JP2017078183A - Sintered shaft bearing - Google Patents

Sintered shaft bearing Download PDF

Info

Publication number
JP2017078183A
JP2017078183A JP2015205412A JP2015205412A JP2017078183A JP 2017078183 A JP2017078183 A JP 2017078183A JP 2015205412 A JP2015205412 A JP 2015205412A JP 2015205412 A JP2015205412 A JP 2015205412A JP 2017078183 A JP2017078183 A JP 2017078183A
Authority
JP
Japan
Prior art keywords
powder
copper
sintered
bearing
iron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015205412A
Other languages
Japanese (ja)
Inventor
慎治 小松原
Shinji Komatsubara
慎治 小松原
容敬 伊藤
Yasutaka Ito
容敬 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2015205412A priority Critical patent/JP2017078183A/en
Publication of JP2017078183A publication Critical patent/JP2017078183A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered shaft bearing capable of reducing surface pore opening rate of a shaft bearing surface at a lower cost.SOLUTION: A raw material powder containing a copper coated iron powder where iron powder is coated with copper with percentage of 30 wt.% or more and 50 wt.% or less and an electrolytic copper powder of 330 mesh or less is molded and sintered.SELECTED DRAWING: None

Description

本発明は、焼結軸受に関する。   The present invention relates to a sintered bearing.

焼結軸受は、内部空孔に潤滑油を含浸させて使用され、支持すべき軸との相対回転に伴い内部に含浸された潤滑油が軸との摺動部に滲み出して油膜を形成し、この油膜を介して軸を回転支持するものである。このような焼結軸受は、その高回転精度および静粛性から、HDD、LBPポリゴンスキャナモータ、あるいはファンモータなどの小型モータを回転支持する軸受として用いられている。   Sintered bearings are used with internal holes impregnated with lubricating oil, and with the relative rotation with the shaft to be supported, the lubricating oil impregnated inside exudes to the sliding part with the shaft to form an oil film. The shaft is rotationally supported through this oil film. Such sintered bearings are used as bearings for rotating and supporting small motors such as HDDs, LBP polygon scanner motors, or fan motors because of their high rotational accuracy and quietness.

上記のような焼結軸受として、焼結金属からなる軸受スリーブの内周面に複数の動圧発生溝を形成することで、潤滑油を軸方向の一部領域に集めて油膜剛性を高めるようにした動圧発生溝付きのものが公知である。この種の焼結軸受では、軸受隙間に形成された油膜が、軸受面に開口した空孔を介して軸受スリーブの内部へ抜ける、いわゆる動圧抜けを防止するため、焼結後、動圧発生溝の成形前に焼結軸受の軸受面に回転サイジングを施して、軸受面の開孔率を低減させるのが通例である(特許文献1)。   As a sintered bearing as described above, by forming a plurality of dynamic pressure generating grooves on the inner peripheral surface of a bearing sleeve made of sintered metal, the lubricating oil is collected in a partial region in the axial direction to increase the oil film rigidity. Those having dynamic pressure generating grooves are known. In this kind of sintered bearings, the oil film formed in the bearing gap is released to the inside of the bearing sleeve through the air holes opened in the bearing surface. In general, rotational sizing is applied to the bearing surface of the sintered bearing before the groove is formed to reduce the hole area ratio of the bearing surface (Patent Document 1).

特許第3602317号公報Japanese Patent No. 3602317

特許文献1の様に、焼結軸受の軸受面に回転サイジングを施したのでは、焼結軸受の製造工程数が増加し、製造コストの高騰を招く。   If rotational sizing is performed on the bearing surface of the sintered bearing as in Patent Document 1, the number of manufacturing processes of the sintered bearing increases, resulting in an increase in manufacturing cost.

この様な事情から、本発明では、より低コストに軸受面の表面開孔率を低減させることのできる焼結軸受を提供することを課題としている。   Under such circumstances, an object of the present invention is to provide a sintered bearing capable of reducing the surface area ratio of the bearing surface at a lower cost.

上記の課題を解決するため、本発明にかかる焼結軸受は、鉄粉の表面を銅層で被覆してなり、銅の割合が30wt%以上、50%wt以下である銅被覆鉄粉と、銅被覆鉄粉よりも平均粒径が小さい電解銅粉とを含む原料粉を焼結して形成したことを特徴とするものである。   In order to solve the above problems, the sintered bearing according to the present invention is obtained by coating the surface of iron powder with a copper layer, and the copper-coated iron powder having a copper ratio of 30 wt% or more and 50% wt or less, It is characterized by being formed by sintering raw material powder containing electrolytic copper powder having an average particle size smaller than that of copper-coated iron powder.

このように本発明では、焼結軸受の原料粉として、銅被覆鉄粉と、銅被覆鉄粉よりも平均粒径の小さい電解銅粉(好ましくは330mesh以下)を使用している。従って、圧紛体の段階において銅被覆鉄粉間の隙間を電解銅粉で埋めることができる。また、電解銅粉が他の粒子と絡みやすい樹枝状であるため、粒子間の隙間を小さくすることができる。さらに、銅被覆鉄粉における銅の割合を多くしていることもあり(30wt以上、50wt以下の銅めっき量)、焼結後の鉄相の周辺には、軟質の銅相が潤沢に存在している。従って、焼結後にサイジングを行った際には、銅相の変形により空孔が潰れやすくなる。以上の作用から、本発明によれば、焼結軸受の空孔を微細化することができ、回転サイジング等の封孔処理を省略しても、各軸受面の表面開孔率を小さくすることが可能となる。   Thus, in the present invention, copper-coated iron powder and electrolytic copper powder (preferably 330 mesh or less) having an average particle size smaller than that of the copper-coated iron powder are used as the raw material powder for the sintered bearing. Accordingly, the gap between the copper-coated iron powders can be filled with the electrolytic copper powder at the stage of the compact. Moreover, since the electrolytic copper powder has a dendritic shape that easily entangles with other particles, the gap between the particles can be reduced. Furthermore, the ratio of copper in the copper-coated iron powder may be increased (copper plating amount of 30 wt or more and 50 wt or less), and there is plenty of soft copper phase around the iron phase after sintering. ing. Therefore, when sizing is performed after sintering, voids are easily crushed due to deformation of the copper phase. As described above, according to the present invention, the pores of the sintered bearing can be miniaturized, and the surface area ratio of each bearing surface can be reduced even if sealing treatment such as rotational sizing is omitted. Is possible.

原料粉に、銅被覆鉄粉よりも平均粒径が小さい低融点金属粉を配合するのが好ましい。低融点金属粉は、焼結時に液相となって移動し、元の場所に空孔を形成するが、上記のように小粒径の低融点金属粉を使用することで、焼結後にできる空孔をさらに微細化することができる。原料粉における低融点金属粉の割合は、1.0wt%以上、3.0wt%以下が好ましい。   The raw material powder is preferably blended with a low melting point metal powder having an average particle size smaller than that of the copper-coated iron powder. The low-melting-point metal powder moves in a liquid phase during sintering and forms pores in the original place. As described above, the low-melting-point metal powder can be formed after sintering by using a low-melting-point metal powder having a small particle size. The pores can be further refined. The ratio of the low melting point metal powder in the raw material powder is preferably 1.0 wt% or more and 3.0 wt% or less.

