JP5440587B2 - Sliding parts - Google Patents

Sliding parts Download PDF

Info

Publication number
JP5440587B2
JP5440587B2 JP2011241685A JP2011241685A JP5440587B2 JP 5440587 B2 JP5440587 B2 JP 5440587B2 JP 2011241685 A JP2011241685 A JP 2011241685A JP 2011241685 A JP2011241685 A JP 2011241685A JP 5440587 B2 JP5440587 B2 JP 5440587B2
Authority
JP
Japan
Prior art keywords
copper
material powder
raw material
powder
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011241685A
Other languages
Japanese (ja)
Other versions
JP2012082522A (en
Inventor
輝夫 清水
恒夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2011241685A priority Critical patent/JP5440587B2/en
Publication of JP2012082522A publication Critical patent/JP2012082522A/en
Application granted granted Critical
Publication of JP5440587B2 publication Critical patent/JP5440587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軸受などの摺動部品に関する。   The present invention relates to a sliding component such as a bearing.

摩擦抵抗の削減と耐久性の向上を図ることができ、ノイズの発生を防止することができる摺動部品として、鉄系と銅系の原料粉末を成形金型の充填部に充填すると共に、振動を加え、この原料粉末を加圧して圧粉体を成形し、この圧粉体を焼結してなり、前記銅系の原料粉末が前記鉄系の原料粉末よりアスペクト比が大きな偏平粉であり、表面側に銅が偏析しているもの(例えば特許文献1)や、鉄系と銅系の原料粉末を成形金型の充填部に充填すると共に、振動を加え、この原料粉末を加圧して圧粉体を成形し、この圧粉体を焼結してなり、前記銅系原料粉末は銅又は銅合金の偏平粉を含み、前記偏平粉の最大投影面積の平均値が前記鉄系原料粉末の最大投影面積の平均値より大きく、表面側に銅が偏析しているもの(例えば特許文献2)が知られている。
特開2003−221606号公報 特開2004−84038号公報
As a sliding part that can reduce frictional resistance and improve durability, and prevent noise generation, it fills the filling part of the molding die with iron-based and copper-based raw material powder and vibrates. The raw material powder is pressed to form a green compact, and the green compact is sintered. The copper-based raw material powder is a flat powder having a larger aspect ratio than the iron-based raw material powder. In addition, the copper is segregated on the surface side (for example, Patent Document 1), and iron-type and copper-type raw material powders are filled in the filling part of the molding die, and vibrations are applied to the raw material powders. A green compact is formed, and the green compact is sintered. The copper-based raw material powder includes a flat powder of copper or a copper alloy, and the average value of the maximum projected area of the flat powder is the iron-based raw material powder. Larger than the average value of the maximum projected area of copper, and copper is segregated on the surface side (for example, Patent Document 2) It is known.
JP 2003-221606 A JP 2004-84038 A

しかし、前者及び後者の従来技術においては鉄系原料粉末と、該鉄系原料粉末よりアスペクト比が大きな偏平粉からなる銅系偏平原料粉末とを混合したものを成形金型の充填部に充填すると共に、振動を加えることにより、銅系偏平原粉末が充填部内の外側に偏析し、厚さ方向に重なり合うと共に、厚さと交叉する方向を表面側の長さ方向に合わせるようにして集まり表面側に銅系偏平原料粉末が偏析するものであるが、表面には偏析した銅系偏平原粉末のみならずその一部には鉄系原料粉末があらわれたり、表面にあらわれ隣接する銅系偏平原粉末の間に隙間が形成されたりし、その結果表面には銅系原粉末と鉄系原料粉末との隙間や、銅系偏平原粉末相互の隙間が形成されることとなり、この隙間によって摺動部の表面銅被覆率を向上することができないというおそれがあった。 However, in the former and the latter prior art, a mixture of iron-based raw material powder and copper-based flat raw material powder made of flat powder having a larger aspect ratio than the iron-based raw material powder is filled in the filling part of the molding die. together, by applying vibration, copper-based polarizing plains material powder is segregated on the outer side of the filling unit, with overlapping in the thickness direction, so as to align the direction of thickness and cross the surface side in the longitudinal direction of the collection surface the copper-based flat raw powder is one which segregates, its or appeared iron-based raw powder and some not only copper-based polarizing plain material powder segregated on the surface, adjacent the copper-based polarizing plains appear on the surface fee or gap is formed between the powder, so that the surface and the gap between the copper-based raw material powder and the iron-based raw powder, it becomes possible to copper-based polarizing plains material powder mutual gap is formed, the gap The surface of the sliding part is covered with copper There is a possibility that can not be improved.

