JP3873275B2 - Sliding parts and manufacturing method thereof - Google Patents

Sliding parts and manufacturing method thereof Download PDF

Info

Publication number
JP3873275B2
JP3873275B2 JP2002024031A JP2002024031A JP3873275B2 JP 3873275 B2 JP3873275 B2 JP 3873275B2 JP 2002024031 A JP2002024031 A JP 2002024031A JP 2002024031 A JP2002024031 A JP 2002024031A JP 3873275 B2 JP3873275 B2 JP 3873275B2
Authority
JP
Japan
Prior art keywords
copper
raw material
material powder
powder
based raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002024031A
Other languages
Japanese (ja)
Other versions
JP2003221606A (en
Inventor
輝夫 清水
恒夫 丸山
Original Assignee
三菱マテリアルPmg株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアルPmg株式会社 filed Critical 三菱マテリアルPmg株式会社
Priority to JP2002024031A priority Critical patent/JP3873275B2/en
Publication of JP2003221606A publication Critical patent/JP2003221606A/en
Application granted granted Critical
Publication of JP3873275B2 publication Critical patent/JP3873275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、軸受などの摺動部品とその製造方法に関する。
【0002】
【発明が解決しようとする課題】
この種の摺動部品として、回転軸を支承する軸受があり、この軸受の製法として、金属を主原料とする原料粉末を圧縮して圧粉体を形成した後、この圧粉体を焼結してなる焼結含油軸受が広く用いられている。
【0003】
その焼結含油軸受では、鉄系や銅系の原料粉末を用いて成形され、鉄系の原料粉末を用いれば強度的に優れた軸受が得られるものの、一般に回転軸には鋼などの鉄系材料が用いられ、このように軸受及び回転軸に同種の材料を用いると、摩擦抵抗が大となり、溶着摩耗の発生を招き、耐久性が損われる。一方、銅系の原料粉末を用いれば、軸受と回転軸との摩擦抵抗が極めて小さくなるが、軸受側の摩耗が大となり、耐久性を損う。
【0004】
このように焼結含浸軸受においても、一般の軸受と同様に、摩擦抵抗の削減と耐久性の向上が可能な製品の開発が進められ、例えば、銅又は銅合金によって鍍金された鉄粉を原料粉末に用いた焼結含油軸受が知られており、この軸受では銅と鉄が混合した構造により、従来に比べて、摩擦抵抗の削減と耐久性の向上とが図られる。
【0005】
しかし、軸受等において、近年、摩耗と寿命に関する要求に加えて、さらに、ノイズ発生に対する要求が高まり、例えば、−40度といった低温状態で、始動時にノイズが発生しない性能が要求され、従来のものでは、この要求に対応することが難しかった。
【0006】
そこで、本発明は、摩擦抵抗の削減と耐久性の向上を図ることができ、ノイズの発生を防止することができる摺動部品とその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1の摺動部品は、前記目的を達成するために、鉄系と銅系の原料粉末を成形金型の充填部に充填し、この原料粉末を加圧して圧粉体を成形し、この圧粉体を焼結してなる摺動部品において、前記銅系の原料粉末が前記鉄系の原料粉末よりアスペクト比が大きな偏平粉であり、表面側に銅が偏析し、表面側から内部に向って銅の割合が低くなると共に鉄の割合が高くなるものである。
【0008】
銅系原料粉末に偏平粉を用い、この偏平粉と鉄系の原料粉末とを充填部に充填して振動を加えることにより、銅系の偏平粉が表面側に偏析し、得られた摺動部品は、表面側が銅に覆われ、表面側から内部に向って銅の割合が低くなると共に鉄の割合が高くなる濃度勾配をなす。
【0009】
したがって、この摺動部品により軸受を構成した場合では、銅に覆われた表面側に回転体が摺動し、回転軸と表面側との摩擦係数が低く、円滑な回転が可能となり、同時に鉄により所定の強度と耐久性とが得られる。また、この構造では、回転体が摺動する表面側が摩耗しても、表面側の下には銅が所定の割合で含まれているから、摺動部分の耐久性に優れたものとなる。
【0010】
また、請求項2の発明は、請求項1の摺動部において、摺動部の表面銅被覆率が60%以上である。
【0011】
これにより摺動部の摩擦係数を極めて低く抑えることができる。
【0012】
また、請求項3の発明は、請求項1又は2の摺動部品において、前記偏平粉のアスペクト比が10以上である。
【0013】
偏平紛のアスペクト比を10以上とすることにより、振動を加えると、偏平粉が表面側に良好に偏析し、表面側の銅濃度の高い摺動部品が得られる。
【0014】
また、請求項4の発明は、請求項2の摺動部品において、前記銅系の原料粉末の割合が全体の20〜70重量%である。
【0015】
銅系の原料粉末の割合が20重量%未満であると、表面側における銅の割合が低下し、摩擦抵抗が大きくなり、70重量%を超えると、全体に示す銅系の割合が多くなり、強度的に不利となる。したがって、上記割合を採用することによって、摩擦抵抗を削減し、かつ強度的に優れた摺動部品を得ることができる。
