動面の下には所定の割合で銅が含まれているから、摺動部分の耐久性に優れたものとなる」との記載(段落0029等)から明らかなように、銅リッチな表面層が摩耗した後の相手材の摩耗を銅で抑制する構成である。この構成では、耐久性を向上させようとすると銅の使用量を増やさざるを得ず、耐久性と低コスト化を両立することが困難である。   On the other hand, in the configuration described in Patent Document 2, since the raw material powder made of flat powder and copper powder is vibrated, the molding process becomes complicated. In addition, “Even if the sliding surface on which the rotating body slides wears, copper is contained at a predetermined rate under the sliding surface, so that the durability of the sliding portion is excellent.” As is clear from the description (paragraph 0029 and the like), the wear of the mating member after the copper-rich surface layer is worn is suppressed by copper. In this configuration, if the durability is to be improved, the amount of copper used must be increased, and it is difficult to achieve both durability and cost reduction.

そこで、本発明は、銅の使用量を削減して低コスト化を図ることができ、その一方で初期なじみ特性や静粛性が良好で、かつ高い耐久性を備える焼結軸受の製造方法を提供することを目的する。   Therefore, the present invention provides a method for manufacturing a sintered bearing that can reduce the amount of copper used and reduce costs, while having good initial conformability and quietness and high durability. Aim to do.

上記目的を達成するため、本発明は、鉄粉、アスペクト比13.3以上の扁平銅粉、通常銅粉、低融点金属粉、および黒鉛粉を含む原料粉を混合して金型に充填し、扁平銅粉を金型成形面に付着させた状態で圧粉体を成形し、圧紛体を焼結することにより形成され、銅の含有量が均一になったベース部と、ベース部の表面を覆い、ベース部よりも銅の含有量を大きくした表面層とを有し、表面層の軸受面に銅組織と鉄組織を形成し、軸受面における銅組織を面積比で60%以上にした焼結軸受の製造方法であって、前記原料粉における扁平銅粉および通常銅粉の割合を18重量%以上、40重量%以下とし、圧粉体中の鉄を炭素と反応させることなく焼結することで、鉄組織をフェライト相で形成することを特徴とするものである。 In order to achieve the above object, the present invention mixes raw powder containing iron powder, flat copper powder having an aspect ratio of 13.3 or more, ordinary copper powder, low melting point metal powder, and graphite powder, and fills the mold. A base part formed by molding a green compact with flat copper powder adhered to the mold forming surface and sintering the compact, and the surface of the base part having a uniform copper content And a surface layer having a copper content larger than that of the base portion , a copper structure and an iron structure are formed on the bearing surface of the surface layer, and the copper structure on the bearing surface is 60% or more by area ratio. A method for producing a sintered bearing, wherein the ratio of the flat copper powder and the normal copper powder in the raw material powder is 18 wt% or more and 40 wt% or less, and the iron in the green compact is sintered without reacting with carbon. Thus, the iron structure is formed of a ferrite phase.

原料粉を金型に充填し、扁平銅粉を金型成形面に付着させた状態で圧粉体を成形すれば、成形後の圧粉体では表層に多くの銅が含まれる一方、芯部では銅の含有量が少なくなる。従って、焼結後の焼結体には、銅の含有量の多い表面層と、これよりも銅の含有量が少ないベース部とが形成される。   If the green compact is molded with the raw material powder filled in the mold and the flat copper powder adhered to the mold molding surface, the molded green compact will contain a lot of copper in the surface layer, while the core part Then, the copper content is reduced. Therefore, a surface layer with a high copper content and a base portion with a lower copper content are formed in the sintered body after sintering.

このように表面層での銅の含有量を多くすることで、初期なじみ性および静粛性の向上を図ることができる。また、軸に対する攻撃性も低くなるので、耐久寿命が向上する。これらの作用効果は、表面層の表面に面積比で60%以上の銅組織(銅を主成分とする組織)を形成することで、より顕著に得ることができる。また、圧粉体中の鉄を炭素と反応させることなく焼結して鉄組織をフェライト相で形成するので、表面層の摩耗により鉄組織(鉄を主成分とする組織)を多く含むベース部が露出した際にも、鉄組織がフェライト相であるため、銅の含有量が少なくても軸に対する攻撃性を弱くすることができ、耐久性が増す。   Thus, by increasing the content of copper in the surface layer, it is possible to improve initial conformability and quietness. In addition, since the aggression against the shaft is reduced, the durability life is improved. These functions and effects can be obtained more conspicuously by forming a copper structure (structure containing copper as a main component) having a surface ratio of 60% or more on the surface of the surface layer. Also, since the iron in the green compact is sintered without reacting with carbon to form the iron structure in the ferrite phase, the base part contains a large amount of iron structure (structure containing iron as a main component) due to wear of the surface layer. Even when the iron is exposed, the iron structure is a ferrite phase, so even if the copper content is small, the aggressiveness against the shaft can be weakened, and the durability is increased.

ベース部の鉄組織は、軟質なフェライト相となるが、鉄組織−銅組織、および銅組織同士が低融点金属で強固に結合されるため、ベース部は高強度を有する。従って、軸受全体の強度が増し、耐荷重性を向上させることができる。ベース部は軸受のほとんどの容積を占めるが、このベース部での銅の含有量を少なくできるため、軸受全体での銅の使用量を削減して低コスト化を図ることができる。   The iron structure of the base part becomes a soft ferrite phase, but the base part has high strength because the iron structure-copper structure and the copper structures are firmly bonded with a low melting point metal. Accordingly, the strength of the entire bearing is increased and the load resistance can be improved. The base portion occupies most of the volume of the bearing. However, since the copper content in the base portion can be reduced, the amount of copper used in the entire bearing can be reduced and the cost can be reduced.

このように本発明方法によれば、軸受内における鉄と銅の分布を最適化することができ、これにより、軸受の耐久性の向上と低コスト化とを両立することができる。従って、本発明によれば、鉄系焼結軸受と銅系焼結軸受(鉄銅系焼結軸受も含む)の双方の利点を兼ね備えた焼結軸受を低コストに得ることができる。   Thus, according to the method of the present invention, it is possible to optimize the distribution of iron and copper in the bearing, thereby achieving both improvement in durability and cost reduction of the bearing. Therefore, according to the present invention, a sintered bearing having the advantages of both an iron-based sintered bearing and a copper-based sintered bearing (including an iron-copper-based sintered bearing) can be obtained at low cost.

圧粉体中の鉄を炭素と反応させることなく焼結するためには、焼結温度を700℃〜840℃にするのが望ましい。この場合、炭素を含まない雰囲気で焼結するのがさらに望ましい。   In order to sinter the iron in the green compact without reacting with carbon, it is desirable that the sintering temperature is 700 ° C. to 840 ° C. In this case, it is more desirable to sinter in an atmosphere containing no carbon.

その一方で、上記のように、鉄組織がフェライト相のみで形成されていると、表面層が摩耗してベース部が露出した際に軸受面の耐摩耗性が低下する場合がある。   On the other hand, when the iron structure is formed only of the ferrite phase as described above, the wear resistance of the bearing surface may be lowered when the surface layer is worn and the base portion is exposed.

また、本発明は、鉄粉、アスペクト比13.3以上の扁平銅粉、通常銅粉、低融点金属粉、および黒鉛粉を含む原料粉を混合して金型に充填し、扁平銅粉を金型成形面に付着させた状態で圧粉体を成形し、圧紛体を焼結することにより形成され、銅の含有量が均一になったベース部と、ベース部の表面を覆い、ベース部よりも銅の含有量を大きくした表面層とを有し、表面層の軸受面に銅組織と鉄組織を形成し、軸受面における銅組織を面積比で60%以上にした焼結軸受の製造方法であって、前記原料粉における扁平銅粉および通常銅粉の割合を18重量%以上、40重量%以下とし、圧粉体中の鉄を炭素と反応するように焼結することで、鉄組織を、フェライト相と、フェライト相の粒界に存在するパーライト相とで形成し、鉄組織でのフェライト相に対するパーライト相の割合を面積比で5〜20%とすることを特徴とするものである。 The present invention also mixes iron powder, flat copper powder having an aspect ratio of 13.3 or higher, normal copper powder, low melting point metal powder, and raw material powder containing graphite powder, and fills the mold with the flat copper powder. Formed by compacting the green compact while adhering to the mold forming surface and sintering the powder compact. The base part has a uniform copper content and covers the surface of the base part. Of a sintered bearing having a copper layer and an iron structure on the bearing surface of the surface layer, the copper structure on the bearing surface being 60% or more by area ratio The ratio of the flat copper powder and the normal copper powder in the raw material powder is 18 wt% or more and 40 wt% or less, and the iron in the green compact is sintered so as to react with carbon. The structure is formed by the ferrite phase and the pearlite phase that exists at the grain boundary of the ferrite phase. It is characterized in that 5 to 20% of the proportion of the pearlite phase in area ratio ferrite phase.