解決しようとする問題点は、鉄系原料粉末と、該鉄系原料粉末よりアスペクト比が大きな銅系原料粉末を成形金型の充填部に充填し、この原料粉末を加圧して圧粉体を成形し、この圧粉体を焼結して表面側に銅を偏析してなる摺動部品において、摺動部の表面銅被覆率を向上する点である。   The problem to be solved is that an iron-based raw material powder and a copper-based raw material powder having an aspect ratio larger than that of the iron-based raw material powder are filled in a filling part of a molding die, and this raw material powder is pressed to obtain a green compact. It is a point which improves the surface copper coverage of a sliding part in the sliding component which shape | molds and sinters this green compact and segregates copper on the surface side.

請求項1の発明は、鉄系と銅系の原料粉末を成形金型の充填部に充填し、この原料粉末を加圧して圧粉体を成形し、この圧粉体を焼結してなる摺動部品において、前記銅系原料粉末は、前記鉄系原料粉末より最大投影面積の平均値が小さくかつ該鉄系原料粉末よりアスペクト比が大きな偏平状の銅系偏平原料粉末と、該銅系偏平原料粉末より最大投影面積の平均値が小さい銅系小原料粉末からなり、表面側に銅が偏析し、偏析した前記銅系偏平原粉末のほかに、該銅系偏平原粉末の相互間に前記鉄系原料粉末があらわれ、このように外側にあらわれた前記鉄系原料粉末と前記銅系偏平原粉末との隙間に前記銅系小原料粉末が入り込んで、この入り込んだ前記銅系小原料粉末が外側にあらわれ、外側にあらわれた前記銅系偏平原粉末相互間の隙間に前記銅系小原料粉末が入り込んで、この入り込んだ前記銅系小原料粉末が外側にあらわれることを特徴とする摺動部品である。 The invention of claim 1 is formed by filling iron and copper-based raw material powder into a filling part of a molding die, pressurizing the raw material powder to form a green compact, and sintering the green compact. In the sliding component, the copper-based raw material powder is a flat copper-based flat raw material powder having an average maximum projection area smaller than that of the iron-based raw material powder and a larger aspect ratio than the iron-based raw material powder, and the copper-based raw material powder. made from the average value is smaller copper-based small-sized raw powder of the maximum projected area than flat raw powder, copper segregates on the surface side, in addition to the copper-based polarizing plains material powder segregated, mutual copper-based polarizing plain material powder wherein the iron-based raw powder appears between, thus the copper-based small-sized raw powder intrudes into the gap between the iron-based raw powder and the copper-based polarizing plains material powder that appeared on the outside, the copper-based that this entered small-sized raw powder is revealed to the outside, the copper-based polarizing plains material powder phase appeared outwardly Enters said copper-based small-sized raw powder into the gap between the copper-based small-sized raw powder that this entered is sliding part, characterized in that appearing on the outside.

請求項2の発明は、摺動部の表面銅被覆率が80%以上であることを特徴とする請求項1記載の摺動部品である。   The invention according to claim 2 is the sliding component according to claim 1, wherein the surface copper coverage of the sliding portion is 80% or more.

請求項3の発明は、前記銅系偏平原料粉末のアスペクト比が10以上であることを特徴とする請求項1又は2記載の摺動部品である。   The invention according to claim 3 is the sliding component according to claim 1 or 2, wherein the copper-based flat raw material powder has an aspect ratio of 10 or more.

請求項4の発明は、前記銅系原料粉末の割合が全体の20〜40重量%であることを特徴とする請求項2記載の摺動部品である。   The invention according to claim 4 is the sliding component according to claim 2, wherein the ratio of the copper-based raw material powder is 20 to 40% by weight of the whole.