【0016】
請求項5の摺動部品の製造方法は、前記目的を達成するために、鉄系と銅系の原料粉末とを成形金型の充填部に充填し、この原料粉末を加圧して圧粉体を成形し、この圧粉体を焼結してなる摺動部品の製造方法において、前記銅系の原料粉末に前記鉄系の原料粉末よりアスペクト比が大きな偏平粉を用い、振動により前記充填部内の銅系の原料粉末を前記圧粉体の表面側に偏析する方法である。
【0017】
この方法を用いることにより、摩擦係数が低く、耐久性に優れた摺動部品が得られる。
【0018】
【発明の実施形態】
以下、本発明の実施形態を添付図面を参照して説明する。図1〜図7は本発明の一実施形態を示す。
【0019】
まず、本発明の製造方法につき説明すると、鉄系の原料粉末1と銅系の原料粉末2とを所定の割合で混合(S1)する。図2に示すように、鉄系の原料粉末1にはアトマイズ粉などの略球状の不規則形状粉を用いる。一方、図3に示すように、銅系の原料粉末2には偏平粉を用い、この偏平粉のアスペクト比(直径D/厚さT)は10以上、好ましくは20〜40とする。また、銅系の原料粉末2には、銅粉末を主体とし、錫粉末を2〜30重量%混合したものを用いることができる。
【0020】
図4に示すように、軸受5は略円筒形をなし、その中央には回転体たる回転軸(図示せず)が回転摺動するほぼ円筒状の摺動面51が形成され、この摺動部たる摺動面51の長さ方向両側には平行で平坦な端面52,53が設けられ、その外周面54は円筒状に形成されている。
【0021】
混合(S1)した鉄系と銅系の原料粉末1,2を成形金型11の充填部16に充填する。
【0022】
図5は成形金型11の一例を示し、この成形金型11は、上下方向を軸方向(プレス上下軸方向)としており、ダイ12、コアロッド13、下パンチ14および上パンチ15を備えている。ダイ12はほぼ円筒形状で、このダイ12内にほぼ円柱形状のコアロッド13が同軸的に位置している。下パンチ14は、ほぼ円筒形状で、ダイ12およびコアロッド13間に下方から上下動自在に嵌合している。上パンチ15は、ほぼ円筒形状で、ダイ12およびコアロッド13間に上方から上下動自在にかつ挿脱自在に嵌合するものである。そして、ダイ12とコアロッド13と下パンチ14との間に充填部16が形成され、前記ダイ12の内周面が前記外周面54を形成し、前記下パンチ14の上面が前記端面53を形成し、前記上パンチ15の下面が前記端面52を形成し、コアロッド13の外周面が前記摺動面51を形成する。
【0023】
図5に示すように、前記充填部16に、混合した鉄系と銅系の原料粉末1,2を充填し、これら原料粉末1,2に振動(S2)を与える。この場合、充填部16の上部を上パンチ15により塞ぎ、パンチ14,15により加圧することなく、充填部16に加速度0.01〜3G程度の振動を与える。振動を受けると、偏平粉である銅系の原材粉末2が充填部16内の外側に偏析し、厚さ方向に重なり合うと共に、厚さと交叉する方向を表面側の長さ方向に合わせるようにして集まり、この後、上,下パンチ15,14により充填部16内の原料粉末1,2を加圧することにより圧粉体6を成形(S3)する。この圧粉体6は図6に示すように、表面側に偏平粉である銅系の原料粉末2が集まり、内部に向って鉄系の原料粉末1の割合が増加する。その圧粉体を焼結(S4)することにより、焼結品である軸受5が形成される。
【0024】
一例として、原料粉末2にアスペクト比20〜40の偏平粉を用い、鉄系の原料粉末1と銅系の原料粉末2との割合を40対60(重量割合)とし、充填部16において、0.05〜0.1G程度の振動を0.5秒間加えた後、加圧して圧粉体6を形成し、これを焼結した軸受5において、表面側から銅の濃度を測定した。図7に示すように、軸受5の摺動面51と外周面54の銅濃度を測定すると共に、それら摺動面51と外周面54との間の等間隔をなす7箇所で銅濃度を測定した。なお、図7では測定箇所に×印を付し、各測定箇所の銅濃度を図示上のグラフに示した。このように銅系の原料粉末2の偏平粉を60重量%以上用いることにより、表面側を銅100%とすることができることが分かった。この場合の摺動面51及び外周面54の表面銅被覆率はほぼ100%となる。
【0025】
上記の表面銅被覆率は、表面をカラー写真撮影(倍率×100)し、決められた2mm方眼のトレース用紙のフレームを写真上に重ね合わせ、銅部の面積比率を計算して算出される。
【0026】
また、鉄系の原料粉末1と銅系の原料粉末2との割合を変え、50対50では表面銅被覆率が約90%、60対40では表面銅被覆率が80%、70対30では表面銅被覆率が70%、80対20では表面銅被覆率が60%となった。
【0027】
摺動面51の表面銅被覆率が100%で、摩擦抵抗が最低となり、−40度の温度下で回転軸を始動する試験において、ノイズの発生は見られず、表面銅被覆率が90%程度までは同様な効果が得られた。一方、表面銅被覆率が100%であっても、銅系の原料粉末2の割合が70重量%を超えると、強度が低下するため、銅系の原材料粉末の割合は原料全体の20〜70重量%とした。
【0028】
このように本実施形態では、請求項1に対応して、鉄系と銅系の原料粉末1,2を成形金型11の充填部16に充填し、この原料粉末1,2を加圧して圧粉体6を成形し、この圧粉体6を焼結してなる摺動部品たる軸受5において、銅系の原料粉末2が鉄系の原料粉末1よりアスペクト比が大きな偏平粉であり、表面たる摺動面51側に銅が偏析し、表面側から内部に向って銅の割合が低くなると共に鉄の割合が高くなるから、この偏平粉である銅系の原料粉末2と鉄系の原料粉末1とを充填部16に充填して振動を加えることにより、銅系の偏平粉が表面側に偏析し、得られた軸受5は、表面側が銅に覆われ、表面側から内部に向ってよりの割合が高くなる濃度勾配なす。
【0029】
したがって、銅に覆われた表面たる摺動面51に回転体が摺動し、回転軸と摺動面51との摩擦係数が低く、円滑な回転が可能となり、同時に鉄により所定の強度と耐久性を得ることができる。また、この構造では、回転体が摺動する摺動面51が摩耗しても、摺動面51の下には所定の割合で銅が含まれているから、摺動部分の耐久性に優れたものとなる。