これにより、鉄組織が、フェライト相とフェライト相の粒界に存在するパーライト相との二相組織となり、硬質のパーライト相がフェライト相の耐摩耗性を補うため、軸受面の摩耗を抑制することができる。その一方で炭素が拡散してパーライトの存在割合が過剰になると、軸に対する攻撃性が増して軸が摩耗しやすくなる。かかる観点から、パーライトは、フェライト相の粒界に存在(点在)する程度とする(図12参照)。   As a result, the iron structure becomes a two-phase structure of a ferrite phase and a pearlite phase present at the grain boundary of the ferrite phase, and the hard pearlite phase supplements the wear resistance of the ferrite phase, thereby suppressing the bearing surface wear. Can do. On the other hand, when carbon diffuses and the pearlite is present in excess, the aggression against the shaft increases and the shaft tends to wear. From this point of view, the pearlite is present at the grain boundaries of the ferrite phase (see FIG. 12).

圧粉体中の鉄を炭素と反応するように焼結し、鉄組織を、フェライト相と、フェライトの粒界に存在するパーライト相とで形成するためには、焼結温度を820℃〜900℃とするのが望ましい。この場合、炭素を含む雰囲気で焼結するのがさらに望ましい。   In order to sinter the iron in the green compact so as to react with carbon and to form an iron structure with a ferrite phase and a pearlite phase existing at the grain boundary of the ferrite, the sintering temperature is 820 ° C to 900 ° C. Desirably, the temperature is set to ° C. In this case, it is more desirable to sinter in an atmosphere containing carbon.

前記混合前の扁平銅粉に流体潤滑剤を付着させれば、金型成形面に対する扁平銅粉の付着力がさらに高まる。この流体潤滑剤の扁平銅粉に対する割合が少なすぎると、金型に対する扁平銅粉の付着力が低下し、金型成形面上の扁平銅粉の付着量が不十分となる。また、多すぎると扁平銅粉同士が付着し、凝集する問題が生じる。本発明者らの検証によれば、扁平銅粉に対する重量比で0.1重量%〜0.8重量%、望ましくは0.2重量%〜0.7重量%の流体潤滑剤を配合すれば、以上の問題を解消できることが判明した。   Adhering the fluid lubricant to the flat copper powder before mixing further increases the adhesion of the flat copper powder to the molding surface. If the ratio of the fluid lubricant to the flat copper powder is too small, the adhesion of the flat copper powder to the mold will be reduced, and the amount of flat copper powder on the mold forming surface will be insufficient. Moreover, when there is too much, flat copper powder will adhere and the problem which aggregates arises. According to the verification by the present inventors, 0.1 wt% to 0.8 wt%, preferably 0.2 wt% to 0.7 wt% of a fluid lubricant is blended in a weight ratio to the flat copper powder. It was found that the above problems can be solved.

流体潤滑剤としては、脂肪酸、特に直鎖の飽和脂肪酸が好ましい。この種の脂肪酸は、Cn-12n-1COOHの一般式で表される。本発明では、Cnが12〜22の範囲のものを使用するのが望ましい。 As the fluid lubricant, fatty acids, particularly linear saturated fatty acids are preferred. This type of fatty acid is represented by the general formula C n-1 H 2n-1 COOH. In the present invention, it is desirable to use one having a Cn in the range of 12-22.

扁平銅粉の見かけ密度を1.0g/cm3以下、厚さを1.5μm以下、長さを20μm以上80μm以下とすれば、金型成形面に対する付着力がさらに高まり、銅の含有量の多い表面層を確実に形成することが可能となる。 If the apparent density of the flat copper powder is 1.0 g / cm 3 or less, the thickness is 1.5 μm or less, and the length is 20 μm or more and 80 μm or less, the adhesion to the mold surface is further increased, and the copper content A large number of surface layers can be reliably formed.

原料粉に黒鉛を添加することで、軸受面の低摩擦化を図ることができる。この場合、鱗状黒鉛を使用すれば、原料粉の混合時に鱗状黒鉛と扁平銅粉が付着しやすくなり、扁平銅粉に付随して多くの黒鉛が金型成形面に付着する。この場合、圧粉体の表面では、銅だけでなく黒鉛の含有量も増えるので、軸受面の低摩擦化を図る上でより有効となる。   By adding graphite to the raw material powder, it is possible to reduce the friction of the bearing surface. In this case, if the scaly graphite is used, the scaly graphite and the flat copper powder are easily attached when the raw material powder is mixed, and a lot of graphite is attached to the molding surface along with the flat copper powder. In this case, the content of graphite as well as copper increases on the surface of the green compact, which is more effective in reducing the friction of the bearing surface.

原料粉における扁平銅粉の割合を8重量%以上にすれば、金型成形面に十分な量の扁平銅粉を付着させることができる。   If the ratio of the flat copper powder in the raw material powder is 8% by weight or more, a sufficient amount of the flat copper powder can be adhered to the molding surface.

銅粉として扁平銅粉だけを使用したのでは、扁平銅粉の密度が小さいために、圧粉体の成形時に固まりにくくなる。そのため、通常銅粉を添加し、扁平銅粉と併せて使用することで、圧粉体の成形性を高めることができる。また、表面層が摩耗してベース部が露出した際の軸に対する攻撃性を低下させるためには、ベース部S2が少なくとも10重量%以上の銅組織を有することが必要となる。よって、銅粉の配合割合は両者の合計である18重量%以上とする。その一方で、銅粉の割合が40重量%を超えると、ベース部における鉄組織の含有量が不足し、強度低下を招く。また、銅粉の使用量が過剰となり、扁平銅粉を使用することによるコストメリットが乏しくなる。以上から、原料粉における扁平銅粉と通常銅粉の割合は、合わせて18重量%以上40重量%以下にする。   If only flat copper powder is used as the copper powder, the density of the flat copper powder is small, so that it is difficult to solidify during compacting of the green compact. Therefore, the moldability of a green compact can be improved by adding copper powder normally and using it together with flat copper powder. Moreover, in order to reduce the aggressiveness with respect to the axis | shaft when a surface layer wears and a base part is exposed, it is necessary for base part S2 to have a copper structure of at least 10 weight% or more. Therefore, the compounding ratio of the copper powder is 18% by weight or more, which is the total of both. On the other hand, when the proportion of the copper powder exceeds 40% by weight, the content of the iron structure in the base portion is insufficient, and the strength is reduced. Moreover, the usage-amount of copper powder becomes excessive and the cost merit by using flat copper powder becomes scarce. From the above, the ratio of the flat copper powder and the normal copper powder in the raw material powder is made 18 wt% to 40 wt% in total.

一般に低融点金属の含有量が増えれば、それだけ軸受の強度が増す。その一方で、扁平銅粉は、Cu−Snの液相状態では表面張力により丸くなって球形化する。球形化した扁平銅が増えると、軸受表面における銅組織の占める面積が減少して発明の目的(初期なじみ性・静粛性の改善、相手材への攻撃性低減)を達成できない。以上の観点から、銅に対する低融点金属の割合は10重量%未満とする。   Generally, as the content of the low melting point metal increases, the strength of the bearing increases accordingly. On the other hand, in the liquid phase state of Cu-Sn, the flat copper powder is rounded and spherical due to surface tension. When the spheroidized flat copper increases, the area occupied by the copper structure on the bearing surface decreases, and the object of the invention (improvement of initial conformability / quietness, reduction of attack on the counterpart material) cannot be achieved. From the above viewpoint, the ratio of the low melting point metal to copper is less than 10% by weight.

本発明によれば、耐久性の向上と銅の使用量削減による低コスト化とを両立し、かつ初期なじみ特性や静粛性も良好な焼結軸受を提供することができる。   According to the present invention, it is possible to provide a sintered bearing that achieves both improvement in durability and cost reduction by reducing the amount of copper used, and excellent initial conformability and quietness.

焼結軸受の断面図である。It is sectional drawing of a sintered bearing. 上段は扁平銅粉の側面図、下段は扁平銅粉の平面図である。The upper part is a side view of the flat copper powder, and the lower part is a plan view of the flat copper powder. 互いに付着した扁平銅粉と鱗状黒鉛を示す側面図である。It is a side view which shows the flat copper powder and scaly graphite which mutually adhered. 金型による圧粉体の成形工程を示す断面図である。It is sectional drawing which shows the formation process of the green compact by a metal mold | die. 図4中の領域Qの拡大断面図である。FIG. 5 is an enlarged sectional view of a region Q in FIG. 4. 鋼中のパーライト組織を示す組織図である。It is an organization chart showing the pearlite structure in steel. 図1中の領域Pの拡大断面図である。It is an expanded sectional view of the area | region P in FIG. 軸受の半径方向における銅の含有率を示す図である。It is a figure which shows the content rate of the copper in the radial direction of a bearing. 初期なじみ性の測定結果を示す図である。It is a figure which shows the measurement result of initial conformability. 限界PV値の測定結果を示す図である。It is a figure which shows the measurement result of a limit PV value. 軸受運転後に軸受に生じる摩耗量の測定結果を示す図である。It is a figure which shows the measurement result of the abrasion loss which arises in a bearing after bearing operation. ベース部の粒界組織を示す組織図である。It is an organization chart showing the grain boundary organization of a base part. 本発明にかかる焼結軸受の成分表である。It is a component table | surface of the sintered bearing concerning this invention. 本発明にかかる焼結軸受の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the sintered bearing concerning this invention.

以下、本発明の実施の形態を添付図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1に示すように、焼結軸受1は、内周に軸受面1aを有する円筒状に形成される。焼結軸受1の内周にステンレス鋼等からなる軸2を挿入し、その状態で軸を回転させ、あるいは軸受1を回転させると、焼結軸受1の無数の空孔に保持された潤滑油が温度上昇に伴って軸受面1aに滲み出す。この滲み出した潤滑油によって、軸の外周面と軸受面1aの間の軸受隙間に油膜が形成され、軸2が軸受1によって相対回転可能に支持される。   As shown in FIG. 1, the sintered bearing 1 is formed in a cylindrical shape having a bearing surface 1a on the inner periphery. When the shaft 2 made of stainless steel or the like is inserted into the inner periphery of the sintered bearing 1 and the shaft is rotated in this state, or the bearing 1 is rotated, the lubricating oil retained in the countless holes of the sintered bearing 1 Oozes out to the bearing surface 1a as the temperature rises. The oil that has oozed out forms an oil film in the bearing gap between the outer peripheral surface of the shaft and the bearing surface 1 a, and the shaft 2 is supported by the bearing 1 so as to be relatively rotatable.

本発明の軸受1は、各種粉末を混合した原料粉を金型に充填し、これを圧縮して圧粉体を成形した後、圧粉体を焼結することで形成される。   The bearing 1 of the present invention is formed by filling raw material powder mixed with various powders in a mold, compressing this to form a green compact, and then sintering the green compact.

原料粉は、鉄粉、銅粉、低融点金属粉、および固体潤滑剤粉を主成分とする混合粉末である。この混合粉末には、必要に応じて各種成形助剤、例えば離型性向上のための潤滑剤(金属セッケン等)が添加される。以下、焼結軸受の第一の実施形態について、その原料粉末および製造手順を詳細に述べる。   The raw material powder is a mixed powder mainly composed of iron powder, copper powder, low melting point metal powder, and solid lubricant powder. To this mixed powder, various molding aids, for example, a lubricant (metal soap or the like) for improving releasability are added as necessary. Hereinafter, the raw material powder and the manufacturing procedure will be described in detail for the first embodiment of the sintered bearing.

[鉄粉]
鉄粉としては、還元鉄粉、水アトマイズ鉄粉等の公知の粉末が広く使用可能である。本実施形態では、含油性に優れた還元鉄粉を使用する。還元鉄粉は、略球形でありながら不規則形状でかつ多孔質状をなし、表面に微小な凹凸を有する海綿状となることから、海綿鉄粉とも呼ばれる。鉄粉としては、粒度40μm〜150μm、見かけ密度2.0〜2.8g/cm3程度のものを使用する。見かけ密度の定義は、JIS Z 8901の規定に準じる(以下、同じ)。なお、鉄粉に含まれる酸素量は0.2重量%以下とする。
[Iron powder]
As the iron powder, known powders such as reduced iron powder and water atomized iron powder can be widely used. In this embodiment, reduced iron powder excellent in oil impregnation is used. The reduced iron powder is also called spongy iron powder because it has a substantially spherical shape, is irregular and has a porous shape, and has a sponge shape with minute irregularities on the surface. As the iron powder, one having a particle size of 40 μm to 150 μm and an apparent density of about 2.0 to 2.8 g / cm 3 is used. The definition of the apparent density conforms to the rules of JIS Z 8901 (hereinafter the same). The amount of oxygen contained in the iron powder is 0.2% by weight or less.

[銅粉]
銅粉としては、箔状の扁平銅粉と通常銅粉の二種類が用いられる。
[Copper powder]
As the copper powder, two types of foil-like flat copper powder and normal copper powder are used.

扁平銅粉は、水アトマイズ粉等からなる原料銅粉を搗砕(Stamping)することで扁平化させたものである。扁平銅粉としては、長さLが20μm〜80μm、厚さtが0.5μm〜1.5μm(アスペクト比L/t=13.3〜160)のものが主に用いられる。ここでいう「長さ」および「厚さ」は、図2に示すように個々の扁平銅粉3の幾何学的な最大寸法をいう。扁平銅粉の見かけ密度は1.0g/cm3以下とする。以上のサイズ、及び見かけ密度の扁平銅粉であれば、金型成形面に対する扁平銅粉の付着力が高まるため、金型成形面に多量の扁平銅粉を付着させることができる。 The flat copper powder is flattened by stamping raw material copper powder made of water atomized powder or the like. As the flat copper powder, one having a length L of 20 μm to 80 μm and a thickness t of 0.5 μm to 1.5 μm (aspect ratio L / t = 13.3 to 160) is mainly used. Here, “length” and “thickness” refer to the geometric maximum dimension of each flat copper powder 3 as shown in FIG. The apparent density of the flat copper powder is 1.0 g / cm 3 or less. If the flat copper powder has the above size and apparent density, the adhesion of the flat copper powder to the mold forming surface is increased, so that a large amount of flat copper powder can be attached to the mold forming surface.

通常銅粉としては、焼結軸受用として汎用されている球状や樹枝状の銅粉が広く使用可能であり、例えば還元粉、電解粉、水アトマイズ粉等が用いられる。なお、これらの混合粉も使用可能である。通常銅粉の粒度は20μm〜100μm程度とし、見かけ密度は2.0〜3.3g/cm3程度とする。銅粉として扁平銅粉だけを使用したのでは、扁平銅粉の密度が小さいために、圧粉体の成形時に固まりにくくなるが、通常銅粉と併せて使用することで、圧粉体の成形性を高めることができる。なお、特に問題がなければ通常銅粉を使用せず、扁平銅粉のみを使用することもできる。 Usually, as the copper powder, spherical and dendritic copper powders widely used for sintered bearings can be widely used. For example, reduced powder, electrolytic powder, water atomized powder and the like are used. These mixed powders can also be used. Usually, the particle size of copper powder is about 20 μm to 100 μm, and the apparent density is about 2.0 to 3.3 g / cm 3 . If only flat copper powder is used as the copper powder, the density of the flat copper powder will be small, so it will be hard to solidify when forming the green compact, but it is usually used together with the copper powder to form the green compact. Can increase the sex. In addition, if there is no particular problem, it is also possible to use only flat copper powder without using copper powder.

[流体潤滑剤]
金型成形面に扁平銅粉を付着させるため、扁平銅粉には予め流体潤滑剤を付着させておく。この流体潤滑剤は、原料粉の金型充填前に扁平銅粉に付着させていればよく、好ましくは原料粉の混合前、さらに好ましくは原料銅粉を搗砕する段階で原料銅粉に付着させる。搗砕後、他の原料粉体と混合するまでの間に扁平銅粉に流体潤滑剤を供給し、攪拌する等の手段で扁平銅粉に流体潤滑剤を付着させてもよい。金型成形面上の扁平銅粉の付着量を確保するため、扁平銅粉に対する流体潤滑剤の配合割合は、重量比で0.1重量%以上とし、また扁平銅粉同士の付着による凝集を防止するため、配合割合は0.8重量%以下とする。望ましくは配合割合の下限は0.2重量%以上とし、上限は0.7重量%とする。流体潤滑剤としては、脂肪酸、特に直鎖飽和脂肪酸が好ましい。この種の脂肪酸は、Cn-12n-1COOHの一般式で表される。この脂肪酸としては、Cnが12〜22の範囲のもので、具体例として例えばステアリン酸を使用することができる。
[Fluid lubricant]
In order to attach the flat copper powder to the molding surface, a fluid lubricant is previously attached to the flat copper powder. This fluid lubricant only needs to be attached to the flat copper powder before filling the raw material powder into the mold, and is preferably attached to the raw copper powder before mixing the raw material powder, more preferably at the stage of crushing the raw material copper powder. Let The fluid lubricant may be attached to the flat copper powder by means such as supplying the fluid lubricant to the flat copper powder and stirring it after mixing and before mixing with other raw material powders. In order to secure the adhesion amount of the flat copper powder on the molding surface, the blending ratio of the fluid lubricant to the flat copper powder should be 0.1% by weight or more, and aggregation due to the adhesion of the flat copper powders In order to prevent this, the blending ratio is 0.8% by weight or less. Desirably, the lower limit of the blending ratio is 0.2% by weight or more, and the upper limit is 0.7% by weight. As the fluid lubricant, fatty acids, particularly linear saturated fatty acids are preferred. This type of fatty acid is represented by the general formula C n-1 H 2n-1 COOH. As this fatty acid, Cn is in the range of 12 to 22, and for example, stearic acid can be used as a specific example.

[低融点金属粉]
低融点金属粉は、焼結温度よりも低融点の金属粉であり、本発明では、融点が700℃以下の金属粉、例えば錫、亜鉛、リン等の粉末が使用される。この中でも焼結時の蒸散が少ない錫が好ましい。これら低融点金属粉は銅に対して高いぬれ性を持つため、原料粉に配合することで、液相焼結が進行し、鉄組織と銅組織や銅組織同士の結合強度が強化される。低融点金属の配合量が増えるほど金属組織の強度は高まるが、本発明のように扁平銅粉を使用した場合、低融点金属の量が多すぎると、上記のとおり扁平銅粉が球形化し、軸受面での銅の面積が低下する不具合が生じる。従来の銅系焼結軸受や銅鉄系焼結軸受では、銅に対して10重量%程度の低融点金属を配合するのが一般的であるが、本発明では、上記の理由から銅に対する低融点金属の割合を重量比で10重量%未満(望ましくは8.0重量%以下)とする。
[Low melting point metal powder]
The low melting point metal powder is a metal powder having a melting point lower than the sintering temperature. In the present invention, a metal powder having a melting point of 700 ° C. or lower, for example, a powder of tin, zinc, phosphorus or the like is used. Of these, tin is preferred because it causes less transpiration during sintering. Since these low melting point metal powders have high wettability with respect to copper, liquid phase sintering proceeds by blending with the raw material powder, and the bond strength between the iron structure and the copper structure or between the copper structures is enhanced. The strength of the metal structure increases as the blending amount of the low melting point metal increases, but when the flat copper powder is used as in the present invention, if the amount of the low melting point metal is too large, the flat copper powder becomes spherical as described above, There is a problem that the copper area on the bearing surface is reduced. In conventional copper-based sintered bearings and copper-iron-based sintered bearings, it is common to blend a low melting point metal of about 10% by weight with respect to copper. The ratio of the melting point metal is less than 10% by weight (desirably 8.0% by weight or less).

[固体潤滑剤粉]
固体潤滑剤粉は、軸2との摺動による金属接触時の摩擦低減のために添加され、例えば黒鉛が使用される。この時、黒鉛としては、扁平銅粉に対する付着性が得られるように、鱗状黒鉛を使用するのが望ましい。固体潤滑剤粉としては、黒鉛の他に二硫化モリブデン粉も使用することができる。二硫化モリブデン粉は層状結晶構造を有していて層状に剥離するため、鱗状黒鉛と同様に扁平銅粉に対する付着性が得られる。
[Solid lubricant powder]
The solid lubricant powder is added to reduce friction at the time of metal contact due to sliding with the shaft 2, and for example, graphite is used. At this time, as the graphite, it is desirable to use scaly graphite so that adhesion to the flat copper powder can be obtained. As solid lubricant powder, molybdenum disulfide powder can be used in addition to graphite. Molybdenum disulfide powder has a layered crystal structure and peels into layers, and thus adheres to flat copper powder in the same manner as scale graphite.

[配合比]
上記各粉末を配合した原料粉は、銅粉を18重量%以上40重量%以下、低融点金属粉(例えば錫粉)を1重量%以上4重量%以下、固体潤滑剤粉(例えば黒鉛粉)を0.5〜2.5重量%配合し、残部を鉄粉とするのが望ましい。
[Combination ratio]
The raw material powder blended with each of the above powders is copper powder of 18 wt% to 40 wt%, low melting point metal powder (for example, tin powder) of 1 wt% to 4 wt%, solid lubricant powder (for example, graphite powder) Is preferably blended in an amount of 0.5 to 2.5% by weight, with the balance being iron powder.

本発明では、後述のように、原料粉の金型への充填時に扁平銅粉を金型に層状に付着させている。原料粉における扁平銅の配合割合が8重量%を下回ると、金型への扁平銅の付着量が不十分となって本願発明の作用効果が期待できない。また、本実施形態は、後述のように、銅リッチの表層部S1(後述する)が摩耗により消失した際に、軸受面となるベース部S2の表面をフェライト相αFeと銅組織とで構成することで、軸に対する攻撃性を低下させるものであるが、かかる効果を得るためにはベース部S2が少なくとも10重量%以上の銅組織を有することが必要となる。よって、銅粉の配合割合は両者の合計である18重量%以上とする。その一方で、銅粉の割合が40重量%を超えると、ベース部における鉄組織の含有量が不足し、強度低下を招く。また、銅粉の使用量が過剰となり、扁平銅粉を使用することによるコストメリットが乏しくなる。以上から、原料粉における銅粉の配合量は18重量%以上40重量%以下とする。また、原料粉における扁平銅粉の配合量は8重量%以上40重量%以下、望ましくは8重量%以上20重量%以下とする。20重量%以下が好ましい理由は、扁平銅粉の金型への付着量は20重量%程度で飽和し、これ以上配合量を増しても、高コストの扁平銅粉を使用することによるコストアップが問題となるためである。   In the present invention, as will be described later, the flat copper powder is adhered to the mold in layers when the raw powder is filled into the mold. If the blending ratio of flat copper in the raw material powder is less than 8% by weight, the amount of flat copper adhering to the mold becomes insufficient, and the effect of the present invention cannot be expected. Further, in the present embodiment, as described later, when the copper-rich surface layer portion S1 (described later) disappears due to wear, the surface of the base portion S2 serving as a bearing surface is configured by the ferrite phase αFe and the copper structure. Thus, the aggression with respect to the shaft is reduced, but in order to obtain such an effect, the base portion S2 needs to have a copper structure of at least 10% by weight or more. Therefore, the compounding ratio of the copper powder is 18% by weight or more, which is the total of both. On the other hand, when the proportion of the copper powder exceeds 40% by weight, the content of the iron structure in the base portion is insufficient, and the strength is reduced. Moreover, the usage-amount of copper powder becomes excessive and the cost merit by using flat copper powder becomes scarce. From the above, the blending amount of the copper powder in the raw material powder is 18 wt% or more and 40 wt% or less. Moreover, the compounding quantity of the flat copper powder in raw material powder shall be 8 to 40 weight%, desirably 8 to 20 weight%. The reason why 20% by weight or less is preferable is that the amount of flat copper powder adhering to the mold saturates at about 20% by weight, and even if the blending amount is further increased, the cost is increased by using high-cost flat copper powder. Is a problem.

低融点金属粉の割合が1重量%を下回ると軸受の強度を確保できず、4重量%を超えると、上記のとおり扁平銅粉の球形化の問題が生じる。また、固体潤滑剤粉の割合が0.5重量%を下回ると、軸受面における摩擦低減効果が得られず、2.5重量%を超えると強度低下等を招く。以上から、低融点金属粉は1重量%以上4重量%以下、固体潤滑剤粉は0.5〜2.5重量%配合する。なお、上記のとおり銅粉に対する低融点金属粉の配合割合は10重量%未満(望ましくは8重量%以下)とするのが望ましい。   If the ratio of the low melting point metal powder is less than 1% by weight, the strength of the bearing cannot be secured, and if it exceeds 4% by weight, the problem of spheroidizing the flat copper powder occurs as described above. On the other hand, if the ratio of the solid lubricant powder is less than 0.5% by weight, the friction reducing effect on the bearing surface cannot be obtained, and if it exceeds 2.5% by weight, the strength is reduced. From the above, the low melting point metal powder is blended in an amount of 1 to 4% by weight, and the solid lubricant powder is blended in an amount of 0.5 to 2.5% by weight. As described above, the blending ratio of the low melting point metal powder to the copper powder is preferably less than 10% by weight (desirably 8% by weight or less).

上述した各種原料粉末の配合比で特に好ましいものを図13に示す。図示のように、通常銅粉を8重量%以上12重量%以下、扁平銅粉を10重量%以上15重量%以下、低融点金属粉を1.0重量%以上2.0重量%以下、固体潤滑剤粉を0.6重量%以上1.0重量%以下とするのが特に好ましい。   FIG. 13 shows a particularly preferable ratio of the various raw material powders described above. As shown, the copper powder is usually 8% by weight to 12% by weight, the flat copper powder is 10% by weight to 15% by weight, the low melting point metal powder is 1.0% by weight to 2.0% by weight, solid It is particularly preferable that the lubricant powder be 0.6 wt% or more and 1.0 wt% or less.

[混合]
以上に述べた各粉末の混合は、2回に分けて行うのが望ましい。先ず、一次混合として、鱗状黒鉛粉および予め流体潤滑剤を付着させた扁平銅粉を公知の混合機で混合する。次いで、二次混合として、一次混合粉に鉄粉、通常銅粉、および低融点金属粉を添加して混合し、さらに必要に応じて黒鉛粉も添加・混合する。扁平銅粉は、各種原料粉末の中でも見かけ密度が低いため、原料粉中に均一に分散させるのが難しいが、一次混合で見かけ密度が同レベルの扁平銅粉と黒鉛粉とを予め混合しておくと、扁平銅粉に付着した流体潤滑剤等により、図3に示すように、扁平銅粉3と黒鉛粉4が互いに付着して層状に重なり、扁平銅粉の見かけ密度が高まる。そのため、二次混合時に原料粉末中に扁平銅粉を均一に分散させることが可能となる。一次混合時に、別途潤滑剤を添加すれば、扁平銅粉と黒鉛粉の付着がさらに促進されるため、二次混合時に扁平銅粉をより均一に分散させることが可能となる。ここで添加する潤滑剤としては、上記流体潤滑剤と同種または異種の流体状潤滑剤の他、粉末状のものも使用可能である。例えば上述した金属セッケン等の成形助剤は一般に粉状でありながら、ある程度の付着力を有するので、扁平銅粉と黒鉛粉の付着より促進させることができる。
[mixture]
It is desirable to mix the powders described above in two steps. First, as primary mixing, scaly graphite powder and flat copper powder to which a fluid lubricant is previously attached are mixed with a known mixer. Next, as secondary mixing, iron powder, normal copper powder, and low melting point metal powder are added to and mixed with the primary mixed powder, and graphite powder is also added and mixed as necessary. Flat copper powder has a low apparent density among various raw material powders, so it is difficult to disperse uniformly in the raw material powder, but it is premixed with flat copper powder and graphite powder that have the same apparent density in the primary mixing. In this case, as shown in FIG. 3, the flat copper powder 3 and the graphite powder 4 adhere to each other and overlap in layers due to the fluid lubricant or the like adhering to the flat copper powder, and the apparent density of the flat copper powder increases. Therefore, it becomes possible to uniformly disperse the flat copper powder in the raw material powder during the secondary mixing. If a lubricant is added separately during the primary mixing, the adhesion between the flat copper powder and the graphite powder is further promoted, so that the flat copper powder can be more uniformly dispersed during the secondary mixing. As the lubricant to be added, a powdery lubricant can be used in addition to the same or different fluid lubricant as the fluid lubricant. For example, the above-mentioned forming aid such as metal soap is generally powdery and has a certain degree of adhesion, which can be promoted by adhesion of flat copper powder and graphite powder.