原料粉における電解銅粉の割合は10wt%以上、45wt%以下が好ましい。また、焼結軸受における鉄の含有量は38wt%以上、42wt%以下が好ましい。   The ratio of the electrolytic copper powder in the raw material powder is preferably 10 wt% or more and 45 wt% or less. Further, the iron content in the sintered bearing is preferably 38 wt% or more and 42 wt% or less.

以上に述べた焼結軸受は、軸受面に複数の動圧発生溝を成形した動圧発生溝付きの焼結軸受に特に適合する。軸受面への動圧発生溝の成形は、例えばサイジング時に凹凸を有する型を焼結素材に押し付けることで行うことができるが、その際には、軸受面における材料、特に銅相の変形量が大きくなる(強サイジング)。従って、空孔がより一層潰れやすくなり、空孔のさらなる微細化を図ることが可能となる。   The sintered bearing described above is particularly suitable for a sintered bearing with dynamic pressure generating grooves in which a plurality of dynamic pressure generating grooves are formed on the bearing surface. The formation of the dynamic pressure generating groove on the bearing surface can be performed, for example, by pressing a concavo-convex mold against the sintered material during sizing. In this case, the amount of deformation of the material on the bearing surface, particularly the copper phase, Increases (strong sizing). Accordingly, the holes are more easily crushed and the holes can be further miniaturized.

以上の様に、本発明の焼結軸受では、空孔を微細化することができる。そのため、回転サイジング等の封孔処理を省略しても動圧抜けを防止して高い油膜剛性を得ることができる。従って、焼結軸受の低コスト化を図ることができる。   As described above, in the sintered bearing of the present invention, the pores can be miniaturized. Therefore, even if sealing processing such as rotational sizing is omitted, it is possible to prevent dynamic pressure loss and obtain high oil film rigidity. Therefore, it is possible to reduce the cost of the sintered bearing.

流体動圧軸受装置の断面図である。It is sectional drawing of a fluid dynamic pressure bearing apparatus. 上記流体動圧軸受装置で使用するスリーブの断面図である。It is sectional drawing of the sleeve used with the said fluid dynamic pressure bearing apparatus. 上記流体動圧軸受装置で使用するスリーブの底面図である。It is a bottom view of the sleeve used with the said fluid dynamic pressure bearing apparatus. 上記流体動圧軸受装置で使用する底部の平面図である。It is a top view of the bottom part used with the said fluid dynamic pressure bearing apparatus. サイジング工程を示す断面図である。It is sectional drawing which shows a sizing process. 銅被覆鉄粉の構成を概略的に示す断面図である。It is sectional drawing which shows the structure of a copper covering iron powder roughly.

以下、本発明に係る実施の形態について、図面を参照して説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.

図1に、HDDやファンモータ等の回転支持に用いられる流体動圧軸受装置1の断面図を示す。なお、以下に述べる流体動圧軸受装置1の構成は一例にすぎず、本発明は、図示例以外の他の構成の流体動圧軸受装置1にも同様に適用することができる。   FIG. 1 shows a cross-sectional view of a fluid dynamic bearing device 1 used for rotation support of an HDD or a fan motor. The configuration of the fluid dynamic pressure bearing device 1 described below is merely an example, and the present invention can be similarly applied to the fluid dynamic pressure bearing device 1 having a configuration other than the illustrated example.

図1に示す流体動圧軸受装置1は、軸部材2と、内周に軸部材2が挿入された焼結金属製のスリーブ(流体動圧軸受)8と、内周面にスリーブ8が固定された筒状のハウジング7と、ハウジング7の軸方向一端側の開口部を閉塞する底部9と、ハウジング7の軸方向他端側の開口部に配設されるシール部10とを主に備える。   A fluid dynamic pressure bearing device 1 shown in FIG. 1 includes a shaft member 2, a sleeve made of sintered metal (fluid dynamic pressure bearing) 8 in which the shaft member 2 is inserted on the inner periphery, and the sleeve 8 fixed on the inner peripheral surface. The cylindrical housing 7 is mainly provided, a bottom portion 9 that closes the opening portion on the one axial end side of the housing 7, and a seal portion 10 that is disposed on the opening portion on the other axial end side of the housing 7. .

軸部材2は、例えばステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。軸部2aの外周面2a1は、凹凸の無い平滑な円筒面とされる。外周面2a1の軸方向略中央部には、外周面2a1よりも僅かに小径な逃げ部2a2が設けられる。フランジ部2bは円盤状を成している。フランジ部2bの上側端面2b1及び下側端面2b2は、凹凸の無い平坦面とされる。   The shaft member 2 is formed of a metal material such as stainless steel, for example, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. The outer peripheral surface 2a1 of the shaft portion 2a is a smooth cylindrical surface without irregularities. A clearance portion 2a2 having a slightly smaller diameter than the outer peripheral surface 2a1 is provided at a substantially central portion in the axial direction of the outer peripheral surface 2a1. The flange portion 2b has a disk shape. The upper end surface 2b1 and the lower end surface 2b2 of the flange portion 2b are flat surfaces without unevenness.

スリーブ8は、焼結金属で形成され、銅及び鉄を主成分とする銅鉄系の焼結金属で形成される。スリーブ8の製造手順は後で詳細に述べる。   The sleeve 8 is formed of a sintered metal, and is formed of a copper iron-based sintered metal mainly composed of copper and iron. The manufacturing procedure of the sleeve 8 will be described in detail later.

スリーブ8の内周面8aには、軸方向に離隔した2箇所の領域にラジアル軸受面8a1、8a2が設けられる。このラジアル軸受面8a1、8a2に、図2に示すような複数の動圧発生溝G,Fがヘリングボーン形状に配列して形成される。   On the inner peripheral surface 8a of the sleeve 8, radial bearing surfaces 8a1 and 8a2 are provided in two regions separated in the axial direction. On the radial bearing surfaces 8a1 and 8a2, a plurality of dynamic pressure generating grooves G and F as shown in FIG. 2 are formed in a herringbone shape.

上側のラジアル軸受面8a1には、動圧発生溝Gとして、傾斜方向の異なる第1傾斜溝G1と第2傾斜溝G2とが軸方向に離隔して形成される。軸部材2が回転すると、第1傾斜溝G1はラジアル軸受隙間の潤滑油を下向きに押し込み、第2傾斜溝G2はラジアル軸受隙間の潤滑油を上向きに押し込む。本実施形態では、第1傾斜溝G1の軸方向寸法L1を第2傾斜溝G2の軸方向寸法L2よりも大きくしている(L1>L2)ため、第1傾斜溝G1による下向きのポンピング力が、第2傾斜溝G2による上向きのポンピング力を上回る。従って、動圧発生溝G全体としてラジアル軸受隙間の潤滑油を下向きに流動させるポンピング力が発生する。   On the upper radial bearing surface 8a1, as the dynamic pressure generating groove G, a first inclined groove G1 and a second inclined groove G2 having different inclination directions are formed apart from each other in the axial direction. When the shaft member 2 rotates, the first inclined groove G1 pushes the lubricating oil in the radial bearing gap downward, and the second inclined groove G2 pushes the lubricating oil in the radial bearing gap upward. In the present embodiment, since the axial dimension L1 of the first inclined groove G1 is larger than the axial dimension L2 of the second inclined groove G2 (L1> L2), the downward pumping force by the first inclined groove G1 is reduced. , Exceeding the upward pumping force by the second inclined groove G2. Accordingly, a pumping force that causes the lubricating oil in the radial bearing gap to flow downward is generated as the entire dynamic pressure generating groove G.

下側のラジアル軸受面8a2には、動圧発生溝Fとして、傾斜方向の異なる第1傾斜溝F1と第2傾斜溝F2とが軸方向に離隔して形成される。軸部材2が回転すると、第1傾斜溝F1はラジアル軸受隙間の潤滑油を下向きに押し込み、第2傾斜溝F2はラジアル軸受隙間の潤滑油を上向きに押し込む。本実施形態では、第1傾斜溝F1と第2傾斜溝F2の軸方向寸法を等しくしているため、動圧発生溝F全体としてラジアル軸受隙間の潤滑油を軸方向に流動させるポンピング力は生じない。   On the lower radial bearing surface 8a2, as the dynamic pressure generating groove F, a first inclined groove F1 and a second inclined groove F2 having different inclination directions are formed apart from each other in the axial direction. When the shaft member 2 rotates, the first inclined groove F1 pushes the lubricating oil in the radial bearing gap downward, and the second inclined groove F2 pushes the lubricating oil in the radial bearing gap upward. In the present embodiment, since the axial dimensions of the first inclined groove F1 and the second inclined groove F2 are equal, a pumping force that causes the lubricating oil in the radial bearing gap to flow in the axial direction is generated as the entire dynamic pressure generating groove F. Absent.

動圧溝G、Fの各傾斜溝G1、G2、F1、F2の円周方向間には、傾斜丘部G3、G4、F3、F4が設けられる。また、動圧溝Gの第1傾斜溝G1と第2傾斜溝G2との軸方向間、及び、動圧溝Fの第1傾斜溝F1と第2傾斜溝F2との軸方向間には、環状丘部G5、F5が設けられる。傾斜丘部G3、G4と環状丘部G5、及び、傾斜丘部F3、F4と環状丘部F5(図3にクロスハッチングで示す領域)は、それぞれ同一円筒面上で連続している。   Inclined hill portions G3, G4, F3, and F4 are provided between the circumferential directions of the inclined grooves G1, G2, F1, and F2 of the dynamic pressure grooves G and F, respectively. Further, between the axial direction of the first inclined groove G1 and the second inclined groove G2 of the dynamic pressure groove G and between the axial direction of the first inclined groove F1 and the second inclined groove F2 of the dynamic pressure groove F, Annular hills G5 and F5 are provided. The inclined hill portions G3 and G4 and the annular hill portion G5, and the inclined hill portions F3 and F4 and the annular hill portion F5 (regions indicated by cross-hatching in FIG. 3) are respectively continuous on the same cylindrical surface.

ラジアル軸受面8a1、8a2の軸方向間には、円筒面8a3が設けられる。円筒面8a3は、動圧溝Gの第2傾斜溝G2及び動圧溝Fの第1傾斜溝F1と同一円筒面上で連続している。また、動圧溝Gの第1傾斜溝G1の上端は、スリーブ8の上側端面8dの内周チャンファに達し、動圧溝Fの第2傾斜溝F2の下端は、スリーブ8の下側端面8bの内周チャンファに達している。   A cylindrical surface 8a3 is provided between the axial directions of the radial bearing surfaces 8a1 and 8a2. The cylindrical surface 8a3 is continuous on the same cylindrical surface as the second inclined groove G2 of the dynamic pressure groove G and the first inclined groove F1 of the dynamic pressure groove F. The upper end of the first inclined groove G1 of the dynamic pressure groove G reaches the inner peripheral chamfer of the upper end face 8d of the sleeve 8, and the lower end of the second inclined groove F2 of the dynamic pressure groove F is the lower end face 8b of the sleeve 8. Has reached the inner circumference Changfa.

スリーブ8の下側端面8bには、図3に示すようなスパイラル形状の動圧溝8b1を有するスラスト軸受面が形成される。スリーブ8の外周面8cは、凹凸のない平滑な円筒面とされる。スリーブ8の上側端面8dは凹凸の無い平坦面とされる。また、スリーブ8の外周面には、軸方向両端の外周チャンファに開口する連通溝8eが形成されている。   A thrust bearing surface having a spiral-shaped dynamic pressure groove 8b1 as shown in FIG. 3 is formed on the lower end surface 8b of the sleeve 8. The outer peripheral surface 8c of the sleeve 8 is a smooth cylindrical surface without irregularities. The upper end surface 8d of the sleeve 8 is a flat surface without unevenness. Further, on the outer peripheral surface of the sleeve 8, a communication groove 8 e that opens to the outer peripheral chamfers at both ends in the axial direction is formed.

ハウジング7は、軸方向両端を開口した円筒状をなす(図1参照)。ハウジング7の内周面7aの下端には、内周面7aよりも大径であって、底部9を固定するための固定面7bが設けられる。ハウジング7は例えば樹脂で形成され、スリーブ8はハウジング7の内周に接着や圧入接着等の手段で固定される。   The housing 7 has a cylindrical shape with both axial ends open (see FIG. 1). At the lower end of the inner peripheral surface 7 a of the housing 7, a fixing surface 7 b that is larger in diameter than the inner peripheral surface 7 a and that fixes the bottom 9 is provided. The housing 7 is made of resin, for example, and the sleeve 8 is fixed to the inner periphery of the housing 7 by means such as adhesion or press-fitting adhesion.

底部9は、金属材料あるいは樹脂材料で円盤状に形成される。底部9の上側端面9aには、図4に示すようなスパイラル形状の動圧溝9a1を有するスラスト軸受面が形成される。底部9の外周面9bは、接着、圧入、接着剤介在下での圧入、あるいはこれらの併用等の適宜の手段で、ハウジング7の固定面7bに固定される。   The bottom 9 is formed in a disk shape from a metal material or a resin material. A thrust bearing surface having a spiral-shaped dynamic pressure groove 9a1 as shown in FIG. 4 is formed on the upper end surface 9a of the bottom portion 9. The outer peripheral surface 9b of the bottom portion 9 is fixed to the fixing surface 7b of the housing 7 by appropriate means such as bonding, press-fitting, press-fitting with an adhesive interposed, or a combination thereof.

シール部10は、ハウジング7の上端開口部に設けられ、本実施形態ではシール部10とハウジング7とが樹脂で一体成形される。シール部10の内周面10aには、上方に向けて漸次拡径したテーパ形状をなしている。シール部10の内周面10aと軸部2aの外周面2a1との間には、下方に向けて径方向幅を徐々に狭めた断面楔形のシール空間Sが形成される。シール部10の下側端面10bは、スリーブ8の上側端面8dと当接している。   The seal portion 10 is provided at the upper end opening of the housing 7, and in this embodiment, the seal portion 10 and the housing 7 are integrally formed of resin. The inner peripheral surface 10a of the seal portion 10 has a tapered shape that gradually increases in diameter upward. Between the inner peripheral surface 10a of the seal portion 10 and the outer peripheral surface 2a1 of the shaft portion 2a is formed a wedge-shaped seal space S having a gradually narrowing radial width downward. The lower end surface 10 b of the seal portion 10 is in contact with the upper end surface 8 d of the sleeve 8.

上記の構成部品からなる流体動圧軸受装置1の内部に、潤滑油が注入される。これにより、ラジアル軸受隙間やスラスト軸受隙間、さらにはスリーブ8の内部空孔を含む流体動圧軸受装置1の内部空間が潤滑油で満たされる。すなわち、シール空間Sよりもハウジング7の閉塞側の空間は潤滑油で途切れなく満たされ、油面は常にシール空間Sの範囲内に維持される。   Lubricating oil is injected into the fluid dynamic bearing device 1 composed of the above components. As a result, the internal space of the fluid dynamic bearing device 1 including the radial bearing gap, the thrust bearing gap, and the internal holes of the sleeve 8 is filled with the lubricating oil. That is, the space on the closed side of the housing 7 with respect to the seal space S is filled with the lubricating oil without interruption, and the oil level is always maintained within the range of the seal space S.

軸部材2が回転すると、スリーブ8の内周面8aのラジアル軸受面8a1、8a2(動圧溝G、F形成領域)と軸部2aの外周面2a1との間にラジアル軸受隙間が形成される。そして、動圧溝G、Fによりラジアル軸受隙間の油膜の圧力が高められ、この動圧作用によって、軸部2aを回転自在に非接触支持する第1ラジアル軸受部R1及び第2ラジアル軸受部R2が構成される。   When the shaft member 2 rotates, a radial bearing gap is formed between the radial bearing surfaces 8a1 and 8a2 (dynamic pressure groove G and F formation region) of the inner peripheral surface 8a of the sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a. . Then, the pressure of the oil film in the radial bearing gap is increased by the dynamic pressure grooves G and F, and by this dynamic pressure action, the first radial bearing portion R1 and the second radial bearing portion R2 that rotatably support the shaft portion 2a in a non-contact manner. Is configured.

これと同時に、フランジ部2bの上側端面2b1とスリーブ8の下側端面8bとの間、及び、フランジ部2bの下側端面2b2と底部9の上側端面9aとの間にそれぞれスラスト軸受隙間が形成される。そして、動圧溝8b1、9a1によりスラスト軸受隙間の油膜の圧力が高められ、この動圧作用によって、フランジ部2bを両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが構成される。潤滑油は、上側のラジアル軸受面8a2で生じたポンピング力により、ラジアル軸受隙間から第スラスト軸受部T1のスラスト軸受隙間、連通溝8e、およびシール空間Sを経由して軸受装置の内部を循環する。   At the same time, thrust bearing gaps are formed between the upper end surface 2b1 of the flange portion 2b and the lower end surface 8b of the sleeve 8, and between the lower end surface 2b2 of the flange portion 2b and the upper end surface 9a of the bottom portion 9, respectively. Is done. Then, the pressure of the oil film in the thrust bearing gap is increased by the dynamic pressure grooves 8b1 and 9a1, and by this dynamic pressure action, the first thrust bearing portion T1 and the second thrust bearing portion T1 that support the flange portion 2b rotatably in both thrust directions are contacted. And a thrust bearing portion T2. The lubricating oil circulates in the bearing device from the radial bearing gap via the thrust bearing gap of the first thrust bearing portion T1, the communication groove 8e, and the seal space S by the pumping force generated on the upper radial bearing surface 8a2. .

以上に述べた焼結金属製のスリーブ8は、先ず、内周面を動圧発生溝のない平滑な円筒面状にした圧紛体を成形し、次いでこの圧紛体を焼結して焼結素材を製作し、さらに焼結素材にサイジングを施すことで製作される。   The sintered metal sleeve 8 described above is formed by first forming a compact having a smooth cylindrical surface with no dynamic pressure generating groove on the inner peripheral surface, and then sintering the compact to obtain a sintered material. It is manufactured by sizing the sintered material.

サイジング工程は、焼結素材の内周面、両端面、および外周面の寸法矯正と、焼結素材の内周面および下側端面への動圧発生溝の成形とを同時に行う工程であり、図5に示すサイジング金型を用いて行われる。このサイジング金型は、ダイ11、コアロッド12、下パンチ13、および上パンチ14を具備している。コアロッド12の外周面に、ラジアル軸受面8a1,8a2の凹凸形状(動圧発生溝と丘部で形成される凹凸形状)に対応した形状の成形部12aが形成され、下パンチ13の端面13aにスラスト軸受面の凹凸形状に対応した形状の成形部13aが形成されている。   The sizing step is a step of simultaneously performing dimensional correction of the inner peripheral surface, both end surfaces, and outer peripheral surface of the sintered material and molding of the dynamic pressure generating grooves on the inner peripheral surface and the lower end surface of the sintered material, The sizing mold shown in FIG. 5 is used. The sizing die includes a die 11, a core rod 12, a lower punch 13, and an upper punch 14. Formed on the outer peripheral surface of the core rod 12 is a molding portion 12a having a shape corresponding to the concave and convex shape of the radial bearing surfaces 8a1 and 8a2 (the concave and convex shape formed by the dynamic pressure generating groove and the hill portion), and is formed on the end surface 13a of the lower punch 13. A molded portion 13a having a shape corresponding to the uneven shape of the thrust bearing surface is formed.

ダイ11の内周とコアロッドの外周の間に焼結素材8’を配置した状態で、上下のパンチ13,14で焼結素材8’を圧迫することにより、焼結素材8’の各面がダイ11の内周面、コアロッド12の外周面、および上下のパンチ13,14の端面に押し付けられて成形され、それらの面の寸法矯正が行われる。この際、コアロッド12の成形部12aが焼結素材8’の内周面8a’に食い込むことで、動圧発生溝F,Gおよび丘部G3〜G5、F3〜F5がそれぞれ成形され、下パンチ13の成形部13aが焼結素材8’の下側端面8b’に食い込むことで、動圧発生溝8b1および動圧発生溝間の丘部8b2(図3参照)がそれぞれ成形される。その後、焼結素材8’をダイ11の外部に押し出すと、焼結素材8’がスプリングバックするため、焼結素材8’を、その内周面の凹凸形状を崩すことなくコアロッド12から抜き取ることが可能となる。その後、焼結素材8’に潤滑油を含浸(真空含浸)させて空孔に潤滑油を保有させることにより、図2に示すスリーブ8が完成する。   By pressing the sintered material 8 ′ with the upper and lower punches 13 and 14 in a state where the sintered material 8 ′ is disposed between the inner periphery of the die 11 and the outer periphery of the core rod, each surface of the sintered material 8 ′ is The die 11 is pressed against the inner peripheral surface of the die 11, the outer peripheral surface of the core rod 12, and the end surfaces of the upper and lower punches 13, 14, and the dimensions of these surfaces are corrected. At this time, the molded portion 12a of the core rod 12 bites into the inner peripheral surface 8a ′ of the sintered material 8 ′, so that the dynamic pressure generating grooves F and G and the hill portions G3 to G5 and F3 to F5 are respectively molded, and the lower punch The 13 forming portions 13a bite into the lower end face 8b ′ of the sintered material 8 ′, thereby forming the dynamic pressure generating groove 8b1 and the hill portion 8b2 (see FIG. 3) between the dynamic pressure generating grooves. Thereafter, when the sintered material 8 ′ is pushed out of the die 11, the sintered material 8 ′ springs back, so that the sintered material 8 ′ is extracted from the core rod 12 without breaking the irregular shape of the inner peripheral surface thereof. Is possible. Then, the sleeve 8 shown in FIG. 2 is completed by impregnating (vacuum impregnating) the lubricant into the sintered material 8 ′ and retaining the lubricant in the holes.

従来の焼結軸受の製造工程では、焼結素材8’の内周面8a’に回転サイジング(回転する治具を内周面8a’に押し当てる工程)等の封孔処理を施し、内周面8a’の表面開孔率を小さくしてから、図5に示すサイジング工程を行うのが通例である。これに対し、本発明では、この封孔処理工程を省略している。そのため、スリーブ8のラジアル軸受面8a1,8a2には、治具の摺動跡が存在しない。このような封孔処理の省略を実現する上で必要となる表面開孔率の低減のため、焼結素材8’の組成を改良している。以下、改良した焼結素材8a’の組成を詳しく述べる。   In the conventional manufacturing process of a sintered bearing, the inner peripheral surface 8a ′ of the sintered material 8 ′ is subjected to a sealing process such as rotational sizing (a step of pressing a rotating jig against the inner peripheral surface 8a ′) and the inner peripheral surface 8a ′. In general, the sizing step shown in FIG. 5 is performed after the surface area ratio of the surface 8a ′ is reduced. On the other hand, in the present invention, this sealing treatment step is omitted. For this reason, there is no sliding trace of the jig on the radial bearing surfaces 8a1 and 8a2 of the sleeve 8. The composition of the sintered material 8 'is improved in order to reduce the surface hole area ratio necessary for realizing the omission of the sealing process. Hereinafter, the composition of the improved sintered material 8a 'will be described in detail.

焼結素材8’の原料粉としては、銅被覆鉄粉、銅の単体粉、および低融点金属の単体粉(低融点金属粉)を混合したものが使用される。   As the raw material powder of the sintered material 8 ′, a mixture of copper-coated iron powder, copper simple powder, and low melting point metal simple powder (low melting point metal powder) is used.

銅被覆鉄粉は、図6に示すように、鉄粉20に銅めっきを施し、鉄粉20の周囲を銅層21で被覆した粉末である。銅被覆鉄粉における銅の割合は、30wt%〜50wt%程度が好ましい。このように多量の銅21で鉄粉20を被覆することで、図5に示す強サイジングを行う際にも、銅層が鉄粉から剥離することを防止することができる。銅被覆鉄に使用する鉄粉としては、200mesh以下の粉末、具体的には200meshの篩(目開き75μm)で篩分けした際に篩を通過した粉末を使用するのが好ましい。   As shown in FIG. 6, the copper-coated iron powder is a powder obtained by performing copper plating on the iron powder 20 and covering the periphery of the iron powder 20 with a copper layer 21. The ratio of copper in the copper-coated iron powder is preferably about 30 wt% to 50 wt%. By covering the iron powder 20 with a large amount of copper 21 in this way, the copper layer can be prevented from peeling off from the iron powder even when performing strong sizing shown in FIG. As the iron powder used for copper-coated iron, it is preferable to use a powder of 200 mesh or less, specifically, a powder that has passed through a sieve when sieved with a sieve of 200 mesh (aperture 75 μm).

銅被覆鉄粉を構成する鉄粉20としては、還元鉄粉、アトマイズ鉄粉等の公知の粉末が広く使用可能であるが、多孔質であり、アトマイズ鉄粉よりも不規則な形状を有する還元鉄粉を使用するのが好ましい。不規則形状の還元鉄粉を使用することで、銅被覆鉄粉も不規則形状となる。そのため圧紛体の状態で銅被覆鉄粉同士を密接に絡み合わせることができ、これにより焼結後の空孔を微細化することが可能となる。   As the iron powder 20 constituting the copper-coated iron powder, known powders such as reduced iron powder and atomized iron powder can be widely used, but the reduction is porous and has an irregular shape as compared with the atomized iron powder. It is preferable to use iron powder. By using irregularly shaped reduced iron powder, the copper-coated iron powder also becomes irregularly shaped. Therefore, the copper-coated iron powders can be intertwined closely in the state of a compact, thereby making it possible to refine the pores after sintering.

また、銅の単体粉としては、樹枝形状を有する電解銅粉が使用される。電解銅粉としては、330mesh以下の粉末、具体的には330meshの篩(目開き45μm)で篩分けした際に篩を通過した粉末が使用される。平均粒径(例えばレーザー回析・散乱法で測定される)で対比すると、銅被覆鉄粉よりも電解銅粉の粒径が小さい。このように小粒径の電解銅粉を使用することで、銅被覆鉄粉間の隙間に電解銅粉が入り込むようになるため、焼結後の空孔を微細化することが可能となる。   Moreover, as the copper simple powder, electrolytic copper powder having a dendritic shape is used. As the electrolytic copper powder, a powder having a particle size of 330 mesh or less, specifically, a powder that has passed through a sieve when sieved with a 330 mesh sieve (aperture 45 μm) is used. When compared with the average particle size (for example, measured by laser diffraction / scattering method), the particle size of the electrolytic copper powder is smaller than that of the copper-coated iron powder. By using electrolytic copper powder having a small particle diameter in this way, electrolytic copper powder enters the gaps between the copper-coated iron powders, and thus the pores after sintering can be miniaturized.

理論上は、原料粉に単体銅粉を配合せず、銅被覆鉄粉を小粒径化するだけでも空孔を微細化することはできる。しかしながら、これでは銅被覆鉄粉の見かけ密度が低下して流動性が低下するため、圧紛体の成形時に原料粉をスムーズに成形型に充填することが困難となる。これに対して、上記のように、大粒径の銅被覆鉄粉をベース粉末として使用し、これに小粒径の電解銅粉を添加することにより、原料粉全体の流動性の確保と、空孔の微細化とを両立することが可能となる。以上の観点から、原料粉における電解銅粉の配合割合は、10wt%以上、45wt%以下(より好ましくは30wt%以上、40wt%以下)とするのが好ましい。   Theoretically, pores can be refined by simply reducing the particle size of the copper-coated iron powder without blending the single copper powder into the raw material powder. However, in this case, the apparent density of the copper-coated iron powder is lowered and the fluidity is lowered, so that it is difficult to smoothly fill the raw material powder into the molding die at the time of molding the compact. On the other hand, as described above, using copper-coated iron powder with a large particle size as a base powder, and adding electrolytic copper powder with a small particle size to this, ensuring the fluidity of the entire raw material powder, It becomes possible to make the pores finer. From the above viewpoint, the blending ratio of the electrolytic copper powder in the raw material powder is preferably 10 wt% or more and 45 wt% or less (more preferably 30 wt% or more and 40 wt% or less).

低融点金属の単体粉は、焼結時のバインダーとして添加される。この単体粉としては、融点が700℃以下の金属粉、例えば錫、亜鉛、リン等の粉末が使用される。本実施形態では、これらの中でも銅と鉄に拡散し易く、また単粉で使用することが容易な錫粉、特にアトマイズ錫粉を使用する。低融点金属粉は、焼結時に液相となって移動し、元の場所に空孔を形成するため、空孔を微細化する観点から、低融点金属粉としては小粒径のもの、具体的にはその94%以上が330mesh以下の粒径のものを使用するのが好ましい。また、原料粉における低融点金属粉の配合量は1〜3wt%程度の割合とすることが望ましい。   The single powder of the low melting point metal is added as a binder during sintering. As this simple substance powder, a metal powder having a melting point of 700 ° C. or less, for example, a powder of tin, zinc, phosphorus or the like is used. In this embodiment, among these, tin powder that is easy to diffuse into copper and iron and that can be easily used as a single powder, particularly atomized tin powder, is used. The low melting point metal powder moves in a liquid phase during sintering and forms vacancies in the original place. From the viewpoint of refining the vacancies, the low melting point metal powder has a small particle size. Specifically, it is preferable that 94% or more of the particles have a particle size of 330 mesh or less. Further, the blending amount of the low melting point metal powder in the raw material powder is desirably about 1 to 3 wt%.

なお、従来の銅鉄系の焼結軸受では、銅粉として、銅と低融点金属を合金化させた合金化銅粉(例えば青銅粉)を使用する場合もあるが、この種の合金化銅粉は、一般に硬質で変形しにくいため、圧紛体の成形時に粒子間に隙間を生じやすくなり、焼結後の空孔が粗大化する要因となる。また、図5に示すサイジング工程でも、焼結後の青銅組織が硬質であるため、圧迫力を負荷しても空孔を潰すことが困難となる。これに対し、上記のように銅成分および低融点金属成分として、それぞれの単体粉を使用し、かつ各単体粉を小粒径化することにより、かかる不具合を防止することができる。   In conventional copper-iron sintered bearings, alloyed copper powder (for example, bronze powder) in which copper and a low melting point metal are alloyed may be used as the copper powder. Since the powder is generally hard and hardly deformed, gaps are easily generated between the particles when the compact is formed, and the pores after sintering become a factor. Further, even in the sizing process shown in FIG. 5, since the sintered bronze structure is hard, it is difficult to crush the pores even when a pressing force is applied. On the other hand, such a problem can be prevented by using each single powder as the copper component and the low melting point metal component as described above and reducing the particle size of each single powder.

以上に述べた原料粉においては、鉄の含有量が38wt%〜42wt%、低融点金属の含有量が1wt%〜3.0wt%、残部が銅となるように各種粉末の組成や配合量が調整される。   In the raw material powder described above, the composition and blending amount of various powders are such that the iron content is 38 wt% to 42 wt%, the low melting point metal content is 1 wt% to 3.0 wt%, and the balance is copper. Adjusted.

以上に述べた原料粉は、必要に応じて各種成形助剤、例えば離型性向上のための潤滑剤、等を添加した上で成形型に供給される。成形型で原料粉を圧縮成形することで円筒状の圧紛体が製作され、その後、焼結を行うことで、図5に示す焼結素材8’が得られる。焼結温度は、低融点金属の融点以上で、かつ銅の融点以下の温度、具体的には800℃〜900℃程度とする。焼結中はまず錫粉が液相となって銅被覆鉄粉の銅層や電解銅粉の表面を濡らす。これにより、銅の焼結が促進され、銅と錫が鉄粒子に拡散して銅被覆鉄粉の鉄粒子と銅層が強固に結合される。また、焼結中に液相となった錫粉がバインダーの役割を果たし、銅被覆鉄粉同士、電解銅粉同士、さらに銅被覆鉄粉と電解銅粉とが結合される。   The raw material powder described above is supplied to the mold after adding various molding aids, for example, a lubricant for improving releasability, if necessary. A raw material powder is compression-molded with a molding die to produce a cylindrical compact, and then sintered to obtain a sintered material 8 'shown in FIG. The sintering temperature is set to a temperature not lower than the melting point of the low melting point metal and not higher than the melting point of copper, specifically about 800 ° C. to 900 ° C. During sintering, the tin powder first becomes a liquid phase to wet the copper layer of the copper-coated iron powder and the surface of the electrolytic copper powder. Thereby, copper sintering is promoted, copper and tin diffuse into the iron particles, and the iron particles and the copper layer of the copper-coated iron powder are firmly bonded. Moreover, the tin powder which became a liquid phase during sintering plays the role of a binder, and copper covering iron powder, electrolytic copper powder, copper covering iron powder, and electrolytic copper powder are couple | bonded.

スリーブ8(サイジング後)の金属組織は、主に鉄相と二種類の銅相とで形成される。このうち、鉄相と一方の銅相(第一銅相)は銅被覆鉄粉に由来するものであり、図6に示す銅被覆鉄粉と同様に、鉄相の周囲を第一銅相が被覆した形態となっている。また、他方の銅相(第二銅相)は、電解銅粉に由来する組織で、その少なくとも一部が樹枝状の形態を有する。第二銅相の周辺には、電解銅粉が不規則な樹枝状の形態であったことに由来して、微細な空孔が多数形成される(これに対し、電解銅粉よりも球形に近いアトマイズ銅粉を使用した場合には、その周辺に微細な空孔は形成されない)。   The metal structure of the sleeve 8 (after sizing) is mainly formed of an iron phase and two types of copper phases. Among these, the iron phase and one copper phase (the first copper phase) are derived from the copper-coated iron powder, and, like the copper-coated iron powder shown in FIG. It is a covered form. The other copper phase (second copper phase) is a structure derived from the electrolytic copper powder, and at least a part thereof has a dendritic form. A lot of fine pores are formed around the cupric phase because the electrolytic copper powder has an irregular dendritic form (in contrast to the electrolytic copper powder, it has a more spherical shape). When close atomized copper powder is used, fine pores are not formed around it).

また、銅被覆鉄粉における銅層21の量が多いため、サイジングに伴う第一銅相の鉄相からの剥離を抑制することができる。従って、サイジング後のスリーブ8の表面(図の右側)のほぼ全面が銅被覆鉄粉に由来する第一銅相で覆われる(一部の表面は電解銅粉に由来する第二銅相で形成される)。具体的には、スリーブ8の表面の90%以上が第一および第二銅相で形成される。このように本発明によれば、スリーブ8の表面のほぼ全面が銅相31,32で覆われているため、軸2の外周面に対する軸受面の攻撃性を低下することができ、高い摺動性を確保することが可能となる。   Moreover, since there is much quantity of the copper layer 21 in copper covering iron powder, peeling from the iron phase of the 1st copper phase accompanying sizing can be suppressed. Accordingly, almost the entire surface of the sleeve 8 after sizing (the right side in the figure) is covered with the cuprous phase derived from the copper-coated iron powder (some surfaces are formed of the cupric phase derived from the electrolytic copper powder). ) Specifically, 90% or more of the surface of the sleeve 8 is formed of the first and second copper phases. As described above, according to the present invention, since almost the entire surface of the sleeve 8 is covered with the copper phases 31 and 32, the aggressiveness of the bearing surface with respect to the outer peripheral surface of the shaft 2 can be reduced, and high sliding is achieved. It becomes possible to ensure the sex.

本発明では、以上に述べたように、スリーブ8を構成する焼結素材8’の原料粉として、銅被覆鉄粉と、銅被覆鉄粉よりも平均粒径の小さい電解銅粉を使用している。従って、圧紛体の段階において銅被覆鉄粉間の隙間を電解銅粉で埋めることができる。また、電解銅粉が他の粒子と絡みやすい樹枝状であるため、粒子間の隙間を小さくすることができる。さらに、銅被覆鉄粉における銅の割合を多くしていることもあり(30wt以上、50wt以下の銅めっき量)、焼結後の鉄相30の周辺には、軟質の銅相31,32が潤沢に存在している。従って、焼結後に図5に示すサイジングを行った際には、銅相31,32の変形により空孔が潰れやすくなる。   In the present invention, as described above, copper-coated iron powder and electrolytic copper powder having an average particle size smaller than that of the copper-coated iron powder are used as the raw material powder of the sintered material 8 ′ constituting the sleeve 8. Yes. Accordingly, the gap between the copper-coated iron powders can be filled with the electrolytic copper powder at the stage of the compact. Moreover, since the electrolytic copper powder has a dendritic shape that easily entangles with other particles, the gap between the particles can be reduced. Furthermore, the ratio of copper in the copper-coated iron powder may be increased (copper plating amount of 30 wt or more and 50 wt or less), and soft copper phases 31 and 32 are formed around the iron phase 30 after sintering. Exists in abundance. Therefore, when the sizing shown in FIG. 5 is performed after sintering, the voids are easily crushed due to the deformation of the copper phases 31 and 32.

以上の作用から、本発明によれば、スリーブ8の空孔33を微細化することが可能になる。空孔33が微細化することで、回転サイジング等の封孔処理を省略しても、各軸受面の表面開孔率を小さくすることができる。従って、いわゆる動圧抜けを防止して高い油膜剛性を維持することが可能となる。かかる効果は、既に述べたその他の微細化対策、すなわち、低融点金属粉として銅粉と合金化していない単体粉を使用すること、低融点金属粉として小粒径のものを使用すること、さらに銅被覆鉄粉の鉄粉として還元鉄粉を使用すること、の何れか一つの対策を採用し、もしくは二以上の対策を適宜組み合わせるにより、さらに強化することができる。   As described above, according to the present invention, the hole 33 of the sleeve 8 can be miniaturized. By reducing the size of the air holes 33, the surface area ratio of each bearing surface can be reduced even if a sealing process such as rotational sizing is omitted. Therefore, it is possible to prevent so-called dynamic pressure loss and maintain high oil film rigidity. Such effects include the other finer measures already described, that is, use of a single powder not alloyed with copper powder as the low melting point metal powder, use of a small melting point metal powder as the low melting point metal powder, It can be further strengthened by adopting any one measure of using reduced iron powder as the iron powder of the copper-coated iron powder, or by appropriately combining two or more measures.

本発明による空孔の微細化の効果を確認するために、以下の確認試験を行った。   In order to confirm the effect of pore miniaturization according to the present invention, the following confirmation test was performed.

この確認試験においては、原料粉に配合する銅被覆鉄粉として、以下の表1に示す3種類を使用した。何れの銅被覆鉄粉に使用した鉄粉の粒度は−200meshとしている。   In this confirmation test, three types shown in Table 1 below were used as the copper-coated iron powder to be blended with the raw material powder. The particle size of the iron powder used for any copper-coated iron powder is -200 mesh.

Figure 2017078183
Figure 2017078183

これら3種類の銅被覆鉄粉を、−330meshの電解銅粉、−330meshのアトマイズ錫粉(94%以上)と上記の割合で混合して原料粉とし、これを内径φ1.5(mm)、外径φ3(mm)、長さ3.3(mm)の円筒状に成形し、焼結して得た焼結体の通油度を測定した。通油度の測定前に、軸受面に対する回転サイジング等の封孔処理は行っていない。通油度は、スリーブの両端面をシールし、内周面の側から外径側へ潤滑油を0.4MPaで圧送した時の、10分で透過した潤滑油重量とする。   These three types of copper-coated iron powder were mixed with -330mesh electrolytic copper powder and -330mesh atomized tin powder (94% or more) at the above ratio to obtain a raw material powder, which had an inner diameter of φ1.5 (mm), The oil permeability of a sintered body obtained by molding into a cylindrical shape having an outer diameter of φ3 (mm) and a length of 3.3 (mm) and sintering was measured. Prior to the measurement of oil permeability, sealing treatment such as rotation sizing on the bearing surface is not performed. The oil permeability is defined as the weight of the lubricating oil permeated in 10 minutes when both ends of the sleeve are sealed and the lubricating oil is pumped from the inner peripheral surface side to the outer diameter side at 0.4 MPa.

通油度の測定結果は、何れの実施例でも0.03g/10min以下となった。これにより、回転サイジングを省略しても実用上十分な程度に焼結体の表面開孔率を小さくできることが確認された(なお、回転サイジングを行った焼結軸受の既存品では、通油度は0.01g/10min程度である)。特に、銅被覆鉄粉の鉄粉として還元鉄粉を使用した実施例2および実施例3の場合には通油度の値がより小さくなり、回転サイジングを施した既存のスリーブと同程度の通油度が得られることも確認された。   The measurement result of the oil permeability was 0.03 g / 10 min or less in any of the examples. As a result, it was confirmed that the surface porosity of the sintered body can be reduced to a practically sufficient level even if the rotational sizing is omitted. Is about 0.01 g / 10 min). In particular, in the case of Example 2 and Example 3 in which reduced iron powder is used as the iron powder of the copper-coated iron powder, the value of oil permeability becomes smaller, and the same degree of passage as that of an existing sleeve subjected to rotational sizing is achieved. It was also confirmed that oiliness was obtained.

1 流体動圧軸受装置
2 軸部材
7 ハウジング
8 スリーブ(焼結軸受)
8a 内周面(軸受面)
8’ 焼結素材
20 鉄粉
21 銅層
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 7 Housing 8 Sleeve (sintered bearing)
8a Inner peripheral surface (bearing surface)
8 'Sintered material 20 Iron powder 21 Copper layer

Claims (8)

鉄粉の表面を銅層で被覆してなり、銅の割合が30wt%以上、50%wt以下である銅被覆鉄粉と、銅被覆鉄粉よりも平均粒径が小さい電解銅粉とを含む原料粉を焼結して形成したことを特徴とする焼結軸受。 The surface of the iron powder is coated with a copper layer, and includes a copper-coated iron powder having a copper ratio of 30 wt% or more and 50% wt or less, and an electrolytic copper powder having an average particle size smaller than the copper-coated iron powder. A sintered bearing formed by sintering raw material powder. 軸受面の封孔処理を行っていない請求項1記載の焼結軸受。   The sintered bearing according to claim 1, wherein the bearing surface is not sealed. 前記原料粉に、銅被覆鉄粉よりも平均粒径が小さい低融点金属粉を配合した請求項1または2記載の焼結軸受。   The sintered bearing according to claim 1 or 2, wherein a low melting point metal powder having an average particle size smaller than that of the copper-coated iron powder is blended with the raw material powder. 原料粉における低融点金属粉の割合を、1.0wt%以上、3.0wt%以下とした請求項3記載の焼結軸受。   The sintered bearing according to claim 3, wherein a ratio of the low melting point metal powder in the raw material powder is 1.0 wt% or more and 3.0 wt% or less. 原料粉における電解銅粉の割合を10wt%以上、45wt%以下とした請求項1〜4何れか1項に記載の焼結軸受。   The sintered bearing according to any one of claims 1 to 4, wherein a ratio of the electrolytic copper powder in the raw material powder is 10 wt% or more and 45 wt% or less. 鉄の含有量を38wt%以上、42wt%以下とした請求項1〜5何れか1項に記載の焼結軸受。   The sintered bearing according to any one of claims 1 to 5, wherein the iron content is 38 wt% or more and 42 wt% or less. 電解銅粉を330mesh以下とした請求項1〜6何れか1項に記載の焼結軸受。   The sintered bearing according to any one of claims 1 to 6, wherein the electrolytic copper powder is 330 mesh or less. 軸受面に複数の動圧発生溝を成形した請求項1〜7の何れか1項に記載の焼結軸受。   The sintered bearing according to any one of claims 1 to 7, wherein a plurality of dynamic pressure generating grooves are formed on the bearing surface.
JP2015205412A 2015-10-19 2015-10-19 Sintered shaft bearing Pending JP2017078183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205412A JP2017078183A (en) 2015-10-19 2015-10-19 Sintered shaft bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205412A JP2017078183A (en) 2015-10-19 2015-10-19 Sintered shaft bearing

Publications (1)

Publication Number Publication Date
JP2017078183A true JP2017078183A (en) 2017-04-27

Family

ID=58666016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205412A Pending JP2017078183A (en) 2015-10-19 2015-10-19 Sintered shaft bearing

Country Status (1)

Country Link
JP (1) JP2017078183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543948A (en) * 2018-04-17 2018-09-18 海宁金瑞金属制品有限公司 Shaking assembly in powder metallurgy device for soaking oil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150330A (en) * 1989-11-07 1991-06-26 Sankyo Seiki Mfg Co Ltd Manufacture of bearing
JPH03166303A (en) * 1989-08-29 1991-07-18 Hitachi Powdered Metals Co Ltd Manufacture of sintered parts
JP2001279349A (en) * 2000-03-31 2001-10-10 Ntn Corp Sintered oilless bearing material using copper-coated iron powder and its producing method
JP2003120674A (en) * 2001-10-16 2003-04-23 Hitachi Powdered Metals Co Ltd Sintered oil-containing bearing for electric motor and its manufacturing method
JP2015021586A (en) * 2013-07-22 2015-02-02 Ntn株式会社 Sintered bearing and manufacturing method thereof
JP2015092097A (en) * 2013-10-03 2015-05-14 Ntn株式会社 Sintered bearing and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03166303A (en) * 1989-08-29 1991-07-18 Hitachi Powdered Metals Co Ltd Manufacture of sintered parts
JPH03150330A (en) * 1989-11-07 1991-06-26 Sankyo Seiki Mfg Co Ltd Manufacture of bearing
JP2001279349A (en) * 2000-03-31 2001-10-10 Ntn Corp Sintered oilless bearing material using copper-coated iron powder and its producing method
JP2003120674A (en) * 2001-10-16 2003-04-23 Hitachi Powdered Metals Co Ltd Sintered oil-containing bearing for electric motor and its manufacturing method
JP2015021586A (en) * 2013-07-22 2015-02-02 Ntn株式会社 Sintered bearing and manufacturing method thereof
JP2015092097A (en) * 2013-10-03 2015-05-14 Ntn株式会社 Sintered bearing and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108543948A (en) * 2018-04-17 2018-09-18 海宁金瑞金属制品有限公司 Shaking assembly in powder metallurgy device for soaking oil

Similar Documents

Publication Publication Date Title
JP5384014B2 (en) Sintered bearing
WO2010106909A1 (en) Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing
JP6199106B2 (en) Sintered bearing, method for manufacturing the same, and fluid dynamic bearing device provided with the sintered bearing
JP5318619B2 (en) Sintered metal bearing
JP6921046B2 (en) Manufacturing method of sintered bearing
JP6816079B2 (en) Vibration motor
JP2006214003A (en) Sintered metallic material and sintered oil-retaining bearing constituted of the metallic material
WO2018037822A1 (en) Dynamic pressure bearing and method for manufacturing same
JP6812113B2 (en) Sintered oil-impregnated bearing and its manufacturing method
JP2017078183A (en) Sintered shaft bearing
JP5558041B2 (en) Fe-based sintered metal bearing and manufacturing method thereof
JP6836364B2 (en) Sintered bearings and their manufacturing methods
JP5323620B2 (en) Sintered metal bearing for fluid dynamic bearing device, and fluid dynamic bearing device provided with the bearing
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP6026123B2 (en) Sintered metal bearing
KR102331498B1 (en) Sintered bearing and its manufacturing method
CN110475982B (en) Sintered bearing and method for manufacturing same
WO2018047765A1 (en) Slide bearing
JP6890405B2 (en) Dynamic pressure bearings and their manufacturing methods
WO2018186221A1 (en) Porous dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
JP2024034792A (en) Sintered oil-impregnated bearing
JP2018179018A (en) Porous dynamic pressure bearing
JP2010060099A (en) Slide bearing and manufacturing method for the same
JP2018053929A (en) Sintered bearing and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200228