【0030】
また、このように本実施形態では、請求項2に対応して、摺動部たる摺動面51の表面銅被覆率が60%以上であるから、摺動面の摩擦係数を極めて低く抑えることができる。
【0031】
また、このように本実施形態では、請求項3に対応して、偏平粉のアスペクト比が10以上であるから、振動を加えると、偏平粉が表面側に良好に偏析し、表面側の銅濃度の高い軸受5を得ることができる。
【0032】
また、このように本実施形態では、請求項4に対応して、銅系の原料粉末2の割合が全体の20〜70重量%であるから、低い摩擦抵抗と強度とを兼ね備えた軸受5を得ることができる。
【0033】
このように本実施形態では、請求項5に対応して、鉄系と銅系の原料粉末1,2とを成形金型11の充填部16に充填し、この原料粉末1,2を加圧して圧粉体6を成形し、この圧粉体6を焼結してなる摺動部品たる軸受5の製造方法において、銅系の原料粉末2に前記鉄系の原料粉末1よりアスペクト比が大きな偏平粉を用い、振動により充填部16内の銅系の原料粉末2を圧粉体51の表面側に偏析するから、その圧粉体51を焼結する軸受5は、摩擦係数が低く、耐久性に優れたものとなる。
【0034】
なお、本発明は、前記実施形態に限定されるものではなく、種々の変形実施が可能である。例えば、偏平粉には、棒状のものも含まれ、この場合は長さと直径の比がアスペクト比となる。
【0035】
【発明の効果】
請求項1の摺動部品は、鉄系と銅系の原料粉末を成形金型の充填部に充填し、この原料粉末を加圧して圧粉体を成形し、この圧粉体を焼結してなる摺動部品において、前記銅系の原料粉末が前記鉄系の原料粉末よりアスペクト比が大きな偏平粉であり、表面側に銅が偏析し、表面側から内部に向って銅の割合が低くなると共に鉄の割合が高くなるものであり、摩擦抵抗の削減と耐久性の向上を図ることができ摺動部品を提供することができる。
【0036】
また、請求項2の発明は、請求項1の効果に加えて、摺動部の表面銅被覆率が60%以上であり、摺動部の摩擦係数を極めて低く抑えることができる。
【0037】
また、請求項3の発明は、請求項1又は2の効果に加えて、前記偏平粉のアスペクト比が10以上であり、振動を加えると、偏平粉が表面側に良好に偏析し、表面側の銅濃度の高い摺動部品が得られる。
【0038】
また、請求項4の発明は、請求項2の効果に加えて、前記銅系の原料粉末の割合が全体の20〜70重量%であり、摩擦抵抗を削減し、かつ強度的に優れた摺動部品を得ることができる。
【0039】
請求項5の摺動部品の製造方法は、鉄系と銅系の原料粉末とを成形金型の充填部に充填し、この原料粉末を加圧して圧粉体を成形し、この圧粉体を焼結してなる摺動部品の製造方法において、前記銅系の原料粉末に前記鉄系の原料粉末よりアスペクト比が大きな偏平粉を用い、振動により前記充填部内の銅系の原料粉末を前記圧粉体の表面側に偏析する方法であり、摩擦係数が低く、耐久性に優れた摺動部品が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す製造方法を説明するフローチャート図である。
【図2】同上、鉄系の原料粉末の正面図である。
【図3】同上、銅系の原料粉末を示し、図3(A)は側面図、図3(B)は正面図である。
【図4】同上、軸受の斜視図である。
【図5】同上、成形金型の断面図である。
【図6】同上、圧粉体の断面図であり、一部を拡大表示している。
【図7】同上、軸受の断面説明図と銅の濃度を示すグラフである。
【符号の説明】
1 鉄系の原料粉末
2 銅系の原料粉末(偏平粉)
5 軸受
6 圧粉体
11 成形金型
16 充填部
51 摺動面(摺動部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sliding component such as a bearing and a manufacturing method thereof.
[0002]
[Problems to be solved by the invention]
As this type of sliding parts, there is a bearing that supports a rotating shaft. As a manufacturing method of this bearing, after compressing raw material powder mainly made of metal to form a green compact, this green compact is sintered. Sintered oil-impregnated bearings are widely used.
[0003]
The sintered oil-impregnated bearing is formed using iron-based or copper-based raw material powder, and if iron-based raw material powder is used, a bearing excellent in strength can be obtained. If a material is used, and the same type of material is used for the bearing and the rotating shaft in this way, the frictional resistance becomes large, causing welding wear and impairing durability. On the other hand, if the copper-based raw material powder is used, the frictional resistance between the bearing and the rotating shaft becomes extremely small, but the wear on the bearing side becomes large and the durability is impaired.