図3に示す扁平銅粉3と鱗状黒鉛粉4との付着状態は、二次混合後もある程度保持されるため、原料粉末を金型に充填した際には、金型表面に扁平銅粉と共に多くの黒鉛粉が付着することとなる。   Since the adhesion state between the flat copper powder 3 and the scaly graphite powder 4 shown in FIG. 3 is maintained to some extent even after secondary mixing, when the raw material powder is filled in the mold, the flat copper powder is put on the mold surface. A lot of graphite powder will adhere.

[成形]
二次混合後の原料粉末は成形機の金型6に供給される。図4に示すように、金型6は、コア6a、ダイ6b、上パンチ6c、および下パンチ6dからなり、これらによって区画されたキャビティに原料粉末が充填される。上下パンチ6c,6dを接近させて原料粉体を圧縮すると、原料粉末が、コア6aの外周面、ダイ6bの内周面、上パンチ6cの端面、および下パンチ6dの端面からなる成形面によって成形され、円筒状の圧粉体9が得られる。
[Molding]
The raw material powder after the secondary mixing is supplied to the mold 6 of the molding machine. As shown in FIG. 4, the mold 6 includes a core 6 a, a die 6 b, an upper punch 6 c, and a lower punch 6 d, and a raw material powder is filled into a cavity partitioned by these. When the upper and lower punches 6c and 6d are brought close to each other and the raw material powder is compressed, the raw material powder is formed by the molding surface composed of the outer peripheral surface of the core 6a, the inner peripheral surface of the die 6b, the end surface of the upper punch 6c, and the end surface of the lower punch 6d. A cylindrical green compact 9 is obtained by molding.

原料粉体における金属粉の中では、扁平銅粉3の見かけ密度が最も小さい。また、扁平銅粉3は、上記長さLおよび厚さtを有する箔状であり、単位重量あたりの幅広面の面積が大きい。そのため、扁平銅粉は、その表面に付着した流体潤滑剤による付着力、さらにはクーロン力等の影響を受けやすくなり、原料粉の金型6への充填後は、図5に拡大して示すように、扁平銅粉3がその幅広面を成形面61に向け、かつ複数層(1層〜3層程度)重なった層状態となって成形面61の全域に付着する。この際、扁平銅粉3に付着した鱗状黒鉛も扁平銅粉3に付随して金型の成形面61に付着する(図5では黒鉛の図示を省略)。その一方で、扁平銅3の層状組織の内側領域(キャビティ中心側となる領域)では、鉄粉(Fe)、通常銅粉(Cu)、および低融点金属粉(Sn)が略均一に分散した状態となる。成形後の圧粉体9は、このような各粉末の分布状態をほぼそのまま保持している。   Among the metal powders in the raw material powder, the apparent density of the flat copper powder 3 is the smallest. Moreover, the flat copper powder 3 is a foil shape having the above-mentioned length L and thickness t, and the area of the wide surface per unit weight is large. Therefore, the flat copper powder is easily affected by the adhesive force due to the fluid lubricant adhering to the surface thereof, and further by the coulomb force. After filling the raw material powder into the mold 6, it is enlarged in FIG. 5. As described above, the flat copper powder 3 adheres to the entire area of the molding surface 61 in a layered state in which the wide surface is directed to the molding surface 61 and a plurality of layers (about 1 to 3 layers) overlap. At this time, scaly graphite adhering to the flat copper powder 3 also adheres to the flat copper powder 3 and adheres to the molding surface 61 of the mold (illustration of graphite is omitted in FIG. 5). On the other hand, iron powder (Fe), normal copper powder (Cu), and low-melting-point metal powder (Sn) are dispersed substantially uniformly in the inner region (region on the cavity center side) of the layered structure of flat copper 3. It becomes a state. The green compact 9 after molding retains such a distribution state of each powder almost as it is.

[焼結]
その後、圧粉体9は焼結炉にて焼結される。焼結条件は、黒鉛に含まれる炭素が鉄と反応しない(炭素が拡散しない)条件とする。鉄―炭素の平衡状態では、723℃に変態点があり、これを超える鉄と炭素の反応が始まって、図6に示すように鋼組織中にパーライト相γFeが生じるが、焼結では900℃を超えてから炭素(黒鉛)と鉄の反応が始まり、パーライト相γFeが生じる。パーライト相γFeは硬い組織(HV300以上)で相手材に対する攻撃性が強いため、過剰にパーライト相が析出すると軸2の摩耗を進行させるおそれがある。
[Sintering]
Thereafter, the green compact 9 is sintered in a sintering furnace. The sintering conditions are such that carbon contained in graphite does not react with iron (carbon does not diffuse). In the iron-carbon equilibrium state, there is a transformation point at 723 ° C., and the reaction between iron and carbon exceeding this occurs, and a pearlite phase γFe is generated in the steel structure as shown in FIG. The reaction between carbon (graphite) and iron begins after the temperature exceeds, and a pearlite phase γFe is produced. Since the pearlite phase γFe is a hard structure (HV300 or higher) and has a strong attacking property on the counterpart material, excessive precipitation of the pearlite phase may cause wear of the shaft 2.

また、従来の焼結軸受の製造工程では、焼結雰囲気として、液化石油ガス(ブタン、プロパン等)と空気を混合してNi触媒で熱分解させた吸熱型ガス(RXガス)を使用する場合が多い。しかしながら、吸熱型ガス(RXガス)では炭素が拡散して表面を硬化させるおそれがあり、同様の問題を生じる。   In the conventional sintered bearing manufacturing process, an endothermic gas (RX gas) obtained by mixing liquefied petroleum gas (butane, propane, etc.) and air and thermally decomposing with a Ni catalyst is used as the sintering atmosphere. There are many. However, the endothermic gas (RX gas) may cause carbon to diffuse and harden the surface, resulting in the same problem.

以上の観点から、本発明では、焼結は900℃以下の低温焼結、具体的には700℃(望ましくは760℃)〜840℃の焼結温度とする。また、焼結雰囲気は、炭素を含有しないガス雰囲気(水素ガス、窒素ガス、アルゴンガス等)あるいは真空とする。これらの対策により、原料粉では炭素と鉄の反応が生じず、従って焼結後の鉄組織は全て軟らかいフェライト相αFe(HV200以下)となる。焼結に伴い、上記流体潤滑剤、その他の潤滑剤、各種成形助剤は焼結体内部から揮散する。   From the above viewpoint, in the present invention, sintering is performed at a low temperature of 900 ° C. or lower, specifically, 700 ° C. (preferably 760 ° C.) to 840 ° C. The sintering atmosphere is a gas atmosphere containing no carbon (hydrogen gas, nitrogen gas, argon gas, etc.) or a vacuum. By these measures, the reaction between carbon and iron does not occur in the raw material powder, and therefore the iron structure after sintering becomes a soft ferrite phase αFe (HV200 or less). With the sintering, the fluid lubricant, other lubricants, and various molding aids are volatilized from the inside of the sintered body.

以上に述べた焼結工程を経ることで、多孔質の焼結体が得られる。この焼結体にサイジングを施し、さらに真空含浸等の手法で潤滑油を含浸させることにより、図示に示す焼結軸受1が完成する。上記のように、焼結時に炭素と鉄を反応させず、鉄組織を軟質のフェライト相にすることにより、サイジング時に焼結体が塑性流動を生じやすくなり、高精度のサイジングを行うことができる。なお、用途によっては、潤滑油の含浸工程を省略し、無給油下で使用する焼結軸受1とすることもできる。   By passing through the sintering step described above, a porous sintered body can be obtained. The sintered bearing 1 shown in the drawing is completed by sizing the sintered body and further impregnating with a lubricating oil by a technique such as vacuum impregnation. As described above, carbon and iron are not reacted at the time of sintering, and the iron structure is made into a soft ferrite phase, so that the sintered body is likely to cause plastic flow during sizing, and high-precision sizing can be performed. . In addition, depending on a use, the impregnation process of lubricating oil can be abbreviate | omitted and it can also be set as the sintered bearing 1 used under oil-free.