請求項1の発明によれば、摺動部品により軸受を構成した場合では、銅系偏平原料粉末のみならず銅系小原料粉末もあらわれて銅に覆われた表面側に回転体が摺動し、回転軸と表面側との摩擦係数が低く、円滑な回転が可能となり、同時に鉄により所定の強度と耐久性とが得られる。また、この構造では、回転体が摺動する表面側が摩耗しても、表面側の下には銅が所定の割合で含まれているから、摺動部分の耐久性に優れたものとなる。 According to the first aspect of the present invention, when the bearing is constituted by the sliding parts, not only the copper-based flat material powder but also the copper-based small material powder appears, and the rotating body slides on the surface side covered with copper. The coefficient of friction between the rotating shaft and the surface side is low, and smooth rotation is possible. At the same time, a predetermined strength and durability can be obtained with iron. Further, in this structure, even if the surface side on which the rotating body slides is worn, copper is contained at a predetermined ratio below the surface side, so that the durability of the sliding portion is excellent.

請求項2の発明によれば、摺動部の摩擦係数を極めていっそう低く抑えることができる。 According to invention of Claim 2, the friction coefficient of a sliding part can be suppressed very much lower.

請求項3の発明によれば、アスペクト比を10以上とすることにより、振動を加えると、偏平粉が表面側に良好に偏析し、表面側の銅濃度の高い摺動部品が得られる。   According to the invention of claim 3, when the aspect ratio is set to 10 or more, when vibration is applied, the flat powder is segregated well on the surface side, and a sliding component having a high copper concentration on the surface side is obtained.

請求項4の発明によれば、銅系原料粉末の割合が20重量%未満であると、表面側における銅の割合が低下し、摩擦抵抗が大きくなり、40重量%を超えると、全体に示す銅系の割合が多くなり、強度的に不利となる。したがって、上記割合を採用することによって、摩擦抵抗を削減し、かつ強度的に優れた摺動部品を得ることができる。   According to the invention of claim 4, when the proportion of the copper-based raw material powder is less than 20% by weight, the proportion of copper on the surface side decreases, the frictional resistance increases, and when the proportion exceeds 40% by weight, the whole is shown. The proportion of copper is increased, which is disadvantageous in strength. Therefore, by adopting the above ratio, it is possible to obtain a sliding component having reduced frictional resistance and excellent strength.

本発明における好適な実施の形態について、添付図面を参照して説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention.

本発明の製造方法につき説明すると、鉄系原料粉末1と銅系偏平原料粉末2と銅系小原料粉末3を所定の割合で混合(S1)する。図2に示すように、鉄系原料粉末1にはアトマイズ粉などの略球状の不規則形状粉を用いる。この鉄系原料粉末1の平均直径は50〜100μm、好ましくは60〜80μmとする。また、図3に示すように、銅系原料粉末2には偏平粉を用い、この偏平粉のアスペクト比(直径D/厚さT)は10以上、好ましくは20〜50とする。この偏平な銅系偏平原料粉末2の平均直径Dは80μmで、平均厚さTは1〜5μmとする。尚、銅系偏平原料粉末2には、銅粉末を主体とし、錫粉末を2〜30重量%混合したものを用いることができる。さらに図4に示すように銅系小原料粉末3には略球状の不規則形状粉を用いる。この銅系小原料粉末3の平均直径は30〜50μm、好ましくは20μm程度とする。   The manufacturing method of the present invention will be described. The iron-based raw material powder 1, the copper-based flat raw material powder 2, and the copper-based small raw material powder 3 are mixed at a predetermined ratio (S1). As shown in FIG. 2, a substantially spherical irregular shaped powder such as atomized powder is used for the iron-based raw material powder 1. The average diameter of the iron-based raw material powder 1 is 50 to 100 μm, preferably 60 to 80 μm. Moreover, as shown in FIG. 3, flat powder is used for the copper-based raw material powder 2, and the aspect ratio (diameter D / thickness T) of the flat powder is 10 or more, preferably 20 to 50. The flat copper-based flat raw material powder 2 has an average diameter D of 80 μm and an average thickness T of 1 to 5 μm. The copper-based flat raw material powder 2 may be a mixture of copper powder as a main component and 2 to 30% by weight of tin powder. Furthermore, as shown in FIG. 4, a substantially spherical irregular shaped powder is used for the copper-based small raw material powder 3. The average diameter of the copper-based small raw material powder 3 is 30 to 50 μm, preferably about 20 μm.

これにより、銅系偏平原料粉末2の平均直径は、鉄系原料粉末1の平均直径より小さく、銅系小原料粉末3の平均直径より大きく形成されている。このような大きさの比較により、銅系偏平原料粉末2の最大投影面積Aの平均値は、鉄系原料粉末1の最大投影面積Bの平均値より小さく、また、最大投影面積Aの平均値は、銅系小原料粉末3の最大投影面積Cの平均値より大きく形成されている。   Thereby, the average diameter of the copper-based flat raw material powder 2 is smaller than the average diameter of the iron-based raw material powder 1 and larger than the average diameter of the copper-based small raw material powder 3. By comparing the sizes, the average value of the maximum projected area A of the copper-based flat raw material powder 2 is smaller than the average value of the maximum projected area B of the iron-based raw material powder 1, and the average value of the maximum projected area A Is formed larger than the average value of the maximum projected areas C of the copper-based small raw material powder 3.

図5に示すように、軸受5は略円筒形をなし、その中央には回転体たる回転軸(図示せず)が回転摺動するほぼ円筒状の摺動面51が形成され、この摺動部たる摺動面51の長さ方向両側には平行で平坦な端面52,53が設けられ、その外周面54は円筒状に形成されている。   As shown in FIG. 5, the bearing 5 has a substantially cylindrical shape, and a substantially cylindrical sliding surface 51 on which a rotating shaft (not shown) as a rotating body rotates and slides is formed at the center. Parallel and flat end surfaces 52 and 53 are provided on both sides in the length direction of the sliding surface 51, and the outer peripheral surface 54 is formed in a cylindrical shape.

前記混合(S1)した鉄系原料粉末1と銅系偏平原料粉末2と銅系小原料粉末3の混合したものを成形金型11の充填部16に充填する。この充填した混合粉において、銅系偏平原料粉末の割合は全体の20〜40重量%とする。   A mixture of the iron-based raw material powder 1, the copper-based flat raw material powder 2 and the copper-based small raw material powder 3 mixed (S 1) is filled in the filling portion 16 of the molding die 11. In the filled mixed powder, the proportion of the copper-based flat raw material powder is 20 to 40% by weight.

図6は成形金型11の一例を示し、この成形金型11は、上下方向を軸方向(プレス上下軸方向)としており、ダイ12、コアロッド13、下パンチ14および上パンチ15を備えている。ダイ12はほぼ円筒形状で、このダイ12内にほぼ円柱形状のコアロッド13が同軸的に位置している。下パンチ14は、ほぼ円筒形状で、ダイ12およびコアロッド13間に下方から上下動自在に嵌合している。上パンチ15は、ほぼ円筒形状で、ダイ12およびコアロッド13間に上方から上下動自在にかつ挿脱自在に嵌合するものである。そして、ダイ12とコアロッド13と下パンチ14との間に充填部16が形成され、前記ダイ12の内周面が前記外周面54を形成し、前記下パンチ14の上面が前記端面53を形成し、前記上パンチ15の下面が前記端面52を形成し、コアロッド13の外周面が前記摺動面51を形成する。   FIG. 6 shows an example of the molding die 11. The molding die 11 has an up-down direction as an axial direction (press up-down axis direction) and includes a die 12, a core rod 13, a lower punch 14, and an upper punch 15. . The die 12 has a substantially cylindrical shape, and a substantially cylindrical core rod 13 is coaxially positioned in the die 12. The lower punch 14 has a substantially cylindrical shape and is fitted between the die 12 and the core rod 13 so as to be vertically movable from below. The upper punch 15 has a substantially cylindrical shape, and is fitted between the die 12 and the core rod 13 so as to be movable up and down from above and detachably. A filling portion 16 is formed between the die 12, the core rod 13, and the lower punch 14. The inner peripheral surface of the die 12 forms the outer peripheral surface 54, and the upper surface of the lower punch 14 forms the end surface 53. The lower surface of the upper punch 15 forms the end surface 52, and the outer peripheral surface of the core rod 13 forms the sliding surface 51.

図6に示すように、前記充填部16に、混合した鉄系原料粉末1と銅系偏平原料粉末2と銅系小原料粉末3を充填し、これら原料粉末1,2,3に振動(S2)を与える。この場合、充填部16の上部を上パンチ15により塞ぎ、パンチ14,15により加圧することなく、充填部16に加速度0.01〜3G程度の振動を与える。振動を受けると、偏平粉である銅系偏平原粉末2が充填部16内の外側、すなわち摺動面51や外周面54に偏析し、厚さ方向に重なり合うと共に、厚さと交叉する方向を表面側の長さ方向に合わせるようにして集まる。さらに、充填部16内の外側においては、偏析した銅系偏平原粉末2のほかに、該銅系偏平原粉末2の相互間に鉄系原料粉末1があらわれることがあるが、このように外側にあらわれた鉄系原料粉末1と銅系偏平原粉末2との隙間に銅系小原料粉末3Aが入り込んで、この入り込んだ銅系小原料粉末3Aが外側にあらわれることによって、さらには、外側にあらわれた銅系偏平原粉末2相互間の隙間に銅系小原料粉末3Bが入り込んで、この入り込んだ銅系小原料粉末3Bが外側にあらわれることによって、摺動面51の表面銅被覆率を80%以上、さらには85%以上に形成する。尚、表面銅被覆率は前述した後者の従来技術のように気孔範囲を除いた表面の被覆率をいう。 As shown in FIG. 6, the filling portion 16 is filled with the mixed iron-based raw material powder 1, copper-based flat raw material powder 2, and copper-based small raw material powder 3, and the raw material powders 1, 2, 3 are vibrated (S2). )give. In this case, the upper portion of the filling portion 16 is closed by the upper punch 15 and the filling portion 16 is vibrated at an acceleration of about 0.01 to 3 G without being pressurized by the punches 14 and 15. Upon receiving the vibration, the outer copper-based polarizing plains material powder 2 is a flat powder in the filling portion 16, that is segregated on the sliding surface 51 and the outer peripheral surface 54, with overlap in the thickness direction, the direction of thickness and cross Gather together to match the length of the surface side. Further, in the outer in the filling unit 16, in addition to the segregated copper-based polarizing plains material powder 2, it is possible to iron-based raw powder 1 appears therebetween of the copper-based polarizing plains material powder 2, such copper-based small-sized raw powder 3A is intrudes into the gap between the iron-based raw powder 1 and the copper-based polarizing plains material powder 2 appeared outwardly by the intruding copper-based small-sized raw powder 3A appears on the outside, and further , enters the copper-based small-sized raw powder 3B into the gap between the copper-based polarizing plains material powder 2 mutually appeared outside, by the intruding copper-based small-sized raw powder 3B appears on the outer surface of copper of the sliding surface 51 The coverage is 80% or more, and further 85% or more. The surface copper coverage is the surface coverage excluding the pore range as in the latter prior art described above.

尚、振動以外でも、銅系原料粉末2は略平坦な面が大きいから、充填部16を囲む成形金型11の面に静電気を発生させて充填部16の外側に銅系原料粉末2を偏析させたり、磁力を用いて充填部16の外側に銅系原料粉末2を偏析させたりするようにしてもよい。   In addition to the vibration, since the copper-based raw material powder 2 has a substantially flat surface, static electricity is generated on the surface of the molding die 11 surrounding the filling portion 16 to segregate the copper-based raw material powder 2 outside the filling portion 16. Alternatively, the copper-based raw material powder 2 may be segregated outside the filling portion 16 by using magnetic force.

一方、充填部16内の内側、すなわち摺動面51と外周面54との間においては、外側に偏析しないで内側に残った銅系偏平原粉末2Aの一部は、複数の鉄系原料粉末1を多数の銅系小原料粉末3で含むように包囲するように配置される。 On the other hand, the inside of the filling portion 16, that is, in between the sliding surface 51 and the outer peripheral surface 54, a portion of the remaining inwardly without segregation outside copper-based polarizing plains material powder 2A, a plurality of iron-based material It arrange | positions so that the powder 1 may be enclosed so that it may contain with many copper-type small raw material powders 3. FIG.

この後、上,下パンチ15,14により充填部16内の原料粉末1,2,3を加圧することにより圧粉体6を成形(S3)する。この圧粉体6は図に示すように、表面側に偏平粉である銅系偏平原料粉末2が集まり、内部に向って鉄系原料粉末1の割合が増加する。その圧粉体を焼結(S4)することにより、焼結品である軸受5が形成される。この軸受5には、この後必要に応じてサイジング工程、含油工程を行なう。 After that, the green compact 6 is formed (S3) by pressurizing the raw material powders 1, 2, and 3 in the filling portion 16 with the upper and lower punches 15 and 14. As shown in FIG. 7 , the green compact 6 has a copper-based flat raw material powder 2 that is a flat powder gathered on the surface side, and the ratio of the iron-based raw material powder 1 increases toward the inside. The sintered compact 5 is formed by sintering (S4) the green compact. Thereafter, the bearing 5 is subjected to a sizing process and an oil impregnation process as necessary.

このように本実施形態では、請求項1に対応して、原料粉末を成形金型11の充填部16に充填し、この原料粉末を加圧して圧粉体6を成形し、この圧粉体6を焼結してなる摺動部品たる軸受5において、前記銅系原料粉末は、前記鉄系原料粉末1よりの最大投影面積Bの平均値より最大投影面積Aの平均値が小さくかつ該鉄系原料粉末1よりアスペクト比が大きな偏平状の銅系偏平原料粉末2と、該銅系偏平原料粉末2の最大投影面積Aの平均値より最大投影面積Cの平均値が小さい銅系小原料粉末3からなり、表面側に銅が偏析しているから、この偏平粉である銅系の原料粉末2と鉄系の原料粉末1とを充填部16に充填して振動を加えることにより、銅系の偏平粉が表面側に偏析し、得られた軸受5は、表面側が銅系偏平原料粉末2のみならず銅系小原料粉末3もあらわれて銅に覆われ、表面銅被覆率を向上することができる。 Thus, in the present embodiment, corresponding to claim 1, the raw material powder is filled in the filling portion 16 of the molding die 11, the raw material powder is pressed to form the green compact 6, and this green compact. In the bearing 5 which is a sliding component formed by sintering 6, the copper-based raw material powder has an average value of the maximum projected area A smaller than the average value of the maximum projected area B of the iron-based raw material powder 1, and the iron Copper-based flat raw material powder 2 having an aspect ratio larger than that of the raw material-based powder 1, and a small copper-based raw material powder whose average value of the maximum projected area C is smaller than the average value of the maximum projected area A of the copper-based flat raw material powder 2 Since the copper is segregated on the surface side, the copper-based raw material powder 2 and the iron-based raw material powder 1 which are flat powders are filled in the filling portion 16 and vibration is applied. The flat powder is segregated on the surface side, and the bearing 5 obtained has not only the copper-based flat material powder 2 on the surface side System small-sized raw powder 3 is also covered with copper appeared, it is possible to improve the surface copper coverage.

したがって、銅に覆われた表面たる摺動面51に回転体が摺動し、回転軸と摺動面51との摩擦係数が低く、円滑な回転が可能となり、同時に鉄により所定の強度と耐久性を得ることができる。また、この構造では、回転体が摺動する摺動面51が摩耗しても、摺動面51の下には所定の割合で銅が含まれているから、摺動部分の耐久性に優れたものとなる。   Therefore, the rotating body slides on the sliding surface 51 which is the surface covered with copper, the friction coefficient between the rotating shaft and the sliding surface 51 is low, and smooth rotation is possible, and at the same time, the iron has a predetermined strength and durability. Sex can be obtained. In this structure, even if the sliding surface 51 on which the rotating body slides is worn, copper is contained under the sliding surface 51 at a predetermined ratio, so the durability of the sliding portion is excellent. It will be.

また、このように本実施形態では、請求項2に対応して、摺動部たる摺動面51の表面銅被覆率が80%以上であるから、摺動面の摩擦係数を極めていっそう低く抑えることができる。 In this way, in the present embodiment , corresponding to claim 2, the surface copper coverage of the sliding surface 51 as the sliding portion is 80% or more, so the friction coefficient of the sliding surface is kept much lower. be able to.

また、このように本実施形態では、請求項3に対応して、銅系偏平原料粉末2のアスペクト比が10以上であるから、振動を加えると、銅系偏平原料粉末2が表面側に良好に偏析し、表面側の銅濃度の高い軸受5を得ることができる。   As described above, in this embodiment, the aspect ratio of the copper-based flat raw material powder 2 is 10 or more, corresponding to claim 3, so that when the vibration is applied, the copper-based flat raw material powder 2 is good on the surface side. Thus, the bearing 5 having a high copper concentration on the surface side can be obtained.

また、このように本実施形態では、請求項4に対応して、銅系偏平原料粉末2の割合が全体の20〜40重量%であるから、低い摩擦抵抗と強度とを兼ね備えた軸受5を得ることができる。   In this way, in this embodiment, since the proportion of the copper-based flat raw material powder 2 is 20 to 40% by weight with respect to the fourth aspect, the bearing 5 having both low friction resistance and strength is provided. Can be obtained.

そして、本実施形態では、表面側が銅系偏平原料粉末2のみならず銅系小原料粉末3もあらわれて銅に覆われ、表面銅被覆率を向上することができる軸受5を提供することができる。   In the present embodiment, not only the copper-based flat raw material powder 2 but also the copper-based small raw material powder 3 appears and is covered with copper, thereby providing the bearing 5 capable of improving the surface copper coverage. .

また、本実施形態では、20〜40重量%の割合を採用することによって、摩擦抵抗を削減し、かつ強度的に優れた軸受5を得ることができる。   Further, in the present embodiment, by adopting a ratio of 20 to 40% by weight, it is possible to obtain the bearing 5 with reduced frictional resistance and excellent strength.

尚、本発明は、前記実施形態に限定されるものではなく、種々の変形実施が可能である。例えば、偏平粉には、棒状のものも含まれ、この場合は長さと直径の比がアスペクト比となる。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible. For example, the flat powder includes a rod-shaped powder, and in this case, the ratio of length to diameter is the aspect ratio.

以上のように本発明にかかる摺動部品は、軸受以外の摺動部品など用途にも適用できる。   As described above, the sliding component according to the present invention can be applied to applications such as sliding components other than bearings.

本発明の実施例1を示す製造方法を説明するフローチャート図である。It is a flowchart figure explaining the manufacturing method which shows Example 1 of this invention. 本発明の実施例1を示す鉄系原料粉末の概略正面図である。It is a schematic front view of the iron-type raw material powder which shows Example 1 of this invention. 本発明の実施例1を示す銅系偏平原料粉末を示し、図3(A)は概略側面図、図3(B)は概略正面図である。The copper-type flat raw material powder which shows Example 1 of this invention is shown, FIG. 3 (A) is a schematic side view, FIG.3 (B) is a schematic front view. 本発明の実施例1を示す銅系小原料粉末の概略正面図である。It is a schematic front view of the copper-type small raw material powder which shows Example 1 of this invention. 本発明の実施例1を示す軸受の斜視図である。It is a perspective view of the bearing which shows Example 1 of this invention. 本発明の実施例1を示す成形金型の断面図である。It is sectional drawing of the shaping die which shows Example 1 of this invention. 本発明の実施例1を示す圧粉体の概略断面図であり、一部を拡大表示している。It is a schematic sectional drawing of the green compact which shows Example 1 of this invention, and one part is expanded and displayed.

1 鉄系原料粉末
2 銅系偏平原料粉末
3 銅系小原料粉末
5 軸受
6 圧粉体
11 成形金型
16 充填部
51 摺動面(摺動部)
1 Iron-based raw material powder 2 Copper-based flat raw material powder 3 Copper-based small raw material powder 5 Bearing 6 Green compact
11 Mold
16 Filling part
51 Sliding surface (sliding part)

Claims (4)

鉄系と銅系の原料粉末を成形金型の充填部に充填し、この原料粉末を加圧して圧粉体を成形し、この圧粉体を焼結してなる摺動部品において、前記銅系原料粉末は、前記鉄系原料粉末より最大投影面積の平均値が小さくかつ該鉄系原料粉末よりアスペクト比が大きな偏平状の銅系偏平原料粉末と、該銅系偏平原料粉末より最大投影面積の平均値が小さい銅系小原料粉末からなり、表面側に銅が偏析し、偏析した前記銅系偏平原粉末のほかに、該銅系偏平原粉末の相互間に前記鉄系原料粉末があらわれ、このように外側にあらわれた前記鉄系原料粉末と前記銅系偏平原粉末との隙間に前記銅系小原料粉末が入り込んで、この入り込んだ前記銅系小原料粉末が外側にあらわれ、外側にあらわれた前記銅系偏平原粉末相互間の隙間に前記銅系小原料粉末が入り込んで、この入り込んだ前記銅系小原料粉末が外側にあらわれることを特徴とする摺動部品。 In a sliding part formed by filling iron-type and copper-type raw material powder into the filling part of a molding die, pressing the raw material powder to form a green compact, and sintering the green compact, the copper The raw material powder is a flat copper-based flat raw material powder having a smaller average value of the maximum projected area than the iron-based raw material powder and a larger aspect ratio than the iron-based raw material powder, and a maximum projected area of the copper-based flat raw material powder. average value becomes a small copper-based small-sized raw powder, copper segregates on the surface side, in addition to the copper-based polarizing plains material powder segregated, wherein the iron-based raw powder therebetween of the copper-based polarizing plain material powder appeared, revealing thus enters said copper-based small-sized raw powder wherein the iron-based raw powder into a gap between the copper-based polarizing plains material powder that appeared on the outside, the copper-based small-sized raw powder that this entered is outside is, the copper in the gap between the copper-based polarizing plains material powder mutual appeared outwardly It enters the small-sized raw powder, sliding component the copper-based small-sized raw powder that this entered is equal to or appearing outwardly. 摺動部の表面銅被覆率が80%以上であることを特徴とする請求項1記載の摺動部品。 The sliding part according to claim 1, wherein the surface copper coverage of the sliding part is 80% or more. 前記銅系偏平原料粉末のアスペクト比が10以上であることを特徴とする請求項1又は2記載の摺動部品。 The sliding component according to claim 1 or 2, wherein the copper-based flat material powder has an aspect ratio of 10 or more. 前記銅系原料粉末の割合が全体の20〜40重量%であることを特徴とする請求項2記載の摺動部品。 The sliding component according to claim 2, wherein a ratio of the copper-based raw material powder is 20 to 40% by weight.
JP2011241685A 2011-11-02 2011-11-02 Sliding parts Active JP5440587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241685A JP5440587B2 (en) 2011-11-02 2011-11-02 Sliding parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241685A JP5440587B2 (en) 2011-11-02 2011-11-02 Sliding parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005123009A Division JP4918967B2 (en) 2005-04-20 2005-04-20 Manufacturing method of sliding parts

Publications (2)

Publication Number Publication Date
JP2012082522A JP2012082522A (en) 2012-04-26
JP5440587B2 true JP5440587B2 (en) 2014-03-12

Family

ID=46241695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241685A Active JP5440587B2 (en) 2011-11-02 2011-11-02 Sliding parts

Country Status (1)

Country Link
JP (1) JP5440587B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066491A (en) * 2015-09-30 2017-04-06 Ntn株式会社 Powder for powder metallurgy, green compact and method for producing sintered component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873275B2 (en) * 2002-01-31 2007-01-24 三菱マテリアルPmg株式会社 Sliding parts and manufacturing method thereof
JP4211045B2 (en) * 2002-07-25 2009-01-21 三菱マテリアルPmg株式会社 Manufacturing method of sliding parts
JP4253834B2 (en) * 2002-08-28 2009-04-15 三菱マテリアルPmg株式会社 Manufacturing method of sliding parts

Also Published As

Publication number Publication date
JP2012082522A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP4918967B2 (en) Manufacturing method of sliding parts
JP3873275B2 (en) Sliding parts and manufacturing method thereof
JP4253834B2 (en) Manufacturing method of sliding parts
JP4918966B2 (en) Manufacturing method of sliding parts
JP6114512B2 (en) Sintered bearing and manufacturing method thereof
JP5440587B2 (en) Sliding parts
JP6502085B2 (en) Powder compact and method for producing the same
JP2017066491A (en) Powder for powder metallurgy, green compact and method for producing sintered component
JP2016191133A5 (en) Sizing mold for densification of sintered body surface and manufacturing method using the same
JP5440586B2 (en) Sliding parts
JP4211045B2 (en) Manufacturing method of sliding parts
WO2017047697A1 (en) Method for manufacturing green compact and method for manufacturing sintered metal part
JP6625333B2 (en) Manufacturing method of sintered bearing and sintered bearing
CN110168241A (en) Sintered metal bearing and its manufacturing method
JP7021312B2 (en) Sintered bearing
JP6487957B2 (en) Sintered bearing
JP6759389B2 (en) Sintered bearing
JP2009085234A (en) Plain bearing and method for manufacturing same
JP2017047443A (en) Molding method of green compact, and manufacturing method of sintered metal component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5440587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250