[0004]
Thus, in the case of sintered impregnated bearings, as in general bearings, products that can reduce frictional resistance and improve durability are being developed. For example, iron powder plated with copper or copper alloy is used as a raw material. A sintered oil-impregnated bearing used for powder is known, and in this bearing, a structure in which copper and iron are mixed reduces frictional resistance and improves durability compared to the conventional one.
[0005]
However, in recent years, in bearings and the like, in addition to requirements related to wear and life, there has been a further increase in the demand for noise generation. So, it was difficult to meet this demand.
[0006]
Therefore, an object of the present invention is to provide a sliding component capable of reducing frictional resistance and improving durability and preventing noise from being generated, and a manufacturing method thereof.
[0007]
[Means for Solving the Problems]
In order to achieve the object, the sliding component of claim 1 fills the filling portion of the molding die with iron-based and copper-based raw material powder, presses the raw material powder to form a green compact, In the sliding part formed by sintering the green compact, the copper-based raw material powder is a flat powder having an aspect ratio larger than that of the iron-based raw material powder, and copper is segregated on the surface side, and from the surface side to the inside. The ratio of copper decreases and the ratio of iron increases .
[0008]
Using flat powder as the copper-based raw material powder, filling this flat powder and iron-based raw material powder into the filling part and applying vibration, the copper-based flat powder segregates on the surface side, and the resulting sliding The part has a concentration gradient in which the surface side is covered with copper and the ratio of copper decreases and the ratio of iron increases from the surface side toward the inside.
[0009]
Therefore, when a bearing is constituted by this sliding component, the rotating body slides on the surface side covered with copper, the coefficient of friction between the rotating shaft and the surface side is low, and smooth rotation is possible. Thus, predetermined strength and durability can be obtained. Further, in this structure, even if the surface side on which the rotating body slides is worn, copper is contained at a predetermined ratio below the surface side, so that the durability of the sliding portion is excellent.
[0010]
The invention of claim 2 is the sliding portion article of claim 1, the surface of copper coverage of the sliding part is 60% or more.