以上の製作工程のフローは図14に示すとおりである。この製作工程を経た焼結軸受1の表面付近(図1中の領域P)の金属組織を図7に概略図示する。なお、図7では銅組織にハッチングを付し、黒鉛に散点模様を付している。   The flow of the above manufacturing process is as shown in FIG. FIG. 7 schematically shows the metal structure near the surface of the sintered bearing 1 (region P in FIG. 1) that has undergone this manufacturing process. In FIG. 7, the copper structure is hatched, and the dotted pattern is added to the graphite.

図7に示すように、本発明の焼結軸受1では、金型成形面61に扁平銅3を層状に付着させた状態で圧粉体9が成形され、この層状扁平銅3が焼結されていることに由来して、軸受1の軸受面1aを含む表面全体に銅濃度の高い表面層S1が形成される。しかも、扁平銅3の幅広面が成形面61に付着していたこともあり、表面層S1の銅組織の多くが扁平状で、かつその幅広面を表面に向けた状態に配向されている。表面層S1の厚さは金型成形面61に層状に付着した扁平銅の厚さに相当し、概ね1μm〜6μm程度である。表面層S1の任意断面では、銅組織の面積は鉄組織の面積よりも大きく、具体的には60%以上が銅組織となる。   As shown in FIG. 7, in the sintered bearing 1 of the present invention, the green compact 9 is formed in a state in which the flat copper 3 is adhered in a layered manner on the mold forming surface 61, and the layered flat copper 3 is sintered. As a result, a surface layer S1 having a high copper concentration is formed on the entire surface including the bearing surface 1a of the bearing 1. In addition, the wide surface of the flat copper 3 may have adhered to the molding surface 61, so that most of the copper structure of the surface layer S1 is flat and oriented so that the wide surface faces the surface. The thickness of the surface layer S1 corresponds to the thickness of the flat copper adhering to the mold forming surface 61 in a layer form, and is about 1 μm to 6 μm. In the arbitrary cross section of the surface layer S1, the area of the copper structure is larger than the area of the iron structure, specifically, 60% or more of the copper structure is the copper structure.

表面層S1よりも内側のベース部S2は、基本的に表面層S1に覆われている。図8に示すように、ベース部S2における銅の含有量は、表面層S1での銅の含有量よりも少なく、表面層S1からベース部S2へ移行する際に銅の含有量が急激に低下している。また、ベース部S2の各部における銅の含有量(重量%)は各部で均一になっている。   The base portion S2 inside the surface layer S1 is basically covered with the surface layer S1. As shown in FIG. 8, the copper content in the base portion S2 is less than the copper content in the surface layer S1, and the copper content rapidly decreases when the surface layer S1 moves to the base portion S2. doing. Further, the copper content (% by weight) in each part of the base part S2 is uniform in each part.

以上の構成から、軸受面1aを含む表面層S1の表面全体で、鉄組織に対する銅組織の面積比が60%以上となる。そのため、焼結軸受1の初期なじみ性および静粛性を向上させることができる。また、軸受1に含まれる鉄組織が全てフェライト相αFeであるので、仮に表面層S1が摩耗してベース部S2の鉄組織が表面に現れていても、軸受面を軟質化することができ、軸2に対する攻撃性を弱めることができる。   From the above configuration, the area ratio of the copper structure to the iron structure is 60% or more over the entire surface of the surface layer S1 including the bearing surface 1a. Therefore, the initial conformability and quietness of the sintered bearing 1 can be improved. Further, since all the iron structure contained in the bearing 1 is the ferrite phase αFe, even if the surface layer S1 is worn and the iron structure of the base portion S2 appears on the surface, the bearing surface can be softened, Aggressiveness against the axis 2 can be weakened.

その一方で、表面層S1の内側のベース部S2は、表面相S1に比べて銅の含有量が少なく、かつ鉄の含有量が多い硬質組織となっている。このように軸受1のほとんどの部分を占めるベース部S2で鉄の含有量が多くなっているので、軸受1全体での銅の使用量を削減することができ、銅系焼結軸受に比べて大幅な低コスト化を達成することができる。さらに、表面層S1が軸2との摺動で摩耗し、軸受面1aに鉄組織を多く含むベース部S2が現れた際にも、鉄組織がフェライト相αFeであるため、銅の含有量を少なくした状態でも軸2に対する攻撃性を弱くすることができ、軸受としての耐久性を確保できる。この耐久性は、ベース部S2における銅組織の含有量が少なくとも10重量%以上あれば十分に得られる。   On the other hand, the base portion S2 inside the surface layer S1 has a hard structure with a small copper content and a large iron content compared to the surface phase S1. As described above, since the iron content is increased in the base portion S2 that occupies most of the bearing 1, the amount of copper used in the entire bearing 1 can be reduced, and compared with a copper-based sintered bearing. Significant cost reduction can be achieved. Furthermore, when the surface layer S1 is worn by sliding with the shaft 2 and the base portion S2 containing a large amount of iron structure appears on the bearing surface 1a, the iron structure is the ferrite phase αFe. Even in a reduced state, the aggressiveness against the shaft 2 can be weakened, and the durability as a bearing can be ensured. This durability is sufficiently obtained if the content of the copper structure in the base portion S2 is at least 10% by weight or more.

このように本発明では、扁平銅粉を使用し、これを金型成形面61に付着させた状態で圧粉体を成形することで、表面層S1での銅の含有量を高めると共に、表面層S1以外では鉄の含有量を高めることとし、銅組織と鉄組織の最適分布を実現させている。また、鉄組織を意図的にフェライト相αFeとすることで、銅リッチの表面層S1が摩耗した際の軸2の摩耗抑制も図っている。従って、耐久性の向上と銅の使用量削減による低コスト化とを両立することが可能となる。   Thus, in this invention, while using flat copper powder and shape | molding a compact in the state which made this adhere to the metal mold | die molding surface 61, while increasing copper content in surface layer S1, surface Except for the layer S1, the iron content is increased to realize an optimal distribution of the copper structure and the iron structure. In addition, by intentionally setting the iron structure to the ferrite phase αFe, the wear of the shaft 2 is suppressed when the copper-rich surface layer S1 is worn. Therefore, it is possible to achieve both improvement in durability and cost reduction by reducing the amount of copper used.

加えて、軸受面1aを含む表面全体に遊離黒鉛が析出しており、しかも扁平銅粉3に付随する形で金型成形面61に鱗状黒鉛を付着させているため、表面層S1における遊離黒鉛の含有率も高い。そのため、軸受面1aを低摩擦化することができ、軸受1の耐久性を増すことができる。また、表面層S1とベース部S2の双方で銅組織と鉄組織を低融点金属で結合させており、銅組織と鉄組織の間、および銅組織同士の間で高い結合強度が得られている。そのため、従来の青銅系焼結軸受に比べて、軸受1全体の強度が増し、かつ耐久性も向上する。さらに、限界PV値をPV>200MPa・m/minを達成することも可能で、そのような使用条件下でも低摩擦となり、今後見込まれるさらなる負荷容量の増大や高速回転化にも対応可能となる。従って、本発明によれば、青銅系軸受および鉄系焼結軸受(あるいは鉄銅焼結軸受)の双方のメリットのみを有する焼結軸受を得ることができる。   In addition, free graphite is deposited on the entire surface including the bearing surface 1a, and since the scaly graphite is attached to the mold forming surface 61 in a form accompanying the flat copper powder 3, the free graphite in the surface layer S1. The content of is also high. Therefore, the bearing surface 1a can be reduced in friction, and the durability of the bearing 1 can be increased. In addition, the copper structure and the iron structure are bonded with a low melting point metal in both the surface layer S1 and the base portion S2, and a high bonding strength is obtained between the copper structure and the iron structure and between the copper structures. . Therefore, the strength of the entire bearing 1 is increased and the durability is improved as compared with the conventional bronze-based sintered bearing. Furthermore, it is also possible to achieve a limit PV value of PV> 200 MPa · m / min, and it is possible to cope with further increase in load capacity and high-speed rotation that are expected in the future because of low friction even under such use conditions. . Therefore, according to the present invention, a sintered bearing having only the merit of both a bronze bearing and an iron sintered bearing (or an iron copper sintered bearing) can be obtained.

本発明が奏する上記作用効果を確認するため、初期なじみ性、限界PV値、および摩耗量のそれぞれについて、本発明品と従来の青銅系焼結軸受および銅鉄系焼結軸受との間で比較試験を行った。   In order to confirm the above-mentioned effects achieved by the present invention, the initial conformability, the limit PV value, and the amount of wear are compared between the product of the present invention and the conventional bronze-based sintered bearing and copper-iron-based sintered bearing. A test was conducted.

比較試験における各軸受の組成(重量比)は以下のとおりとした。
本発明品…鉄:80.2%、銅:18.0%(扁平銅粉8%)、錫:1.0%、黒鉛0.8%
青銅系軸受…銅:88.8%、錫:9.9%、黒鉛:1.3%
銅鉄系焼結軸受…鉄:77.2%、銅:20.0%、錫:2.0%、黒鉛0.8%
The composition (weight ratio) of each bearing in the comparative test was as follows.
Invention product: Iron: 80.2%, Copper: 18.0% (flat copper powder 8%), Tin: 1.0%, Graphite 0.8%
Bronze bearings: Copper: 88.8%, Tin: 9.9%, Graphite: 1.3%
Copper-iron sintered bearings: Iron: 77.2%, Copper: 20.0%, Tin: 2.0%, Graphite 0.8%

また、各試験条件は以下のとおりである。   Each test condition is as follows.

[初期なじみ性測定試験]
・周速 :38m/min
・荷重 :1.1MPa
・軸仕様:SUS420J2(HRC55)
・軸受サイズ:6×12×6(順に、内径の直径寸法、外径の直径寸法、長さをミリ単位で表す。以下同じ。)
・運転隙間:0.020mm
・温度 :常温
[Initial conformability measurement test]
・ Peripheral speed: 38 m / min
・ Load: 1.1 MPa
・ Shaft specifications: SUS420J2 (HRC55)
Bearing size: 6 × 12 × 6 (Inner diameter diameter dimension, outer diameter diameter dimension, and length are expressed in millimeters. The same applies hereinafter.)
・ Operation gap: 0.020mm
・ Temperature: Normal temperature

[限界PV値測定試験]
・軸仕様:SUS420J2(HRC55)
・軸受サイズ:6×12×6
・運転隙間:0.020mm
・温度 :常温
[Limit PV value measurement test]
・ Shaft specifications: SUS420J2 (HRC55)
・ Bearing size: 6 × 12 × 6
・ Operation gap: 0.020mm
・ Temperature: Normal temperature

[摩耗量測定試験]
・周速 :38〜75m/min
・荷重 :0.7〜4.0MPa
・軸仕様:SUS420J2(HRC55)
・軸受サイズ:6×12×6
・運転隙間:0.020mm
・温度 :常温
・時間 :8時間
[Abrasion test]
・ Peripheral speed: 38 to 75 m / min
・ Load: 0.7-4.0MPa
・ Shaft specifications: SUS420J2 (HRC55)
・ Bearing size: 6 × 12 × 6
・ Operation gap: 0.020mm
・ Temperature: Normal temperature ・ Time: 8 hours

図9に初期なじみ特性測定試験の結果、図10に限界PV値測定試験の結果、図11に摩耗量試験の結果をそれぞれ示す。   FIG. 9 shows the results of the initial conformability characteristic measurement test, FIG. 10 shows the results of the limit PV value measurement test, and FIG. 11 shows the results of the wear amount test.

図9から、本発明品では、銅の配合割合を上記下限値とした場合でも、運転開始直後から低摩擦であり、銅鉄系に比べて良好で、青銅系軸受と同等もしくはそれ以上に良好な初期なじみ性を有することが判明した。また、図10から、200MPa・m/minを超えるPV値でも十分に低摩擦であり、500MPa・m/min程度のPV値まで実用可能であることが理解できる。さらに、図11から本発明品の摩耗量は少なく、青銅系、さらには銅鉄系と同等以上の耐久性を有することが理解できる。   From FIG. 9, in the product of the present invention, even when the blending ratio of copper is the above lower limit value, the friction is low immediately after the start of operation, which is good compared to the copper iron system, and is equal to or better than the bronze bearing. It was found to have a good initial conformability. Further, it can be understood from FIG. 10 that even with a PV value exceeding 200 MPa · m / min, the friction is sufficiently low, and a PV value of about 500 MPa · m / min is practical. Furthermore, it can be understood from FIG. 11 that the wear amount of the product of the present invention is small and has durability equal to or higher than that of bronze-based and copper-iron-based products.

[他の実施形態]
以上に述べた第一の実施形態では、鉄組織を全てフェライト相で形成しているが、かかる構成では、軸受の使用条件(例えば高面圧で使用する場合)等により、表面層が摩耗してベース部が露出した際に軸受面の耐摩耗性が不十分となる場合がある。
[Other Embodiments]
In the first embodiment described above, the iron structure is entirely formed of a ferrite phase. However, in such a configuration, the surface layer is worn due to the use conditions of the bearing (for example, when used at a high surface pressure). When the base portion is exposed, the wear resistance of the bearing surface may be insufficient.

この場合、鉄組織を、フェライト相とパーライト相の二相組織にすれば、硬質のパーライト相が耐摩耗性の向上に寄与し、高面圧下での軸受面の摩耗を抑制して軸受寿命を向上させることができる(第二の実施形態)。炭素が拡散することにより、図6に示すように、パーライトγFeの存在割合が過剰となり、フェライトαFeと同等レベルの割合になると、パーライトによる軸に対する攻撃性が著しく増して軸が摩耗しやすくなる。これを防止するため、図12に示すように、パーライト相(γFe)はフェライト相(αFe)の粒界に存在(点在)する程度に抑える。ここでいう「粒界」は、フェライト相の間やフェライト相と他の粒子との間に形成される粒界の他、フェライト相(αFe)中の結晶粒界10の双方を意味する。図12では、前者の粒界に存在するパーライト相をγFe1で表し、後者の粒界に存在するパーライト相をγFe2で表している。フェライト相αFeに対するパーライト相γFe(γFe1+γFe2)の割合は、ベース部S2の任意断面において、面積比で5〜20%とするのが望ましい。   In this case, if the iron structure is a two-phase structure consisting of a ferrite phase and a pearlite phase, the hard pearlite phase contributes to the improvement of wear resistance, and the wear of the bearing surface under high surface pressure is suppressed and the bearing life is extended. It can be improved (second embodiment). Due to the diffusion of carbon, as shown in FIG. 6, when the proportion of pearlite γFe becomes excessive and the proportion is the same level as that of ferrite αFe, the aggressiveness of the pearlite against the shaft increases remarkably and the shaft is likely to wear. In order to prevent this, as shown in FIG. 12, the pearlite phase (γFe) is suppressed to the extent that it exists (is scattered) at the grain boundary of the ferrite phase (αFe). The “grain boundary” here means both the grain boundary formed between the ferrite phases and between the ferrite phase and other particles, as well as the crystal grain boundary 10 in the ferrite phase (αFe). In FIG. 12, the pearlite phase existing at the former grain boundary is represented by γFe1, and the pearlite phase present at the latter grain boundary is represented by γFe2. The ratio of the pearlite phase γFe (γFe1 + γFe2) to the ferrite phase αFe is preferably 5 to 20% in area ratio in the arbitrary cross section of the base portion S2.

パーライトの成長速度は、主に焼結温度に依存する。従って、上記の態様でパーライト相をフェライト相の粒界に存在させるためには、第一の実施形態よりも焼結温度を上げて、820℃〜900℃程度とし(図14参照)、かつ炉内雰囲気として炭素を含むガス、例えば天然ガスや吸熱型ガス(RXガス)を用いて焼結する。これにより、焼結時にはガスに含まれる炭素が鉄に拡散し、パーライト相γFeを形成することができる。なお、900℃を越える温度で焼結すると、黒鉛粉中の炭素が鉄と反応する。これ以外の構成、例えば原料粉体の組成や製造手順等は、第一の実施形態と共通であるので、重複説明を省略する。   The growth rate of pearlite mainly depends on the sintering temperature. Therefore, in order to allow the pearlite phase to exist at the grain boundary of the ferrite phase in the above-described manner, the sintering temperature is raised to about 820 ° C. to 900 ° C. as compared with the first embodiment (see FIG. 14), and the furnace Sintering is performed using a gas containing carbon as the inner atmosphere, such as natural gas or endothermic gas (RX gas). As a result, carbon contained in the gas diffuses into iron during sintering, and pearlite phase γFe can be formed. When sintered at a temperature exceeding 900 ° C., carbon in the graphite powder reacts with iron. Other configurations, such as the composition of the raw material powder and the manufacturing procedure, are the same as those in the first embodiment, and a duplicate description is omitted.

なお、以上の説明では、本発明を、軸受面1aを真円形状とした真円軸受に適用する場合を例示したが、本発明は真円軸受に限らず、軸受面1aや軸2の外周面にヘリングボーン溝、スパイラル溝等の動圧発生部を設けた流体動圧軸受にも同様に適用することができる。   In the above description, the case where the present invention is applied to a perfect circle bearing having a perfect circle shape on the bearing surface 1a is illustrated. However, the present invention is not limited to a perfect circle bearing, and the outer circumference of the bearing surface 1a and the shaft 2 is exemplified. The present invention can be similarly applied to a fluid dynamic pressure bearing in which a dynamic pressure generating portion such as a herringbone groove or a spiral groove is provided on the surface.

1 軸受
1a 軸受面
2 軸
3 扁平銅粉
4 鱗状黒鉛
6 金型
9 圧粉体
10 結晶粒界
61 成形面
L 扁平粉の長さ
t 扁平粉の厚さ
DESCRIPTION OF SYMBOLS 1 Bearing 1a Bearing surface 2 Shaft 3 Flat copper powder 4 Scale-like graphite 6 Mold 9 Compact 10 Grain boundary 61 Forming surface L Flat powder length t Flat powder thickness

Claims (13)

鉄粉、アスペクト比13.3以上の扁平銅粉、通常銅粉、低融点金属粉、および黒鉛粉を含む原料粉を混合して金型に充填し、扁平銅粉を金型成形面に付着させた状態で圧粉体を成形し、圧紛体を焼結することにより形成され、銅の含有量が均一になったベース部と、ベース部の表面を覆い、ベース部よりも銅の含有量を大きくした表面層とを有し、表面層の軸受面に銅組織と鉄組織を形成し、軸受面における銅組織を面積比で60%以上にした焼結軸受の製造方法であって、
前記原料粉における扁平銅粉および通常銅粉の割合を18重量%以上、40重量%以下とし、
圧粉体中の鉄を炭素と反応させることなく焼結することで、鉄組織をフェライト相で形成することを特徴とする焼結軸受の製造方法。
Iron powder, flat copper powder with an aspect ratio of 13.3 or higher, normal copper powder, low melting point metal powder, and raw material powder containing graphite powder are mixed and filled into the mold, and the flat copper powder adheres to the mold forming surface. In this state, the green compact is formed, and the compact is sintered. The base has a uniform copper content, covers the surface of the base, and contains more copper than the base. A sintered layer bearing having a surface layer with a large surface area , forming a copper structure and an iron structure on the bearing surface of the surface layer, and having a copper structure on the bearing surface of 60% or more in area ratio,
The ratio of the flat copper powder and the normal copper powder in the raw material powder is 18 wt% or more and 40 wt% or less,
A method for producing a sintered bearing, wherein the iron structure is formed of a ferrite phase by sintering iron in a green compact without reacting with carbon.
焼結温度を700℃〜840℃とする請求項1記載の焼結軸受の製造方法。   The method for producing a sintered bearing according to claim 1, wherein the sintering temperature is 700 ° C. to 840 ° C. 炭素を含まない雰囲気で焼結する請求項2記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to claim 2, wherein the sintering is performed in an atmosphere containing no carbon. 鉄粉、アスペクト比13.3以上の扁平銅粉、通常銅粉、低融点金属粉、および黒鉛粉を含む原料粉を混合して金型に充填し、扁平銅粉を金型成形面に付着させた状態で圧粉体を成形し、圧紛体を焼結することにより形成され、銅の含有量が均一になったベース部と、ベース部の表面を覆い、ベース部よりも銅の含有量を大きくした表面層とを有し、表面層の軸受面に銅組織と鉄組織を形成し、軸受面における銅組織を面積比で60%以上にした焼結軸受の製造方法であって、
前記原料粉における扁平銅粉および通常銅粉の割合を18重量%以上、40重量%以下とし、
圧粉体中の鉄を炭素と反応するように焼結することで、鉄組織を、フェライト相と、フェライト相の粒界に存在するパーライト相とで形成し、鉄組織でのフェライト相に対するパーライト相の割合を面積比で5〜20%とすることを特徴とする焼結軸受の製造方法。
Iron powder, flat copper powder with an aspect ratio of 13.3 or higher, normal copper powder, low melting point metal powder, and raw material powder containing graphite powder are mixed and filled into the mold, and the flat copper powder adheres to the mold forming surface. In this state, the green compact is formed, and the compact is sintered. The base has a uniform copper content, covers the surface of the base, and contains more copper than the base. A sintered layer bearing having a surface layer with a large surface area , forming a copper structure and an iron structure on the bearing surface of the surface layer, and having a copper structure on the bearing surface of 60% or more in area ratio,
The ratio of the flat copper powder and the normal copper powder in the raw material powder is 18 wt% or more and 40 wt% or less,
By sintering iron in the green compact to react with carbon, the iron structure is formed by the ferrite phase and the pearlite phase present at the grain boundary of the ferrite phase, and the pearlite with respect to the ferrite phase in the iron structure A method for manufacturing a sintered bearing, wherein the phase ratio is 5 to 20% in terms of area ratio.
焼結温度を820℃〜900℃とする請求項4記載の焼結軸受の製造方法。   The manufacturing method of the sintered bearing of Claim 4 which makes sintering temperature 820-900 degreeC. 炭素を含む雰囲気で焼結する請求項5記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to claim 5, wherein the sintering is performed in an atmosphere containing carbon. 前記混合前の扁平銅粉に流体潤滑剤を付着させる請求項1〜6何れか1項記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to claim 1, wherein a fluid lubricant is attached to the flat copper powder before mixing. 前記混合前の扁平銅粉に、扁平銅粉に対する重量比で0.1〜0.8重量%の流体潤滑剤を付着させる請求項7記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to claim 7, wherein 0.1 to 0.8% by weight of a fluid lubricant is adhered to the flat copper powder before mixing in a weight ratio with respect to the flat copper powder. 流体潤滑剤として脂肪酸を用いる請求項8記載の焼結軸受の製造方法。   The method for producing a sintered bearing according to claim 8, wherein a fatty acid is used as the fluid lubricant. 扁平銅粉の見かけ密度を1.0g/cm3以下、厚さを1.5μm以下、長さを20μm以上80μm以下とした請求項1〜9何れか1項に記載の焼結軸受の製造方法。 The method for producing a sintered bearing according to any one of claims 1 to 9, wherein the apparent density of the flat copper powder is 1.0 g / cm 3 or less, the thickness is 1.5 µm or less, and the length is 20 µm or more and 80 µm or less. . 黒鉛粉として、鱗状黒鉛を使用する請求項1〜10何れか1項に記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to any one of claims 1 to 10, wherein scaly graphite is used as the graphite powder. 原料粉における扁平銅粉の割合を8重量%以上にする請求項1〜11何れか1項に記載の焼結軸受の製造方法。   The method for producing a sintered bearing according to any one of claims 1 to 11, wherein a ratio of the flat copper powder in the raw material powder is 8 wt% or more. 銅に対する低融点金属の割合を、重量比で10%未満にする請求項12記載の焼結軸受の製造方法。   The method for producing a sintered bearing according to claim 12, wherein the ratio of the low melting point metal to copper is less than 10% by weight.
JP2012020858A 2011-09-22 2012-02-02 Manufacturing method of sintered bearing Active JP6038460B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012020858A JP6038460B2 (en) 2012-02-02 2012-02-02 Manufacturing method of sintered bearing
US14/346,447 US10081056B2 (en) 2011-09-22 2012-09-18 Sintered bearing and method for manufacturing same
CN201610806753.0A CN106402145B (en) 2011-09-22 2012-09-18 Sintered bearing and its manufacturing method
CN201280045531.1A CN103813874B (en) 2011-09-22 2012-09-18 Sintered bearing and manufacture method thereof
PCT/JP2012/073848 WO2013042664A1 (en) 2011-09-22 2012-09-18 Sintered bearing and method for manufacturing same
US16/106,528 US11433455B2 (en) 2011-09-22 2018-08-21 Sintered bearing and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020858A JP6038460B2 (en) 2012-02-02 2012-02-02 Manufacturing method of sintered bearing

Publications (2)

Publication Number Publication Date
JP2013159796A JP2013159796A (en) 2013-08-19
JP6038460B2 true JP6038460B2 (en) 2016-12-07

Family

ID=49172317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020858A Active JP6038460B2 (en) 2011-09-22 2012-02-02 Manufacturing method of sintered bearing

Country Status (1)

Country Link
JP (1) JP6038460B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753395B2 (en) * 2016-02-25 2020-08-25 Ntn Corporation Oil-impregnated sintered bearing and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228409B2 (en) * 2013-09-10 2017-11-08 Ntn株式会社 Sliding member and manufacturing method thereof
EP3045241A4 (en) * 2013-09-10 2017-05-10 NTN Corporation Sliding member and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873275B2 (en) * 2002-01-31 2007-01-24 三菱マテリアルPmg株式会社 Sliding parts and manufacturing method thereof
JP2008069384A (en) * 2006-09-12 2008-03-27 Ntn Corp Fe-BASED SINTERED METAL BEARING AND ITS MANUFACTURING METHOD
JP5247329B2 (en) * 2008-09-25 2013-07-24 日立粉末冶金株式会社 Iron-based sintered bearing and manufacturing method thereof
JP2011094167A (en) * 2009-10-27 2011-05-12 Diamet:Kk Iron-copper based sintered sliding member, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753395B2 (en) * 2016-02-25 2020-08-25 Ntn Corporation Oil-impregnated sintered bearing and method for manufacturing same

Also Published As

Publication number Publication date
JP2013159796A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
US11433455B2 (en) Sintered bearing and method for manufacturing same
US11248653B2 (en) Sintered bearing
US10907685B2 (en) Sintered bearing and manufacturing process therefor
JP6038459B2 (en) Sintered bearing
JP5972588B2 (en) Manufacturing method of sintered bearing
US10536048B2 (en) Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
JP6816079B2 (en) Vibration motor
JP6038522B2 (en) Sintered bearing
JP6921046B2 (en) Manufacturing method of sintered bearing
EP2878839B1 (en) Sintered bearing and manufacturing method thereof
JP6302259B2 (en) Manufacturing method of sintered bearing
JP6038460B2 (en) Manufacturing method of sintered bearing
WO2013042664A1 (en) Sintered bearing and method for manufacturing same
JP6548952B2 (en) Sintered bearing and method of manufacturing the same
JP6462053B2 (en) Sintered bearing
JP6701319B2 (en) Sintered bearing
JP6170587B2 (en) Sintered bearing
JP6571230B2 (en) Sintered bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160816

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R150 Certificate of patent or registration of utility model

Ref document number: 6038460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250