[0011]
Thereby, the friction coefficient of a sliding part can be suppressed very low.
[0012]
According to a third aspect of the present invention, in the sliding component of the first or second aspect, the flat powder has an aspect ratio of 10 or more.
[0013]
By making the aspect ratio of the flat powder 10 or more, when vibration is applied, the flat powder is well segregated on the surface side, and a sliding component having a high copper concentration on the surface side is obtained.
[0014]
According to a fourth aspect of the present invention, in the sliding component of the second aspect, the ratio of the copper-based raw material powder is 20 to 70% by weight.
[0015]
When the proportion of the copper-based raw material powder is less than 20% by weight, the proportion of copper on the surface side decreases, the frictional resistance increases, and when it exceeds 70% by weight, the proportion of the copper-based material as a whole increases. It is disadvantageous in strength. Therefore, by adopting the above ratio, it is possible to obtain a sliding component having reduced frictional resistance and excellent strength.
[0016]
In order to achieve the object, the sliding part manufacturing method according to claim 5 fills a filling part of a molding die with iron-based and copper-based raw material powder, pressurizes the raw material powder, and compacts the green compact. In the method for manufacturing a sliding part formed by sintering the green compact, a flat powder having an aspect ratio larger than that of the iron-based raw material powder is used as the copper-based raw material powder, and vibration is generated in the filling portion. The copper-based raw material powder is segregated on the surface side of the green compact.
[0017]
By using this method, a sliding component having a low friction coefficient and excellent durability can be obtained.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 to 7 show an embodiment of the present invention.
[0019]
First, the production method of the present invention will be described. The iron-based raw material powder 1 and the copper-based raw material powder 2 are mixed at a predetermined ratio (S1). As shown in FIG. 2, a substantially spherical irregularly shaped powder such as atomized powder is used for the iron-based raw material powder 1. On the other hand, as shown in FIG. 3, flat powder is used for the copper-based raw material powder 2, and the aspect ratio (diameter D / thickness T) of the flat powder is 10 or more, preferably 20 to 40. Moreover, as the copper-based raw material powder 2, a powder mainly composed of copper powder and 2 to 30% by weight of tin powder can be used.
[0020]
As shown in FIG. 4, the bearing 5 has a substantially cylindrical shape, and a substantially cylindrical sliding surface 51 on which a rotating shaft (not shown) as a rotating body rotates and slides is formed at the center. Parallel and flat end surfaces 52 and 53 are provided on both sides in the length direction of the sliding surface 51, and the outer peripheral surface 54 is formed in a cylindrical shape.
[0021]
The mixed (S 1) iron-based and copper-based raw material powders 1 and 2 are filled in the filling portion 16 of the molding die 11.
[0022]
FIG. 5 shows an example of the molding die 11. The molding die 11 has an up-down direction as an axial direction (press up-down axis direction), and includes a die 12, a core rod 13, a lower punch 14, and an upper punch 15. . The die 12 has a substantially cylindrical shape, and a substantially cylindrical core rod 13 is coaxially positioned in the die 12. The lower punch 14 has a substantially cylindrical shape and is fitted between the die 12 and the core rod 13 so as to be vertically movable from below. The upper punch 15 has a substantially cylindrical shape, and is fitted between the die 12 and the core rod 13 so as to be movable up and down from above and detachably. A filling portion 16 is formed between the die 12, the core rod 13, and the lower punch 14. The inner peripheral surface of the die 12 forms the outer peripheral surface 54, and the upper surface of the lower punch 14 forms the end surface 53. The lower surface of the upper punch 15 forms the end surface 52, and the outer peripheral surface of the core rod 13 forms the sliding surface 51.
[0023]
As shown in FIG. 5, the filling portion 16 is filled with the mixed iron-based and copper-based raw material powders 1 and 2, and vibrations (S2) are applied to these raw material powders 1 and 2. In this case, the upper portion of the filling portion 16 is closed by the upper punch 15 and the filling portion 16 is vibrated at an acceleration of about 0.01 to 3 G without being pressurized by the punches 14 and 15. When subjected to vibration, the copper-based raw material powder 2 that is a flat powder segregates outside the filling portion 16, overlaps in the thickness direction, and matches the direction intersecting the thickness with the length direction on the surface side. After that, the green compact 6 is formed (S3) by pressurizing the raw material powders 1 and 2 in the filling portion 16 with the upper and lower punches 15 and 14. As shown in FIG. 6, the green compact 6 has a copper-based raw material powder 2 which is a flat powder gathered on the surface side, and the ratio of the iron-based raw material powder 1 increases toward the inside. The sintered compact 5 is formed by sintering (S4) the green compact.
[0024]
As an example, a flat powder having an aspect ratio of 20 to 40 is used as the raw material powder 2 and the ratio of the iron-based raw material powder 1 and the copper-based raw material powder 2 is 40:60 (weight ratio). After applying vibration of about 0.05 to 0.1 G for 0.5 seconds, the green compact 6 was formed by pressurization, and in the sintered bearing 5, the copper concentration was measured from the surface side. As shown in FIG. 7, the copper concentration of the sliding surface 51 and the outer peripheral surface 54 of the bearing 5 is measured, and the copper concentration is measured at seven points that are equally spaced between the sliding surface 51 and the outer peripheral surface 54. did. In FIG. 7, the measurement locations are marked with x, and the copper concentration at each measurement location is shown in the graph on the drawing. Thus, it turned out that the surface side can be made into 100% of copper by using 60 weight% or more of flat powder of the copper-type raw material powder 2. FIG. In this case, the surface copper coverage of the sliding surface 51 and the outer peripheral surface 54 is almost 100%.
[0025]
The surface copper coverage is calculated by taking a color photograph of the surface (magnification × 100), overlaying a frame of a predetermined 2 mm square trace paper on the photograph, and calculating the area ratio of the copper part.
[0026]
Further, the ratio of the iron-based raw material powder 1 and the copper-based raw material powder 2 is changed, so that the surface copper coverage is about 90% at 50:50, the surface copper coverage is 80% at 60:40, and at 70:30. When the surface copper coverage was 70% and 80:20, the surface copper coverage was 60%.
[0027]
In the test where the surface copper coverage of the sliding surface 51 is 100%, the frictional resistance is the lowest, and the rotating shaft is started at a temperature of -40 degrees, no noise is observed, and the surface copper coverage is 90%. A similar effect was obtained to the extent. On the other hand, even if the surface copper coverage is 100%, if the proportion of the copper-based raw material powder 2 exceeds 70% by weight, the strength decreases, so the proportion of the copper-based raw material powder is 20 to 70 of the entire raw material. % By weight.
[0028]
Thus, in this embodiment, corresponding to claim 1, the iron-based and copper-based raw material powders 1 and 2 are filled in the filling portion 16 of the molding die 11, and the raw material powders 1 and 2 are pressurized. In the bearing 5 which is a sliding part formed by molding the green compact 6 and sintering the green compact 6, the copper-based raw material powder 2 is a flat powder having a larger aspect ratio than the iron-based raw material powder 1. Copper segregates on the sliding surface 51 side, which is the surface, and the ratio of copper decreases from the surface side to the inside and the ratio of iron increases . By filling the raw material powder 1 in the filling portion 16 and applying vibration, the copper-based flat powder segregates on the surface side, and the obtained bearing 5 is covered with copper on the surface side, and is directed from the surface side to the inside. Concentration gradient in which the ratio of iron is higher than copper .
[0029]
Therefore, the rotating body slides on the sliding surface 51 which is the surface covered with copper, the friction coefficient between the rotating shaft and the sliding surface 51 is low, and smooth rotation is possible, and at the same time, the iron has a predetermined strength and durability. Sex can be obtained. In this structure, even if the sliding surface 51 on which the rotating body slides is worn, copper is contained under the sliding surface 51 at a predetermined ratio, so the durability of the sliding portion is excellent. It will be.
[0030]
As described above, in this embodiment, corresponding to claim 2, the surface copper coverage of the sliding surface 51 as the sliding portion is 60% or more, so that the friction coefficient of the sliding surface is extremely low. Can do.
[0031]
As described above, in this embodiment, the aspect ratio of the flat powder is 10 or more, corresponding to claim 3, so that when the vibration is applied, the flat powder is well segregated on the surface side, and the copper on the surface side A bearing 5 having a high concentration can be obtained.
[0032]
In this way, in this embodiment, since the ratio of the copper-based raw material powder 2 is 20 to 70% by weight of the whole, corresponding to claim 4, the bearing 5 having both low frictional resistance and strength is provided. Obtainable.
[0033]
Thus, in this embodiment, corresponding to claim 5, the iron-based and copper-based raw material powders 1 and 2 are filled in the filling portion 16 of the molding die 11, and the raw material powders 1 and 2 are pressurized. In the manufacturing method of the bearing 5 that is a sliding part formed by forming the green compact 6 and sintering the green compact 6, the copper-based raw material powder 2 has a larger aspect ratio than the iron-based raw material powder 1. Since flat powder is used and the copper-based raw material powder 2 in the filling portion 16 is segregated on the surface side of the green compact 51 by vibration, the bearing 5 for sintering the green compact 51 has a low friction coefficient and durability. Excellent in properties.
[0034]
In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible. For example, the flat powder includes a rod-shaped powder, and in this case, the ratio of length to diameter is the aspect ratio.
[0035]
【The invention's effect】
In the sliding part of claim 1, the raw material powders of iron and copper are filled in the filling part of the molding die, the raw material powder is pressed to form a green compact, and the green compact is sintered. The copper-based raw material powder is a flat powder having a larger aspect ratio than the iron-based raw material powder, copper is segregated on the surface side, and the proportion of copper is low from the surface side toward the inside. At the same time, the ratio of iron increases , and frictional resistance can be reduced and durability can be improved, and a sliding component can be provided.
[0036]
In addition to the effect of the first aspect, the invention of claim 2 has a surface copper coverage of 60% or more at the sliding portion, and the friction coefficient of the sliding portion can be kept extremely low.
[0037]
In addition to the effect of the first or second aspect, the invention of claim 3 has an aspect ratio of the flat powder of 10 or more. When vibration is applied, the flat powder is well segregated on the surface side. A sliding part having a high copper concentration can be obtained.
[0038]
In addition to the effect of claim 2, the invention of claim 4 is characterized in that the ratio of the copper-based raw material powder is 20 to 70% by weight of the whole, reducing frictional resistance, and having excellent strength. A moving part can be obtained.
[0039]
According to a fifth aspect of the present invention, there is provided a sliding part manufacturing method comprising filling a filling portion of a molding die with iron-based and copper-based raw material powder, pressurizing the raw material powder to form a green compact, and forming the green compact. In the manufacturing method of the sliding part formed by sintering, a flat powder having an aspect ratio larger than that of the iron-based raw material powder is used for the copper-based raw material powder, and the copper-based raw material powder in the filling portion is vibrated by vibration. This is a method of segregating on the surface side of the green compact, and a sliding component having a low friction coefficient and excellent durability can be obtained.
[Brief description of the drawings]
FIG. 1 is a flowchart for explaining a manufacturing method according to an embodiment of the present invention.
FIG. 2 is a front view of the iron-based raw material powder.
3 shows a copper-based raw material powder, FIG. 3 (A) is a side view, and FIG. 3 (B) is a front view.
FIG. 4 is a perspective view of the bearing.
FIG. 5 is a cross-sectional view of the molding die.
FIG. 6 is a cross-sectional view of the green compact, partly enlarged.
FIG. 7 is a cross-sectional explanatory view of a bearing and a graph showing copper concentration.
[Explanation of symbols]
1 Iron-based raw material powder 2 Copper-based raw material powder (flat powder)
5 Bearing 6 Green compact
11 Mold
16 Filling part
51 Sliding surface (sliding part)

Claims (5)

鉄系と銅系の原料粉末を成形金型の充填部に充填し、この原料粉末を加圧して圧粉体を成形し、この圧粉体を焼結してなる摺動部品において、前記銅系の原料粉末が前記鉄系の原料粉末よりアスペクト比が大きな偏平粉であり、表面側に銅が偏析し、表面側から内部に向って銅の割合が低くなると共に鉄の割合が高くなることを特徴とする摺動部品。In a sliding part formed by filling iron-type and copper-type raw material powder into the filling part of a molding die, pressing the raw material powder to form a green compact, and sintering the green compact, the copper The raw material powder is a flat powder having an aspect ratio larger than that of the iron-based raw material powder, copper is segregated on the surface side, and the ratio of copper decreases from the surface side toward the inside and the ratio of iron increases. Sliding parts characterized by 摺動部の表面銅被覆率が60%以上であることを特徴とする請求項1記載の摺動部品。2. The sliding component according to claim 1, wherein the sliding portion has a surface copper coverage of 60% or more. 前記偏平粉のアスペクト比が10以上であることを特徴とする請求項1又は2記載の摺動部品。The sliding component according to claim 1 or 2, wherein an aspect ratio of the flat powder is 10 or more. 前記銅系の原料粉末の割合が全体の20〜70重量%であることを特徴とする請求項2記載の摺動部品。The sliding component according to claim 2, wherein a ratio of the copper-based raw material powder is 20 to 70% by weight of the whole. 鉄系と銅系の原料粉末とを成形金型の充填部に充填し、この原料粉末を加圧して圧粉体を成形し、この圧粉体を焼結してなる摺動部品の製造方法において、前記銅系の原料粉末に前記鉄系の原料粉末よりアスペクト比が大きな偏平粉を用い、振動により前記充填部内の銅系の原料粉末を前記圧粉体の表面側に偏析することを特徴とする摺動部品の製造方法。A method for producing a sliding part comprising filling a molding die with iron-based and copper-based raw material powder, pressing the raw material powder to form a green compact, and sintering the green compact Wherein the copper-based raw material powder is a flat powder having an aspect ratio larger than that of the iron-based raw material powder, and the copper-based raw material powder in the filling portion is segregated on the surface side of the green compact by vibration. A manufacturing method of sliding parts.
JP2002024031A 2002-01-31 2002-01-31 Sliding parts and manufacturing method thereof Expired - Fee Related JP3873275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024031A JP3873275B2 (en) 2002-01-31 2002-01-31 Sliding parts and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024031A JP3873275B2 (en) 2002-01-31 2002-01-31 Sliding parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003221606A JP2003221606A (en) 2003-08-08
JP3873275B2 true JP3873275B2 (en) 2007-01-24

Family

ID=27746584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024031A Expired - Fee Related JP3873275B2 (en) 2002-01-31 2002-01-31 Sliding parts and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3873275B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10081056B2 (en) 2011-09-22 2018-09-25 Ntn Corporation Sintered bearing and method for manufacturing same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918966B2 (en) * 2005-04-20 2012-04-18 株式会社ダイヤメット Manufacturing method of sliding parts
JP4918967B2 (en) * 2005-04-20 2012-04-18 株式会社ダイヤメット Manufacturing method of sliding parts
JP2011094167A (en) * 2009-10-27 2011-05-12 Diamet:Kk Iron-copper based sintered sliding member, and method for producing the same
SE537113C2 (en) * 2010-03-01 2015-01-20 Westinghouse Electric Sweden Fuel component and process for producing a fuel component
SE536814C2 (en) * 2010-03-01 2014-09-16 Westinghouse Electric Sweden Neutron Absorbing Component and Process for Preparing a Neutron Absorbing Component
JP6038459B2 (en) * 2011-09-22 2016-12-07 Ntn株式会社 Sintered bearing
JP6038460B2 (en) * 2012-02-02 2016-12-07 Ntn株式会社 Manufacturing method of sintered bearing
JP5440586B2 (en) * 2011-11-02 2014-03-12 株式会社ダイヤメット Sliding parts
JP5440587B2 (en) * 2011-11-02 2014-03-12 株式会社ダイヤメット Sliding parts
JP6038522B2 (en) * 2012-07-24 2016-12-07 Ntn株式会社 Sintered bearing
JP6170587B2 (en) * 2016-03-28 2017-07-26 Ntn株式会社 Sintered bearing
US10697495B2 (en) 2016-07-29 2020-06-30 Diamet Corporation Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
JP6817094B2 (en) 2016-07-29 2021-01-20 株式会社ダイヤメット Iron-copper-based sintered oil-impregnated bearing and its manufacturing method
JP6462053B2 (en) * 2017-06-30 2019-01-30 Ntn株式会社 Sintered bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10081056B2 (en) 2011-09-22 2018-09-25 Ntn Corporation Sintered bearing and method for manufacturing same
US11433455B2 (en) 2011-09-22 2022-09-06 Ntn Corporation Sintered bearing and method for manufacturing same

Also Published As

Publication number Publication date
JP2003221606A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
JP3873275B2 (en) Sliding parts and manufacturing method thereof
JP4918967B2 (en) Manufacturing method of sliding parts
JP4253834B2 (en) Manufacturing method of sliding parts
JP4160561B2 (en) Sintered gear
JP4918966B2 (en) Manufacturing method of sliding parts
JP4211045B2 (en) Manufacturing method of sliding parts
JP2017066491A (en) Powder for powder metallurgy, green compact and method for producing sintered component
JP5440587B2 (en) Sliding parts
CN110168241A (en) Sintered metal bearing and its manufacturing method
JP5440586B2 (en) Sliding parts
JP6625333B2 (en) Manufacturing method of sintered bearing and sintered bearing
JP6456733B2 (en) Sintered bearing
JP2558955Y2 (en) Sintered plain bearings
JPH10219307A (en) Sintered gear
JP2006153056A (en) Oil impregnated sintered bearing and its manufacturing method
JP2007031814A (en) Sintered component, and method for producing the same
JP2002241804A (en) Method for manufacturing bearing with inside- diametrically hollowed intermediate portion
JP2003286504A (en) Method for manufacturing sintered member with bore superior in coaxiality accuracy
JP2004285377A (en) Method for manufacturing sintered alloy
JP2008063608A (en) Sliding member and its production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3873275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees