JP2024034792A - Sintered oil-impregnated bearing - Google Patents

Sintered oil-impregnated bearing Download PDF

Info

Publication number
JP2024034792A
JP2024034792A JP2022139277A JP2022139277A JP2024034792A JP 2024034792 A JP2024034792 A JP 2024034792A JP 2022139277 A JP2022139277 A JP 2022139277A JP 2022139277 A JP2022139277 A JP 2022139277A JP 2024034792 A JP2024034792 A JP 2024034792A
Authority
JP
Japan
Prior art keywords
bearing
pores
oil
impregnated
sintered oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022139277A
Other languages
Japanese (ja)
Inventor
正志 山郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2022139277A priority Critical patent/JP2024034792A/en
Priority to PCT/JP2023/028545 priority patent/WO2024048202A1/en
Priority to CN202311105383.4A priority patent/CN117628053A/en
Publication of JP2024034792A publication Critical patent/JP2024034792A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Abstract

【課題】動圧抜けによる油膜強度の低下を長期にわたり抑制する。【解決手段】 焼結含油軸受8には、軸部材2との間でラジアル軸受隙間を形成する軸受面8a1が形成される。軸受面8a1に多数の気孔を開口させる。気孔のうち、気孔体積が0.0005mm3を超えるものを粗大気孔40として、軸受面8a1から深さ50μmまでの領域には粗大気孔40を存在させない。【選択図】図6[Problem] To suppress the decline in oil film strength due to dynamic pressure release over a long period of time. SOLUTION: A sintered oil-impregnated bearing 8 is formed with a bearing surface 8a1 that forms a radial bearing gap with the shaft member 2. A large number of pores are opened in the bearing surface 8a1. Among the pores, those having a pore volume exceeding 0.0005 mm 3 are defined as coarse pores 40, and no coarse pores 40 are present in a region from the bearing surface 8a1 to a depth of 50 μm. [Selection diagram] Figure 6

Description

本発明は、焼結含油軸受に関する。 The present invention relates to a sintered oil-impregnated bearing.

焼結含油軸受は、多孔質の焼結金属で形成される軸受であって、焼結体の内部気孔に潤滑油を含浸させた状態で使用される。焼結含油軸受の内周に挿入された軸の相対回転に伴い、焼結軸受の内周面(軸受面)から内部気孔に含浸させた潤滑油が軸受隙間に滲み出ることで軸受隙間に油膜が形成され、この油膜によって軸部が支持される。 A sintered oil-impregnated bearing is a bearing formed of porous sintered metal, and is used with the internal pores of the sintered body impregnated with lubricating oil. As the shaft inserted into the inner circumference of the sintered oil-impregnated bearing rotates relative to each other, the lubricating oil impregnated into the internal pores from the inner circumferential surface (bearing surface) of the sintered bearing seeps into the bearing gap, forming an oil film in the bearing gap. is formed, and the shaft is supported by this oil film.

焼結含油軸受は、その優れた回転精度及び静粛性から、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDDや、CD、DVD、ブルーレイディスク用のディスク駆動装置におけるスピンドルモータ用、これらディスク駆動装置やPC等に組み込まれるファンモータ用、あるいは、レーザビームプリンタ(LBP)に組み込まれるポリゴンスキャナモータ用の軸受装置として使用されている。 Due to its excellent rotational accuracy and quietness, sintered oil-impregnated bearings are used as bearing devices for motors installed in various electrical devices including information devices.More specifically, they are used in HDDs, CDs, DVDs, and Blu-ray discs It is used as a bearing device for a spindle motor in a disk drive device, a fan motor built into these disk drive devices, a PC, etc., or a polygon scanner motor built into a laser beam printer (LBP).

焼結含油軸受の一例として、軸受面もしくは軸部の外周面に、動圧発生溝等の動圧発生部を形成し、軸部の相対回転時に動圧発生部による動圧作用で軸受隙間に満たされた潤滑油の圧力(油膜強度)を高める流体動圧軸受が知られている。 As an example of a sintered oil-impregnated bearing, a dynamic pressure generating part such as a dynamic pressure generating groove is formed on the bearing surface or the outer peripheral surface of the shaft part, and when the shaft part rotates relative to each other, the dynamic pressure generated by the dynamic pressure generating part causes the bearing gap to Fluid dynamic pressure bearings that increase the pressure (oil film strength) of filled lubricating oil are known.

この流体動圧軸受では、軸受隙間に満たされた潤滑油の圧力が高まると、軸受面に無数に開口した気孔を介して内部気孔に潤滑油が浸入し、軸受隙間における潤滑油の圧力(油膜強度)が低下する、いわゆる「動圧抜け」の問題を生じる。同様の問題は、軸受面に動圧発生部を形成していない焼結含油軸受(真円軸受)でも、軸受隙間での潤滑油の圧力の低下という形で現れる。 In this fluid dynamic pressure bearing, when the pressure of the lubricating oil filled in the bearing gap increases, the lubricating oil infiltrates into the internal pores through the countless pores opened on the bearing surface, and the lubricating oil pressure (oil film) in the bearing gap increases. This causes the problem of so-called "dynamic pressure release," which causes a decrease in strength. A similar problem occurs in the form of a drop in the pressure of lubricating oil in the bearing gap even in sintered oil-impregnated bearings (perfect circular bearings) that do not have a dynamic pressure generating portion formed on the bearing surface.

動圧抜けの対策として、下記特許文献1では、軸受面の粗大気孔が、主に歪な形状を有する鉄粉の周辺に生じることに鑑み、鉄粉の表面に微細な銅粉を拡散結合した部分拡散合金粉を原料粉に用いることが開示されている。歪な形状の鉄粉の凹部に微細な銅粉が入り込むため、部分拡散合金粉全体として歪な形状が緩和される、と述べられている。 As a countermeasure against dynamic pressure release, in Patent Document 1 listed below, in view of the fact that coarse pores on the bearing surface mainly occur around iron powder having a distorted shape, fine copper powder is diffused and bonded to the surface of iron powder. It is disclosed that partially diffused alloy powder is used as raw material powder. It is stated that because the fine copper powder enters the recesses of the distorted iron powder, the distorted shape of the partially diffused alloy powder as a whole is relaxed.

また、下記特許文献2では、焼結体の内周面に動圧発生溝を成形する工程の前に、焼結体の外周面を50μm以下の微小な圧縮代で圧縮する(軽サイジング)工程を設けることが開示されている。この軽サイジングにより、焼結体の外周面に露出した銅が塑性変形して焼結体の外周面の粗大気孔に入り込むため、外周面の粗大気孔を減じることができる、と述べられている。 Further, in Patent Document 2 listed below, before the step of forming dynamic pressure generating grooves on the inner peripheral surface of the sintered body, the outer peripheral surface of the sintered body is compressed with a minute compression amount of 50 μm or less (light sizing). It is disclosed that the following is provided. It is stated that by this light sizing, the copper exposed on the outer peripheral surface of the sintered body is plastically deformed and enters the coarse pores on the outer peripheral surface of the sintered body, so that the rough pores on the outer peripheral surface can be reduced.

特開2017-150596号公報Japanese Patent Application Publication No. 2017-150596 特開2019-183868号公報JP2019-183868A

このように特許文献1では焼結体の内周面(軸受面)の粗大気孔を少なくし、特許文献2では焼結体の外周面の粗大気孔を少なくすることで、動圧抜けによる油膜強度の低下を抑えようとしている。何れも、焼結体表面に開口した粗大気孔が動圧抜けの要因となる、という点に着目したものである。 In this way, Patent Document 1 reduces the rough pores on the inner circumferential surface (bearing surface) of the sintered body, and Patent Document 2 reduces the rough pores on the outer circumferential surface of the sintered body, thereby improving oil film strength due to dynamic pressure release. is trying to suppress the decline in In both cases, attention is paid to the fact that coarse pores opened on the surface of the sintered body become a cause of dynamic pressure release.

しかしながら、たとえ表面の粗大気孔を少なくしても、軸受面が軸との摺動により摩耗した場合は、軸受の内部に存在していた粗大気孔が表面に現れ、再び動圧抜けの問題を生じるようになる。このように、長期的な使用を考慮すると、表面に開口した粗大気孔を少なくするだけでは動圧抜け対策として不十分となる。 However, even if the rough pores on the surface are reduced, if the bearing surface wears out due to sliding with the shaft, the rough pores that existed inside the bearing will appear on the surface, causing the problem of dynamic pressure release again. It becomes like this. Thus, when long-term use is considered, simply reducing the number of coarse pores opened on the surface is insufficient as a measure against dynamic pressure release.

そこで、本発明は、動圧抜けによる油膜強度の低下を長期にわたり抑制することができる焼結含油軸受の提供を目的とする。 Therefore, an object of the present invention is to provide a sintered oil-impregnated bearing that can suppress a decrease in oil film strength due to dynamic pressure release over a long period of time.

以上の目的を達成するため、本発明は、潤滑油を含浸させた筒状の焼結体からなり、支持すべき軸部材との間でラジアル軸受隙間を形成する軸受面を備えた焼結含油軸受において、前記軸受面に多数の気孔が開口し、前記気孔のうち、気孔体積が0.0005mm3を超えるものを粗大気孔として、前記軸受面から深さ50μmまでの領域に前記粗大気孔が存在しないことを特徴とする。 In order to achieve the above objects, the present invention comprises a cylindrical sintered body impregnated with lubricating oil, and has a bearing surface that forms a radial bearing gap with a shaft member to be supported. In the bearing, a large number of pores are opened on the bearing surface, and among the pores, those with a pore volume exceeding 0.0005 mm are defined as coarse pores, and the coarse pores are present in an area up to a depth of 50 μm from the bearing surface. It is characterized by not

かかる焼結含油軸受であれば、長期使用により軸受面が摩耗した場合でも、軸受面での粗大気孔の発生を防止することができる。従って、動圧抜けを抑制して長期間安定した油膜強度を確保できる。 With such a sintered oil-impregnated bearing, even if the bearing surface is worn out due to long-term use, it is possible to prevent the formation of rough pores on the bearing surface. Therefore, dynamic pressure loss can be suppressed and stable oil film strength can be ensured for a long period of time.

また、軸受面から深さ50μmまでの領域には、軸受面も含めて0.0005mm3以下の気孔が多数存在するので、軸受面からの潤滑油の滲み出しを活発に行うことができ、これにより軸受隙間に潤沢な潤滑油を供給してエアの混入を防止することができる。また、ラジアル軸受隙間の潤滑油が焼結含油軸受の内部に還流し、潤滑油が狭隘な気孔を通過する際の異物除去(フィルタリング)も十分に行われるため、潤滑油の耐久性が向上する。従って、焼結含油軸受の耐久寿命の向上を図ることができる。 In addition, since there are many pores of 0.0005 mm 3 or less in the region up to a depth of 50 μm from the bearing surface, including the bearing surface, lubricating oil can actively seep out from the bearing surface. This allows ample lubricating oil to be supplied to the bearing gap and prevents air from entering. In addition, the lubricating oil in the radial bearing gap returns to the inside of the sintered oil-impregnated bearing, and as the lubricating oil passes through the narrow pores, foreign matter is sufficiently removed (filtered), improving the durability of the lubricating oil. . Therefore, it is possible to improve the durability life of the sintered oil-impregnated bearing.

この焼結含油軸受としては、前記軸受面と半径方向反対側に位置する表面に多数の気孔が開口し、前記表面から深さ100μmまでの領域に前記粗大気孔が存在しないものが望ましい。これにより、焼結含油軸受の内部の潤滑油が軸受面と半径方向反対側に位置する表面から流出しにくくなるので、動圧抜けをより一層効果的に抑制することができる。 This sintered oil-impregnated bearing preferably has a large number of pores on the surface located on the opposite side in the radial direction from the bearing surface, and has no coarse pores in a region up to a depth of 100 μm from the surface. This makes it difficult for the lubricating oil inside the sintered oil-impregnated bearing to flow out from the surface located on the opposite side in the radial direction from the bearing surface, so that dynamic pressure loss can be suppressed even more effectively.

また、この焼結含油軸受としては、前記軸受面を通る半径方向断面のうち、半径方向の肉厚に対して前記軸受面から50%離れた位置よりも前記軸受面側に、前記粗大気孔数が最大となる環状領域を設けたものが好ましい。 In addition, in this sintered oil-impregnated bearing, in a radial cross section passing through the bearing surface, the number of rough holes is on the bearing surface side from a position 50% away from the bearing surface with respect to the wall thickness in the radial direction. It is preferable to provide an annular region where the maximum value is obtained.

かかる構成であれば、焼結含油軸受内部の軸受面に近い領域に多量の潤滑油が保持されるため、軸受面を介してラジアル軸受隙間に還流する潤滑油量が増大する。また、当該領域中での潤滑油の流動が活発化する。そのため、ラジアル軸受隙間と焼結含油軸受の間の潤滑油の循環を活発化することができる。これにより、油膜強度を高めると共に、フィルタリング効果を高めることができる。 With such a configuration, a large amount of lubricating oil is retained in a region inside the sintered oil-impregnated bearing close to the bearing surface, so that the amount of lubricating oil that flows back into the radial bearing gap via the bearing surface increases. Furthermore, the flow of lubricating oil in this area becomes more active. Therefore, the circulation of lubricating oil between the radial bearing gap and the sintered oil-impregnated bearing can be activated. This makes it possible to increase the strength of the oil film and to enhance the filtering effect.

この焼結含油軸受としては、通油度が0.004g/20min以下であるものが好ましい。0.004g/20min以下の通油度であれば、高い動圧抜け抑制効果が得られる。 This sintered oil-impregnated bearing preferably has an oil permeability of 0.004 g/20 min or less. If the oil permeability is 0.004 g/20 min or less, a high dynamic pressure release suppressing effect can be obtained.

焼結含油軸受としては、黒鉛組織を0.8wt%以上含むものが好ましい。このように焼結含油軸受に含まれる黒鉛組織の量を増やすことで、粗大気孔の大きさを小さくすることができるため、通油度を低くすることができ、0.004g/20min以下の通油度の実現も容易となる。 The sintered oil-impregnated bearing preferably contains 0.8 wt% or more of graphite structure. By increasing the amount of graphite structure contained in the sintered oil-impregnated bearing in this way, the size of the coarse pores can be reduced, making it possible to lower the oil permeability, which is less than 0.004 g/20 min. It is also easy to achieve the oil level.

以上に述べた焼結含油軸受では、軸受面に動圧発生部を設けることができる。このように軸受面に動圧発生部を設けると、軸部材と焼結含油軸受の相対回転時に生じる動圧作用により、ラジアル軸受隙間での油膜強度を高めることができる。 In the sintered oil-impregnated bearing described above, a dynamic pressure generating section can be provided on the bearing surface. When the dynamic pressure generating portion is provided on the bearing surface in this way, the strength of the oil film in the radial bearing gap can be increased by the dynamic pressure action generated during relative rotation between the shaft member and the sintered oil-impregnated bearing.

内周面に前記軸受面が形成された焼結含油軸受と、軸方向一端側が開口し他端側が閉塞された形態をなし前記焼結含油軸受が内周に固定されるハウジングと、前記焼結含油軸受の内周に挿入される前記軸部材とを備え、前記動圧発生部により前記焼結含油軸受の軸受面と前記軸の外周面との間のラジアル軸受隙間に油膜を形成して前記軸部材をラジアル方向に非接触支持する流体動圧軸受装置は、動圧抜けが抑えられるため、優れた軸受剛性および回転精度を有する。 a sintered oil-impregnated bearing having the bearing surface formed on its inner peripheral surface; a housing having an open end at one axial end and a closed end at the other end to which the sintered oil-impregnated bearing is fixed; and the shaft member inserted into the inner periphery of the oil-impregnated bearing, and the dynamic pressure generating section forms an oil film in the radial bearing gap between the bearing surface of the sintered oil-impregnated bearing and the outer peripheral surface of the shaft. A fluid dynamic bearing device that supports a shaft member in a radial direction in a non-contact manner has excellent bearing rigidity and rotation accuracy because dynamic pressure loss is suppressed.

この流体動圧軸受装置において、前記焼結含油軸受の軸方向一方側に前記粗大気孔の多い領域を設けると共に、軸方向他方側に前記粗大気孔の少ない領域を設け、前記粗大気孔の多い領域を流体動圧軸受装置の高負荷側に配置すれば、ラジアル軸受隙間の高負荷側での油膜切れあるいは潤滑油の劣化を抑制することができる。 In this fluid dynamic bearing device, a region with many coarse pores is provided on one axial side of the sintered oil-impregnated bearing, and a region with few coarse pores is provided on the other axial side, and the region with many coarse pores is provided on the other axial side. By arranging it on the high load side of the fluid dynamic bearing device, it is possible to suppress oil film shortage or deterioration of the lubricating oil on the high load side of the radial bearing gap.

この流体動圧軸受装置はモータに使用することができる。 This fluid dynamic bearing device can be used in a motor.

このように本発明によれば、焼結含油軸受の長期間使用時にも、安定した油膜強度を確保することが可能となる。 As described above, according to the present invention, it is possible to ensure stable oil film strength even when a sintered oil-impregnated bearing is used for a long period of time.

スピンドルモータの断面図である。FIG. 3 is a cross-sectional view of a spindle motor. 流体動圧軸受装置の断面図である。FIG. 2 is a cross-sectional view of a fluid dynamic bearing device. 本発明の実施形態に係る焼結含油軸受の断面図である。1 is a cross-sectional view of a sintered oil-impregnated bearing according to an embodiment of the present invention. 上記焼結含油軸受の下面図である。FIG. 3 is a bottom view of the sintered oil-impregnated bearing. (A)(B)は、動圧溝サイジング工程を示す断面図である。(A) and (B) are cross-sectional views showing a dynamic pressure groove sizing process. 本発明の実施形態に係る焼結含油軸受における気孔の分布を概略的に示す断面図である。1 is a cross-sectional view schematically showing the distribution of pores in a sintered oil-impregnated bearing according to an embodiment of the present invention. 焼結含油軸受の軸受面を通る半径方向で実測した、粗大気孔の度数分布を示すグラフである。It is a graph showing the frequency distribution of coarse pores actually measured in the radial direction passing through the bearing surface of a sintered oil-impregnated bearing. 原料粉末に含まれる黒鉛粉の配合量を変えた時の気孔体積および通油度の測定値を示す表である。It is a table showing the measured values of pore volume and oil permeability when the blending amount of graphite powder contained in the raw material powder is changed. 焼結含油軸受の軸方向で実測した、粗大気孔の度数分布を示すグラフである。It is a graph showing the frequency distribution of coarse pores actually measured in the axial direction of a sintered oil-impregnated bearing.

以下、本発明の実施の形態を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

図1に示すスピンドルモータは、HDD等のディスク駆動装置に用いられるものであり、軸部材2を回転自在に非接触支持する流体動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はケーシング6に取付けられ、ロータマグネット5はディスクハブ3に取付けられる。流体動圧軸受装置1のハウジング7は、ケーシング6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが所定枚数(図示例では2枚)保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力が発生し、この電磁力によってディスクハブ3および軸部材2が一体となって回転する。 The spindle motor shown in FIG. 1 is used in a disk drive device such as an HDD, and includes a fluid dynamic pressure bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, and a disk hub 3 attached to the shaft member 2. , a stator coil 4 and a rotor magnet 5 which are opposed to each other with a radial gap therebetween. The stator coil 4 is attached to the casing 6 and the rotor magnet 5 is attached to the disk hub 3. The housing 7 of the fluid dynamic bearing device 1 is attached to the inner periphery of the casing 6. The disk hub 3 holds a predetermined number (two in the illustrated example) of disks D such as magnetic disks. When the stator coil 4 is energized, an electromagnetic force is generated between the stator coil 4 and the rotor magnet 5, and this electromagnetic force causes the disk hub 3 and the shaft member 2 to rotate together.

図2に示すように、流体動圧軸受装置1は、軸部材2と、本実施形態に係る焼結含油軸受としての軸受部材8と、軸受部材8を内周に保持するハウジング7と、ハウジング7の軸方向一端の開口部に設けられたシール部9と、ハウジング7の軸方向他端を閉塞する蓋部10とを有する。尚、以下の説明では、便宜上、軸方向でハウジング7の閉塞側を下側、ハウジング7の開口側を上側と言うが、これは流体動圧軸受装置1の使用態様を限定する趣旨ではない。 As shown in FIG. 2, the fluid dynamic bearing device 1 includes a shaft member 2, a bearing member 8 as a sintered oil-impregnated bearing according to the present embodiment, a housing 7 that holds the bearing member 8 on its inner periphery, and a housing. The housing 7 has a seal portion 9 provided at an opening at one axial end of the housing 7, and a lid portion 10 that closes the other axial end of the housing 7. In the following description, for convenience, the closed side of the housing 7 in the axial direction will be referred to as the lower side, and the open side of the housing 7 will be referred to as the upper side, but this is not intended to limit the manner in which the fluid dynamic bearing device 1 is used.

軸部材2は、軸部2aと、軸部2aの下端に設けられたフランジ部2bとを備える。軸部材2は、ステンレス鋼等の金属材料で形成され、本実施形態では、軸部2aおよびフランジ部2bを含む軸部材2全体が一体に形成される。尚、軸部2aとフランジ部2bを別体に形成することもできる。 The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a. The shaft member 2 is made of a metal material such as stainless steel, and in this embodiment, the entire shaft member 2 including the shaft portion 2a and the flange portion 2b is integrally formed. Note that the shaft portion 2a and the flange portion 2b may be formed separately.

軸部2aの外周面には、軸方向に離隔する2箇所に形成された円筒面2a1と、2箇所の円筒面2a1の間に設けられ、円筒面2a1よりも小径な環状凹部2a2とが設けられる。円筒面2a1は、軸受部材8の内周面8aの軸受面8a1と半径方向で対向する軸受対向面として機能する。 The outer peripheral surface of the shaft portion 2a is provided with cylindrical surfaces 2a1 formed at two locations separated in the axial direction, and an annular recess 2a2 provided between the two cylindrical surfaces 2a1 and having a smaller diameter than the cylindrical surface 2a1. It will be done. The cylindrical surface 2a1 functions as a bearing facing surface that faces the bearing surface 8a1 of the inner circumferential surface 8a of the bearing member 8 in the radial direction.

ハウジング7は、樹脂あるいは金属で円筒状に形成される。ハウジング7の内周面7aには、軸受部材8の外周面8dが、接着や圧入等の適宜の手段で固定される。 The housing 7 is made of resin or metal and has a cylindrical shape. The outer circumferential surface 8d of the bearing member 8 is fixed to the inner circumferential surface 7a of the housing 7 by appropriate means such as adhesion or press fitting.

軸受部材8は円筒状をなし、内周面8aにラジアル軸受面が設けられる。図示例では、軸受部材8の内周面8aの軸方向に離隔した2箇所にラジアル軸受面8a1が形成される。各ラジアル軸受面8a1には動圧発生部が形成され、本実施形態では、図3に示すように、各ラジアル軸受面8a1に動圧溝、具体的にはへリングボーン形状に配列された動圧溝G1,G2が設けられる。図中クロスハッチングで示す領域は、周囲より盛り上がった丘部を示している(図4においても同様)。上側の動圧溝G1は軸方向で非対称な形状を成し、下側の動圧溝G2は軸方向で対称な形状を成している。ラジアル軸受面8a1の軸方向間領域には、動圧溝G1、G2の溝底面と連続した円筒面8a2が設けられる。動圧溝G1、G2の深さは数μm~数十μmである。 The bearing member 8 has a cylindrical shape, and a radial bearing surface is provided on the inner peripheral surface 8a. In the illustrated example, radial bearing surfaces 8a1 are formed on the inner peripheral surface 8a of the bearing member 8 at two locations spaced apart in the axial direction. A dynamic pressure generating portion is formed in each radial bearing surface 8a1, and in this embodiment, as shown in FIG. Pressure grooves G1 and G2 are provided. The cross-hatched area in the figure indicates a hill that is higher than the surrounding area (the same applies to FIG. 4). The upper dynamic pressure groove G1 has an axially asymmetrical shape, and the lower dynamic pressure groove G2 has an axially symmetrical shape. A cylindrical surface 8a2 that is continuous with the groove bottom surfaces of the dynamic pressure grooves G1 and G2 is provided in the axially interspaced region of the radial bearing surface 8a1. The depth of the dynamic pressure grooves G1 and G2 is several μm to several tens of μm.

尚、上下の動圧溝G1,G2の双方を軸方向対称形状としてもよい。また、上下の動圧溝G1,G2を軸方向で連続させたり、上下の動圧溝G1,G2の一方を省略したりしてもよい。また、動圧発生部として、スパイラル形状等の他の形状の動圧溝や、複数の円筒面を組み合わせた多円弧軸受、あるいは複数の軸方向溝を周方向等間隔に配したステップ軸受等を形成してもよい。 Note that both the upper and lower dynamic pressure grooves G1 and G2 may have an axially symmetrical shape. Furthermore, the upper and lower dynamic pressure grooves G1 and G2 may be continuous in the axial direction, or one of the upper and lower dynamic pressure grooves G1 and G2 may be omitted. In addition, as a dynamic pressure generating part, dynamic pressure grooves of other shapes such as a spiral shape, multi-arc bearings that combine multiple cylindrical surfaces, step bearings that have multiple axial grooves arranged at equal intervals in the circumferential direction, etc. may be formed.

軸受部材8の下側端面8bにはスラスト軸受面が設けられる。スラスト軸受面には、図4に示すようなポンプインタイプのスパイラル形状の動圧溝G3が形成される。尚、動圧溝G3の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。また、軸受部材8の下側端面8bを平坦面として、軸部材2のフランジ部2bの上側端面2b1に動圧溝を形成してもよい。 A thrust bearing surface is provided on the lower end surface 8b of the bearing member 8. A pump-in type spiral dynamic pressure groove G3 as shown in FIG. 4 is formed on the thrust bearing surface. Note that a herringbone shape, a radial groove shape, or the like may be adopted as the shape of the dynamic pressure groove G3. Alternatively, the lower end surface 8b of the bearing member 8 may be a flat surface, and a dynamic pressure groove may be formed on the upper end surface 2b1 of the flange portion 2b of the shaft member 2.

軸受部材8の上側端面8cには、図3に示すように、環状溝8c1と、環状溝8c1の内径側に設けられた複数の半径方向溝8c2とが形成される。軸受部材8の外周面8dには、複数の軸方向溝8d1が円周方向等間隔に設けられる。これらの軸方向溝8d1、環状溝8c1、及び半径方向溝8c2等を介して、軸部材2のフランジ部2bの外径側の空間がシール空間Sと連通することで、この空間における負圧の発生が防止される。尚、特に必要が無ければ、環状溝8c1や半径方向溝8c2を省略して、軸受部材8の上側端面8cを平坦面としてもよい。 As shown in FIG. 3, the upper end surface 8c of the bearing member 8 is formed with an annular groove 8c1 and a plurality of radial grooves 8c2 provided on the inner diameter side of the annular groove 8c1. A plurality of axial grooves 8d1 are provided on the outer peripheral surface 8d of the bearing member 8 at equal intervals in the circumferential direction. The space on the outer diameter side of the flange portion 2b of the shaft member 2 communicates with the seal space S through these axial grooves 8d1, annular grooves 8c1, radial grooves 8c2, etc., thereby reducing negative pressure in this space. Occurrence is prevented. Incidentally, if there is no particular need, the annular groove 8c1 and the radial groove 8c2 may be omitted, and the upper end surface 8c of the bearing member 8 may be made a flat surface.

軸受部材8は、銅を25質量%以上含む焼結体で形成され、本実施形態では、銅及び鉄をそれぞれ25質量%以上含む焼結体で形成される。軸受部材8の真密度比は85~95%である。尚、真密度比は、以下の式で定義される。ρ1は軸受部材の密度であり、ρ0は、その軸受部材に気孔が無いと仮定した場合の密度(真密度)である。
真密度比[%]=(ρ1/ρ0)×100
The bearing member 8 is formed of a sintered body containing 25% by mass or more of copper, and in this embodiment, is formed of a sintered body containing 25% by mass or more of copper and iron, respectively. The true density ratio of the bearing member 8 is 85 to 95%. Note that the true density ratio is defined by the following formula. ρ1 is the density of the bearing member, and ρ0 is the density (true density) assuming that the bearing member has no pores.
True density ratio [%] = (ρ1/ρ0) x 100

シール部9は、図2に示すように、ハウジング7の上端から内径側に突出している。本実施形態では、シール部9がハウジング7と一体に形成されているが、シール部9をハウジング7に対して別体にすることもできる。シール部9の内周面9aは、下方に向けて漸次縮径したテーパ状を成す。シール部9の内周面9aと軸部2aの外周面との間には、下方に向けて半径方向幅を徐々に狭めた断面楔形のシール空間Sが形成される。この他、シール部9の内周面を円筒面とする一方で、軸部2aの外周面に上方に向けて漸次縮径するテーパ面を設け、これらの間に断面楔形のシール空間Sを形成してもよい。シール部9の下側端面9bには、軸受部材8の上側端面8cが当接している。 As shown in FIG. 2, the seal portion 9 protrudes inward from the upper end of the housing 7. In this embodiment, the seal portion 9 is formed integrally with the housing 7, but the seal portion 9 may be formed separately from the housing 7. The inner circumferential surface 9a of the seal portion 9 has a tapered shape whose diameter gradually decreases downward. A seal space S is formed between the inner peripheral surface 9a of the seal portion 9 and the outer peripheral surface of the shaft portion 2a, and the seal space S has a wedge-shaped cross section and whose radial width gradually decreases downward. In addition, while the inner circumferential surface of the seal portion 9 is a cylindrical surface, a tapered surface whose diameter gradually decreases upward is provided on the outer circumferential surface of the shaft portion 2a, and a seal space S having a wedge-shaped cross section is formed between them. You may. The lower end surface 9b of the seal portion 9 is in contact with the upper end surface 8c of the bearing member 8.

蓋部10は、黄銅等の金属や樹脂で形成され、ハウジング7の内周面7aの下端部に、圧入、接着等の適宜の手段で固定される。これによりハウジング7の内部の空間がシール空間Sでのみ大気に開放された密閉空間となる。蓋部10は、ハウジング7と一体に形成することもできる。 The lid portion 10 is made of metal such as brass or resin, and is fixed to the lower end of the inner circumferential surface 7a of the housing 7 by press fitting, adhesion, or other suitable means. As a result, the space inside the housing 7 becomes a sealed space where only the sealed space S is open to the atmosphere. The lid part 10 can also be formed integrally with the housing 7.

蓋部10の端面10aにはスラスト軸受面が形成される。このスラスト軸受面には、例えばポンプインタイプのスパイラル形状の動圧溝が形成される(図示省略)。尚、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。また、蓋部10の端面10aを平坦面として、軸部材2のフランジ部2bの下側端面2b2に動圧溝を形成してもよい。 A thrust bearing surface is formed on the end surface 10a of the lid portion 10. For example, a pump-in type spiral dynamic pressure groove is formed on this thrust bearing surface (not shown). Note that the shape of the dynamic pressure groove may be a herringbone shape, a radial groove shape, or the like. Alternatively, the end surface 10a of the lid portion 10 may be a flat surface, and a dynamic pressure groove may be formed on the lower end surface 2b2 of the flange portion 2b of the shaft member 2.

上記の構成の流体動圧軸受装置1の内部に油が注入され、シール空間S内に油面が形成される(図2参照)。本実施形態の流体動圧軸受装置1は、ハウジング7の内周の空間(シール空間Sよりも内部側の空間)が、軸受部材8の内部気孔を含めて油で満たされた、いわゆるフルフィルタイプである。 Oil is injected into the fluid dynamic bearing device 1 configured as described above, and an oil level is formed in the seal space S (see FIG. 2). The fluid dynamic pressure bearing device 1 of this embodiment is of a so-called full-fill type in which the space around the inner circumference of the housing 7 (the space inside the seal space S) is filled with oil, including the internal pores of the bearing member 8. It is.

軸部材2が回転すると、軸受部材8の内周面8aのラジアル軸受面8a1と軸部2aの外周面(円筒面2a1)との間にラジアル軸受隙間が形成され、動圧溝G1,G2によりラジアル軸受隙間の油膜の圧力が高められることで、軸部材2がラジアル方向に非接触支持する第1ラジアル軸受部R1及び第2ラジアル軸受部R2が構成される。これと同時に、軸受部材8の下側端面8bとフランジ部2bの上側端面2b1との間、及び、蓋部10の端面10aとフランジ部2bの下側端面2b2との間に、それぞれスラスト軸受隙間が形成される。そして、軸受部材8の下側端面8bの動圧溝G3及び蓋部10の端面10aの動圧溝により、各スラスト軸受隙間に形成された油膜の圧力が高められ、これにより軸部材を両スラスト方向に非接触支持する第1スラスト軸受部T1及び第2スラスト軸受部T2が構成される。 When the shaft member 2 rotates, a radial bearing gap is formed between the radial bearing surface 8a1 of the inner peripheral surface 8a of the bearing member 8 and the outer peripheral surface (cylindrical surface 2a1) of the shaft portion 2a, and the dynamic pressure grooves G1 and G2 By increasing the pressure of the oil film in the radial bearing gap, the first radial bearing part R1 and the second radial bearing part R2 are formed which are supported by the shaft member 2 in a non-contact manner in the radial direction. At the same time, thrust bearing gaps are created between the lower end surface 8b of the bearing member 8 and the upper end surface 2b1 of the flange portion 2b, and between the end surface 10a of the lid portion 10 and the lower end surface 2b2 of the flange portion 2b. is formed. Then, the pressure of the oil film formed in each thrust bearing gap is increased by the dynamic pressure groove G3 on the lower end surface 8b of the bearing member 8 and the dynamic pressure groove on the end surface 10a of the lid part 10. A first thrust bearing part T1 and a second thrust bearing part T2 are configured for non-contact support in the direction.

上記の軸受部材8は、主に原料粉末混合工程、フォーミング工程、焼結工程、回転サイジング工程、および、動圧溝サイジング工程を順に経て製造される。 The bearing member 8 described above is manufactured mainly through a raw material powder mixing process, a forming process, a sintering process, a rotational sizing process, and a dynamic pressure groove sizing process in this order.

原料粉末混合工程では、複数種の粉末を混合することにより、軸受部材8の原料粉末を作製する。原料粉末は、金属粉末として、例えば鉄系粉末と、銅系粉末と、低融点元素の粉末とを含む。この原料粉末には、必要に応じて、各種成形潤滑剤(例えば、離型性向上のための潤滑剤)や固体潤滑剤(例えば黒鉛粉)等を添加しても良い。 In the raw material powder mixing step, raw material powder for the bearing member 8 is produced by mixing a plurality of types of powder. The raw material powder includes metal powders such as iron-based powder, copper-based powder, and powder of a low melting point element. If necessary, various molding lubricants (for example, a lubricant for improving mold releasability), solid lubricants (for example, graphite powder), etc. may be added to this raw material powder.

鉄系粉末としては、鉄粉(純鉄粉)の他、鉄合金粉(例えばステンレス鋼粉)を用いることができる。鉄系粉末としては、還元粉やアトマイズ粉を使用することができる。銅系粉末としては、銅粉(純銅粉)の他、銅合金粉を用いることができる。銅系粉末としては、電解粉やアトマイズ粉を使用することができる。低融点元素の粉末としては、銅よりも低融点の元素、例えば錫、亜鉛、あるいはリン等を含む粉末を使用することができる。本実施形態では錫粉が用いられる。 As the iron-based powder, in addition to iron powder (pure iron powder), iron alloy powder (for example, stainless steel powder) can be used. As the iron-based powder, reduced powder or atomized powder can be used. As the copper-based powder, copper alloy powder can be used in addition to copper powder (pure copper powder). As the copper-based powder, electrolytic powder or atomized powder can be used. As the low melting point element powder, a powder containing an element having a lower melting point than copper, such as tin, zinc, or phosphorus, can be used. In this embodiment, tin powder is used.

原料粉末は、金属粉末として、25質量%以上の銅を含み、例えば鉄及び銅をそれぞれ25質量%以上含む。本実施形態の原料粉末中の金属粉末が、25~70質量%の銅粉、1~3質量%の錫粉を含み、残部を鉄粉(あるいは鉄合金粉)及び不可避不純物とされる。 The raw material powder contains 25% by mass or more of copper as a metal powder, for example, contains 25% by mass or more of iron and copper each. The metal powder in the raw material powder of this embodiment contains 25 to 70% by mass of copper powder, 1 to 3% by mass of tin powder, and the remainder is iron powder (or iron alloy powder) and inevitable impurities.

フォーミング工程では、フォーミング金型(図示省略)のキャビティに上記の原料粉末を投入して圧縮することにより、図3に示す軸受部材8に近似した円筒形状の圧粉体を得る。フォーミング工程において、圧粉体の外周面には軸方向溝8d1(図3参照)が形成される。 In the forming step, the raw material powder is introduced into a cavity of a forming mold (not shown) and compressed to obtain a cylindrical green compact resembling the bearing member 8 shown in FIG. 3. In the forming process, an axial groove 8d1 (see FIG. 3) is formed on the outer peripheral surface of the green compact.

焼結工程では、圧粉体を、銅の融点(1086℃)を超えない焼結温度(例えば700℃~900℃)で焼結して、焼結体を得る。原料粉末に流体潤滑剤等の各種成形潤滑剤を添加した場合、成形潤滑剤は焼結に伴って揮散する。 In the sintering step, the green compact is sintered at a sintering temperature (for example, 700° C. to 900° C.) that does not exceed the melting point of copper (1086° C.) to obtain a sintered body. When various molding lubricants such as fluid lubricants are added to the raw material powder, the molding lubricants volatilize during sintering.

回転サイジング工程では、治具(サイジングピン)を焼結体の内周面に締め代をもって押し付け、この状態で、焼結体の内周面の周方向に沿って治具を回転させる(図示省略)。これにより、焼結体の内周面の表層の材料が冶具で圧延され、内周面の開孔部が押しつぶされ、内周面における表面開孔率(内周面に開口した各気孔の面積比)が低減される。 In the rotational sizing process, a jig (sizing pin) is pressed against the inner peripheral surface of the sintered body with a tightening margin, and in this state, the jig is rotated along the circumferential direction of the inner peripheral surface of the sintered body (not shown). ). As a result, the material on the surface layer of the inner circumferential surface of the sintered body is rolled with a jig, the openings on the inner circumferential surface are crushed, and the surface porosity of the inner circumferential surface (the area of each pore opened on the inner circumferential surface) is ratio) is reduced.

動圧溝サイジング工程では、図5(A)(B)に示す動圧溝サイジング金型30により、焼結体28の内周面28aに動圧溝を型成形する。具体的には、図5(A)に示すように、焼結体28の内周にコアロッド31を極微小な隙間を介して挿入すると共に、焼結体28の軸方向幅を上下パンチ32,33で拘束する。この時、ダイ34の内径寸法は、焼結体28の外周面28dとの間に締め代が生じるよう定める。この状態を維持しながら、図5(B)に示すように、焼結体28をダイ34の内周に圧入する。これにより、焼結体28が軸方向両側を拘束されながら外周から圧迫され、焼結体28の内周面28aが、コアロッド31の外周面に形成された成形型31aに押し付けられる。これにより、焼結体28の内周面28aに成形型31aの形状が転写されて動圧溝G1,G2(図3参照)が成形される。 In the dynamic pressure groove sizing process, dynamic pressure grooves are formed on the inner peripheral surface 28a of the sintered body 28 using a dynamic pressure groove sizing mold 30 shown in FIGS. 5(A) and 5(B). Specifically, as shown in FIG. 5(A), the core rod 31 is inserted into the inner circumference of the sintered body 28 through a very small gap, and the axial width of the sintered body 28 is adjusted by the upper and lower punches 32, Restraint at 33. At this time, the inner diameter of the die 34 is determined so that an interference margin is generated between the die 34 and the outer circumferential surface 28d of the sintered body 28. While maintaining this state, the sintered body 28 is press-fitted into the inner periphery of the die 34, as shown in FIG. 5(B). As a result, the sintered body 28 is pressed from the outer periphery while being restrained on both sides in the axial direction, and the inner circumferential surface 28a of the sintered body 28 is pressed against the mold 31a formed on the outer circumferential surface of the core rod 31. As a result, the shape of the mold 31a is transferred to the inner circumferential surface 28a of the sintered body 28, and the dynamic pressure grooves G1 and G2 (see FIG. 3) are formed.

その後、焼結体28、コアロッド31、及び上下パンチ32,33を上昇させ、ダイ34の内周から焼結体28及びコアロッド31を取り出す。このとき、焼結体28の内周面28aがスプリングバックにより拡径し、コアロッド31の外周面の成形型31aから剥離する。そして、焼結体28の内周からコアロッド31を引き抜く。 After that, the sintered body 28, the core rod 31, and the upper and lower punches 32, 33 are raised, and the sintered body 28 and the core rod 31 are taken out from the inner periphery of the die 34. At this time, the inner circumferential surface 28a of the sintered body 28 expands in diameter due to springback, and is separated from the mold 31a of the outer circumferential surface of the core rod 31. Then, the core rod 31 is pulled out from the inner periphery of the sintered body 28.

こうして形成された焼結体28の内部気孔に真空含浸等の手法で潤滑油を含浸させると、図1に示す軸受部材8が完成する。 When the internal pores of the sintered body 28 thus formed are impregnated with lubricating oil by a method such as vacuum impregnation, the bearing member 8 shown in FIG. 1 is completed.

本願発明者らが以上に述べた軸受部材8の軸受面8a1の摩耗について検証を進めたところ、軸受面8a1からある程度の深さまでの領域で粗大気孔を低減できれば、長期使用による軸受面8a1の摩耗後も軸受面8a1での粗大気孔の発生を抑えて油膜強度を維持できることを見出した。 The inventors of the present application proceeded to verify the wear of the bearing surface 8a1 of the bearing member 8 described above, and found that if coarse pores can be reduced in a region up to a certain depth from the bearing surface 8a1, the wear of the bearing surface 8a1 due to long-term use It has been found that the strength of the oil film can be maintained by suppressing the generation of coarse pores on the bearing surface 8a1.

このように表面から一定の深さの領域で粗大気孔の発生を抑制すれば足りるのは、製造直後の焼結含油軸受では、軸部材2の回転に伴う軸受面8a1の摩耗の進行速度が速いものの、軸受運転時間の経過に伴って軸受面8a1が徐々になじむ(平滑化する)ため、軸受運転時間が経過すればするほど摩耗の進行速度が遅くなることによる。実験の結果、長期使用時にも、製造直後の軸受面8a1から50μmを超える深さまで摩耗することは稀であることが明らかとなった。 In this way, it is sufficient to suppress the generation of coarse pores in an area at a certain depth from the surface, because in a sintered oil-impregnated bearing immediately after manufacture, the wear progresses quickly on the bearing surface 8a1 as the shaft member 2 rotates. However, as the bearing surface 8a1 gradually adapts (smoothes) as the bearing operating time elapses, the wear progresses more slowly as the bearing operating time elapses. As a result of experiments, it has become clear that even during long-term use, it is rare for the bearing surface 8a1 to wear to a depth of more than 50 μm immediately after manufacture.

以上の知見に基づき、本実施形態に係る軸受部材8では、図6に概略的に図示するように、気孔のうち、気孔体積が0.0005mm3を超えるものを粗大気孔として、軸受面8a1から深さ50μmまでの領域Mに粗大気孔40が存在していない。軸受面8a1にも粗大気孔40は開口していない。なお、図6では、軸受部材8に含まれる気孔として、粗大気孔40のみを図示しており、体積0.0005mm3以下の微細気孔の図示は省略している。 Based on the above findings, in the bearing member 8 according to the present embodiment, as schematically illustrated in FIG. No coarse pores 40 exist in the region M up to a depth of 50 μm. The rough holes 40 are not opened in the bearing surface 8a1 either. In addition, in FIG. 6, only the coarse pores 40 are illustrated as the pores included in the bearing member 8, and the illustration of fine pores having a volume of 0.0005 mm 3 or less is omitted.

前記領域の各気孔の体積は、X線によるCTスキャン法により測定することができる。CTスキャン法による測定は、測定物に対して、例えば4500枚の画像を撮影してその画像データから3Dデータを構築し、内部の気孔の体積を算出することにより行われる。測定機器として、例えば、waygate technologies社のGE phoenix v|tome|x m300が使用可能である。測定は、例えば電圧250kv、電流300mAの条件で行うことができる。 The volume of each pore in the region can be measured by CT scanning using X-rays. Measurement using the CT scan method is performed by taking, for example, 4,500 images of the object to be measured, constructing 3D data from the image data, and calculating the volume of internal pores. As a measuring device, for example, GE phoenix v|tome|x m300 manufactured by Waygate Technologies can be used. The measurement can be performed, for example, under conditions of a voltage of 250 kV and a current of 300 mA.

その一方で、軸受面8a1を含む軸受部材8の内周面8aは完全に封孔されておらず、軸受面8a1から深さ50μmまでの領域Mには、体積0.0005mm3以下の多数の気孔が存在する。これにより軸受面8a1にも、体積0.0005mm3以下の多数の気孔が開口している。軸受面8a1における表面開孔率は、軸受面8a1からの潤滑油の十分な滲み出しを確保する一方で、動圧抜けを抑制するため、2%以上、15%以下の範囲が好ましい。 On the other hand, the inner circumferential surface 8a of the bearing member 8 including the bearing surface 8a1 is not completely sealed, and the region M from the bearing surface 8a1 to a depth of 50 μm has many holes with a volume of 0.0005 mm 3 or less. Pores are present. As a result, many pores with a volume of 0.0005 mm 3 or less are opened also in the bearing surface 8a1. The surface porosity ratio of the bearing surface 8a1 is preferably in the range of 2% or more and 15% or less in order to ensure sufficient seepage of lubricating oil from the bearing surface 8a1 while suppressing dynamic pressure release.

このように軸受面8a1に多数の気孔を開口させつつ、軸受面8a1から深さ50μmまでの領域の気孔体積を0.0005mm3以下とすることにより、長期使用により軸受面8a1が摩耗した際にも、軸受面8a1での粗大気孔の発生を防止することができる。従って、動圧抜けを抑制して長期間安定した油膜強度を確保できる。また、軸受面8a1には、摩耗後も含め、体積0.0005mm3以下の気孔が多数開口しているので、軸受面8a1からの潤滑油の滲み出しも活発に行われ、軸受隙間に潤沢な潤滑油を供給してエアの混入を防止することができる。また、潤滑油が狭隘な気孔を通過する際の異物除去(フィルタリング)も十分に行われ、潤滑油の耐久性が向上する。従って、流体動圧軸受装置1の耐久寿命の向上を図ることができる。 In this way, by opening a large number of pores in the bearing surface 8a1 and setting the pore volume in the region from the bearing surface 8a1 to a depth of 50 μm to 0.0005 mm 3 or less, when the bearing surface 8a1 is worn out due to long-term use, Also, generation of coarse pores on the bearing surface 8a1 can be prevented. Therefore, dynamic pressure loss can be suppressed and stable oil film strength can be ensured for a long period of time. In addition, since the bearing surface 8a1 has many pores with a volume of 0.0005 mm 3 or less, including after wear, the lubricating oil oozes out from the bearing surface 8a1, and the bearing gap is filled with water. It is possible to prevent air from entering by supplying lubricating oil. In addition, when the lubricating oil passes through the narrow pores, foreign matter is removed (filtered) sufficiently, and the durability of the lubricating oil is improved. Therefore, it is possible to improve the durability life of the fluid dynamic bearing device 1.

また、本実施形態に係る軸受部材8では、図6に示すように、軸受面8a1と半径方向反対側に位置する軸受部材8の表面(本実施形態では外周面8d)から深さ100μmまでの領域Nに、既に述べた粗大気孔40が存在していない。なお、外周面8dから100μmまでの領域Nには体積0.0005mm3以下の微細気孔が多数存在し、かつ外周面8dには微細気孔が多数開口しているので、潤滑油は軸受部材8の外周面8dからも滲み出す。 In addition, in the bearing member 8 according to the present embodiment, as shown in FIG. In region N, the coarse pores 40 described above do not exist. Note that there are many fine pores with a volume of 0.0005 mm 3 or less in the region N from the outer circumferential surface 8d to 100 μm, and many fine pores are open in the outer circumferential surface 8d, so the lubricating oil is absorbed into the bearing member 8. It also oozes out from the outer peripheral surface 8d.

このように軸受部材8の外周面8dから深さ100μmまでの領域Nで粗大気孔40が存在しないようにすることで、軸受部材8の外周面8dから滲み出す潤滑油量が減少する。そのため、動圧抜けを抑制する効果がさらに高まる。仮に軸受面8a1が過度に摩耗して、軸受面8a1に粗大気孔40が開口したとしても、外周面8dの表面開孔率が低いため、動圧抜けの抑制効果を維持することができる。 In this way, by preventing the coarse pores 40 from existing in the region N from the outer circumferential surface 8d of the bearing member 8 to a depth of 100 μm, the amount of lubricating oil seeping out from the outer circumferential surface 8d of the bearing member 8 is reduced. Therefore, the effect of suppressing dynamic pressure release is further enhanced. Even if the bearing surface 8a1 were to wear excessively and coarse pores 40 were opened in the bearing surface 8a1, the effect of suppressing dynamic pressure release could be maintained because the surface porosity of the outer circumferential surface 8d is low.

なお、図6に示すように、軸受部材8の領域M、Nを除く部分には、体積0.0005mm3を超える多数の粗大気孔40が分散して存在している。 Note that, as shown in FIG. 6, a large number of coarse pores 40 having a volume exceeding 0.0005 mm 3 are dispersed in a portion of the bearing member 8 excluding areas M and N.

図7は、上記の手順で製作した軸受部材8の軸受面8a1を通る半径方向で実測した、粗大気孔40の度数分布を示すグラフである。この度数分布は、軸受部材8の軸受面8a1を通る半径方向断面を半径方向の複数箇所で等分して複数の環状領域(例えば半径方向幅0.1mmの環状領域)を設定し、各環状領域に存在する粗大気孔40の数をCTスキャン法によりカウントすることで得られる。図7の横軸に表された半径位置は、軸受部材8の軸心を0としている。また、図7中の曲線は、度数分布に近似させた曲線である。なお、この測定に用いた試料は、内径寸法をφ4.0mm、外径寸法をφ7.5mm、軸方向長さを12.47mmとした円筒状をなしている。 FIG. 7 is a graph showing the frequency distribution of the coarse pores 40 actually measured in the radial direction passing through the bearing surface 8a1 of the bearing member 8 manufactured by the above procedure. This frequency distribution is determined by equally dividing the radial cross section passing through the bearing surface 8a1 of the bearing member 8 at multiple points in the radial direction to set a plurality of annular regions (for example, an annular region with a radial width of 0.1 mm). It is obtained by counting the number of coarse pores 40 existing in the area using a CT scan method. The radial position represented on the horizontal axis in FIG. 7 is based on the axis of the bearing member 8 being zero. Moreover, the curve in FIG. 7 is a curve approximated to a frequency distribution. The sample used for this measurement had a cylindrical shape with an inner diameter of 4.0 mm, an outer diameter of 7.5 mm, and an axial length of 12.47 mm.

図7から明らかなように、この軸受部材8では、内周面8a(軸受面8a1)から深さ50μm(半径2.05mmの位置)までの領域、および外周面8dから深さ100μm(半径3.65mmの位置)までの領域では、体積0.0005mm3を超える粗大気孔40が存在していないことが理解できる。そのため、高い動圧抜け抑制効果が得られる。 As is clear from FIG. 7, this bearing member 8 has a region from the inner peripheral surface 8a (bearing surface 8a1) to a depth of 50 μm (radius 2.05 mm position) and from the outer peripheral surface 8d to a depth of 100 μm (radius 3 It can be seen that there are no coarse pores 40 with a volume exceeding 0.0005 mm 3 in the region up to 0.65 mm. Therefore, a high dynamic pressure drop suppression effect can be obtained.

その一方で、粗大気孔40の度数分布は、軸受部材8の半径方向の肉厚に対して軸受面8a1(半径位置2.0mm)から50%離れた位置(半径位置2.9mm付近)よりも軸受面8a1側の環状領域、詳細には軸受面8a1から40%離れた位置(半径位置2.7mm付近)よりも軸受面8a1側の環状領域、より詳細には軸受面8a1から35%離れた位置(半径位置2.6mm付近)よりも軸受面8a1側の環状領域で最大となっている。具体的には、軸受面から30%離れた位置(半径2.5mm付近)の環状領域で最大となっている。 On the other hand, the frequency distribution of the coarse air holes 40 is larger than that at a position (near the radial position 2.9 mm) that is 50% away from the bearing surface 8a1 (radial position 2.0 mm) with respect to the radial wall thickness of the bearing member 8. An annular region on the bearing surface 8a1 side, more specifically, an annular region on the bearing surface 8a1 side, more specifically, 35% away from the bearing surface 8a1 than a position 40% away from the bearing surface 8a1 (near a radius position of 2.7 mm). It is maximum in the annular region closer to the bearing surface 8a1 than the position (near the radius position 2.6 mm). Specifically, it is maximum in the annular region at a position 30% away from the bearing surface (around a radius of 2.5 mm).

これにより、軸受部材8内部の軸受面8a1に近い領域に多量の潤滑油が保持されるため、軸受面8a1を介してラジアル軸受隙間に還流する潤滑油量が増大する。また、当該領域で潤滑油の流動が活発化する。そのため、ラジアル軸受隙間と軸受部材8の間の潤滑油の循環を活発化することができる。これにより、油膜強度を高めると共に、フィルタリング効果を高めることができる。 As a result, a large amount of lubricating oil is retained in a region inside the bearing member 8 close to the bearing surface 8a1, so that the amount of lubricating oil flowing back into the radial bearing gap via the bearing surface 8a1 increases. Additionally, the flow of lubricating oil becomes active in this area. Therefore, the circulation of lubricating oil between the radial bearing gap and the bearing member 8 can be activated. This makes it possible to increase the strength of the oil film and to enhance the filtering effect.

この観点から、軸受部材8においては、軸受部材8の半径方向の肉厚に対して軸受面8a1(半径位置2.0mm)から50%離れた位置よりも軸受面8a1側の環状領域、好ましくは軸受面8a1から40%離れた位置よりも軸受面8a1側の環状領域、より好ましくは軸受面8a1から35%離れた位置よりも軸受面8a1側の環状領域で粗大気孔数が最大となっていることが望まれる。 From this point of view, in the bearing member 8, an annular region on the bearing surface 8a1 side from a position 50% away from the bearing surface 8a1 (radial position 2.0 mm) with respect to the radial wall thickness of the bearing member 8, preferably The number of coarse pores is maximum in an annular region closer to the bearing surface 8a1 than a position 40% away from the bearing surface 8a1, more preferably in an annular region closer to the bearing surface 8a1 than a position 35% away from the bearing surface 8a1. It is hoped that

以上に説明した、領域M、Nで粗大気孔40を排除した軸受部材8は、例えば、回転サイジング工程および動圧溝サイジング工程での締め代を調整することで得ることができる。回転サイジング工程の締め代が主に内径側の領域Mでの粗大気孔40の発生頻度に影響を与え、動圧溝サイジング工程での締め代が主に外径側の領域Nでの粗大気孔40の発生頻度に影響を与える。図7に示す測定試験に用いた試料サイズ(内径寸法φ4.0mm、外径寸法φ7.5mm、軸方向長さ12.47mm)であれば、回転サイジング工程の締め代はφ50μm程度、動圧溝サイジング工程での締め代はφ200μm程度が適正である。 The above-described bearing member 8 in which the coarse holes 40 are excluded in the regions M and N can be obtained, for example, by adjusting the interference in the rotational sizing process and the dynamic pressure groove sizing process. The interference in the rotational sizing process mainly affects the frequency of occurrence of rough holes 40 in the region M on the inner diameter side, and the interference in the dynamic pressure groove sizing process mainly affects the frequency of coarse holes 40 in the region N on the outer diameter side. affect the frequency of occurrence. For the sample size used in the measurement test shown in Figure 7 (inner diameter φ4.0 mm, outer diameter φ7.5 mm, axial length 12.47 mm), the interference in the rotational sizing process is approximately φ50 μm, and the dynamic pressure groove Appropriate tightening margin in the sizing process is approximately φ200 μm.

軸受部材8における気孔の大きさは、原料粉末に配合する黒鉛粉の配合量を調整することでもコントロールすることができる。一般に黒鉛粉の配合量が多くなるほど、気孔の大きさが小さくなる。 The size of the pores in the bearing member 8 can also be controlled by adjusting the amount of graphite powder added to the raw material powder. Generally, the larger the amount of graphite powder blended, the smaller the pore size.

図8に、軸受部材8の原料粉末に含まれる黒鉛粉の配合量を変えた時の気孔体積および通油度の測定値を示す。図8に示すように、黒鉛粉以外が同じ成分および同じ成分量であったとしても、黒鉛粉の配合量を0.5wt%とした場合、最大気孔の体積は0.0335mm3、平均体積は0.0031mm3となるが、黒鉛粉の配合量を0.8wt%とした場合、最大気孔の体積は0.0115mm3、平均体積は0.0017mm3となる。従って、黒鉛粉の配合量が多いほど気孔体積が小さくなることが理解できる。これに対応して、通油度も黒鉛粉の配合量を多くした方が小さくなり、黒鉛粉の配合量を0.8wt%とすることで、0.004g/20minの通油度を得られることも理解できる。なお、原料粉末における黒鉛粉の配合割合が、焼結後における黒鉛組織の含有率となる。 FIG. 8 shows measured values of pore volume and oil permeability when the amount of graphite powder contained in the raw material powder of the bearing member 8 was changed. As shown in Figure 8, even if the ingredients other than graphite powder are the same and the same amount of ingredients, when the blending amount of graphite powder is 0.5 wt%, the maximum pore volume is 0.0335 mm 3 and the average volume is However, when the blending amount of graphite powder is 0.8 wt % , the maximum pore volume is 0.0115 mm 3 and the average volume is 0.0017 mm 3 . Therefore, it can be understood that the larger the amount of graphite powder blended, the smaller the pore volume becomes. Correspondingly, the oil permeability becomes smaller as the amount of graphite powder is increased, and by setting the amount of graphite powder to 0.8 wt%, an oil permeability of 0.004 g/20 min can be obtained. I can also understand that. Note that the blending ratio of graphite powder in the raw material powder becomes the content of graphite structure after sintering.

以上の知見から、黒鉛粉の配合量を0.8wt%以上(軸受部材8に含まれる黒鉛組織の含有率を0.8wt%以上)とするのが好ましく、これによって通油度を0.004g/20min以下に抑えることが可能となる。従って、動圧抜けの抑制効果がさらに高まる。なお、ここでの「通油度」は、焼結体の軸方向両端面に開口した気孔を密封した状態で、焼結体の内周に満たした潤滑油に所定圧力(ここでは0.4MPa)を付加し、この状態で20分間保持した時に、焼結体の外周面に開口した気孔から滲み出した潤滑油の総重量を意味する。 From the above knowledge, it is preferable to set the blending amount of graphite powder to 0.8 wt% or more (the content of graphite structure contained in the bearing member 8 is 0.8 wt% or more), thereby increasing the oil permeability to 0.004 g. /20min or less. Therefore, the effect of suppressing dynamic pressure release is further enhanced. Note that "oil permeability" here refers to the pressure applied to the lubricating oil filled in the inner circumference of the sintered body at a predetermined pressure (here, 0.4 MPa) with the pores opened on both axial end faces of the sintered body sealed. ) is added and this state is maintained for 20 minutes, it means the total weight of lubricating oil that seeped out from the pores opened on the outer peripheral surface of the sintered body.

図9は、軸受部材8の軸方向で実測した、粗大気孔40の度数分布を示すグラフである。この度数分布は、軸受部材8の軸方向断面を軸方向の複数箇所で等分して複数の帯状領域(例えば軸方向幅0.1mmの帯状領域)を設定し、各帯状領域に存在する粗大気孔40の数をCTスキャン法によりカウントすることで得られる。図9の横軸に表された軸方向位置は、軸受部材8の一方の端面を0としている。また、図9中の曲線は、度数分布に近似させた曲線である。なお、この測定に用いた試料は、内径寸法をφ4.0mm、外径寸法をφ7.5mm、軸方向長さを12.4mmとした円筒状をなしている。 FIG. 9 is a graph showing the frequency distribution of the coarse pores 40 actually measured in the axial direction of the bearing member 8. As shown in FIG. This frequency distribution is determined by equally dividing the axial cross section of the bearing member 8 at multiple points in the axial direction to set a plurality of band-shaped areas (for example, a band-shaped area with an axial width of 0.1 mm), and This can be obtained by counting the number of pores 40 using a CT scan method. The axial position shown on the horizontal axis in FIG. 9 is zero at one end surface of the bearing member 8. Moreover, the curve in FIG. 9 is a curve approximated to a frequency distribution. The sample used for this measurement had a cylindrical shape with an inner diameter of 4.0 mm, an outer diameter of 7.5 mm, and an axial length of 12.4 mm.

図9に示すように、軸受部材8の軸方向一方側には、粗大気孔40の多い領域Aが設けられ、軸方向他方側に粗大気孔40の少ない領域Bが設けられる。HDDあるいはファンモータの場合、一般的にロータ側(図1の上側)に加わる負荷が大きいため、ハウジング7内の軸受部材8は、粗大気孔40が多い領域Aをロータ側に向けて配置するのが好ましい。これにより、粗大気孔40が多い領域Aでは、潤滑油がラジアル軸受隙間と軸受部材8の内部との間で活発に循環するため、高負荷側のラジアル軸受隙間での油膜切れや潤滑油の劣化を防止することが可能となる。 As shown in FIG. 9, a region A with many coarse pores 40 is provided on one axial side of the bearing member 8, and a region B with few coarse pores 40 is provided on the other axial side. In the case of an HDD or a fan motor, the load applied to the rotor side (upper side in Figure 1) is generally large, so it is recommended that the bearing member 8 in the housing 7 be arranged with the area A where there are many coarse air holes 40 facing the rotor side. is preferred. As a result, in the region A where there are many coarse pores 40, lubricating oil actively circulates between the radial bearing gap and the inside of the bearing member 8, resulting in lack of oil film and deterioration of the lubricating oil in the radial bearing gap on the high load side. This makes it possible to prevent

本発明は上記の実施形態に限られない。例えば、以上の実施形態では、ハウジング7の内部空間が軸受部材8の内部気孔も含めて潤滑油で満たされた、いわゆるフルフィル構造の流体動圧軸受装置1を示したが、これに限らず、ハウジング7の内部空間に潤滑油で満たされていない空隙部を設けたパーシャルフィル構造の流体動圧軸受装置に本発明を適用してもよい(図示省略)。また、動圧発生部を有しない所謂真円軸受にも本発明を適用することができる。 The present invention is not limited to the above embodiments. For example, in the above embodiment, the fluid dynamic pressure bearing device 1 has a so-called full-fill structure in which the internal space of the housing 7 and the internal pores of the bearing member 8 are filled with lubricating oil, but the present invention is not limited to this. The present invention may be applied to a fluid dynamic pressure bearing device having a partial fill structure in which a cavity not filled with lubricating oil is provided in the internal space of the housing 7 (not shown). Furthermore, the present invention can also be applied to so-called perfect circular bearings that do not have a dynamic pressure generating section.

また、以上の実施形態では、軸部材2を回転側、ハウジング7及び軸受部材8を固定側とした場合を示したが、これとは逆に、軸部材2を固定側、ハウジング7及び軸受部材8を回転側としてもよい。 Further, in the above embodiment, the shaft member 2 is on the rotating side, and the housing 7 and the bearing member 8 are on the stationary side. 8 may be on the rotating side.

また、以上の実施形態では、流体動圧軸受装置1をHDD等のディスク駆動装置のスピンドルモータに適用した場合を示したが、これに限らず、例えばレーザビームプリンタのポリゴンスキャナモータや、電子機器の冷却用ファンモータ等に、本発明に係る流体動圧軸受装置を適用することもできる。 Further, in the above embodiment, a case has been shown in which the fluid dynamic pressure bearing device 1 is applied to a spindle motor of a disk drive device such as an HDD. The fluid dynamic pressure bearing device according to the present invention can also be applied to a cooling fan motor or the like.

1 流体動圧軸受装置
2 軸部材
7 ハウジング
8 軸受部材(焼結含油軸受)
8a 内周面
8a1 軸受面(ラジアル軸受面)
8d 外周面
9 シール部材
40 粗大気孔
M 軸受面から深さ50μmまでの領域
N 表面から深さ100μmまでの領域
1 Fluid dynamic bearing device 2 Shaft member 7 Housing 8 Bearing member (sintered oil-impregnated bearing)
8a Inner peripheral surface 8a1 Bearing surface (radial bearing surface)
8d Outer peripheral surface 9 Seal member 40 Coarse hole M Area N from the bearing surface to a depth of 50 μm Area from the surface to a depth of 100 μm

Claims (9)

潤滑油を含浸させた筒状の焼結体からなり、支持すべき軸部材との間でラジアル軸受隙間を形成する軸受面を備えた焼結含油軸受において、
前記軸受面に多数の気孔が開口し、
前記気孔のうち、気孔体積が0.0005mm3を超えるものを粗大気孔として、前記軸受面から深さ50μmまでの領域に前記粗大気孔が存在しないことを特徴とする焼結含油軸受。
In a sintered oil-impregnated bearing that is made of a cylindrical sintered body impregnated with lubricating oil and has a bearing surface that forms a radial bearing gap with the shaft member to be supported,
A large number of pores are opened on the bearing surface,
A sintered oil-impregnated bearing characterized in that among the pores, those having a pore volume exceeding 0.0005 mm 3 are defined as coarse pores, and the coarse pores do not exist in a region up to a depth of 50 μm from the bearing surface.
前記軸受面と半径方向反対側に位置する表面に多数の気孔が開口し、
前記表面から深さ100μmまでの領域に前記粗大気孔が存在しない請求項1に記載の焼結含油軸受。
A large number of pores are opened on the surface located on the opposite side in the radial direction from the bearing surface,
The sintered oil-impregnated bearing according to claim 1, wherein the coarse pores are not present in a region up to a depth of 100 μm from the surface.
前記軸受面を通る半径方向断面のうち、半径方向の肉厚に対して前記軸受面から50%離れた位置よりも前記軸受面側に、前記粗大気孔数が最大となる環状領域を設けた請求項2に記載の焼結含油軸受。 In a radial cross section passing through the bearing surface, an annular region in which the number of coarse pores is maximized is provided closer to the bearing surface than a position 50% away from the bearing surface with respect to the wall thickness in the radial direction. The sintered oil-impregnated bearing according to item 2. 通油度が0.004g/20min以下である請求項1に記載の焼結含油軸受。 The sintered oil-impregnated bearing according to claim 1, having an oil permeability of 0.004 g/20 min or less. 黒鉛組織を0.8wt%以上含む請求項4に記載の焼結含油軸受。 The sintered oil-impregnated bearing according to claim 4, which contains a graphite structure of 0.8 wt% or more. 前記軸受面に動圧発生部を設けた請求項1に記載の焼結含油軸受。 The sintered oil-impregnated bearing according to claim 1, wherein a dynamic pressure generating section is provided on the bearing surface. 内周面に前記軸受面が形成された請求項6に記載の焼結含油軸受と、軸方向一端側が開口し他端側が閉塞された形態をなし前記焼結含油軸受が内周に固定されるハウジングと、前記焼結含油軸受の内周に挿入される前記軸部材とを備え、前記動圧発生部により前記焼結含油軸受の軸受面と前記軸の外周面との間のラジアル軸受隙間に油膜を形成して前記軸部材をラジアル方向に非接触支持する流体動圧軸受装置。 The sintered oil-impregnated bearing according to claim 6, wherein the bearing surface is formed on the inner peripheral surface, and the sintered oil-impregnated bearing is fixed to the inner periphery, and the sintered oil-impregnated bearing is opened at one end in the axial direction and closed at the other end. a housing; and the shaft member inserted into the inner periphery of the sintered oil-impregnated bearing; A fluid dynamic bearing device that supports the shaft member in a radial direction in a non-contact manner by forming an oil film. 前記焼結含油軸受の軸方向一方側に前記粗大気孔の多い領域を設けると共に、軸方向他方側に前記粗大気孔の少ない領域を設け、前記粗大気孔の多い領域を高負荷側に配置した請求項7に記載の流体動圧軸受装置。 A region with many coarse pores is provided on one axial side of the sintered oil-impregnated bearing, a region with few coarse pores is provided on the other axial side, and the region with many coarse pores is arranged on a high load side. 7. The fluid dynamic bearing device according to 7. 請求項7または8に記載の流体動圧軸受装置を備えたモータ。 A motor comprising the fluid dynamic bearing device according to claim 7 or 8.
JP2022139277A 2022-09-01 2022-09-01 Sintered oil-impregnated bearing Pending JP2024034792A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022139277A JP2024034792A (en) 2022-09-01 2022-09-01 Sintered oil-impregnated bearing
PCT/JP2023/028545 WO2024048202A1 (en) 2022-09-01 2023-08-04 Sintered oil-impregnated bearing
CN202311105383.4A CN117628053A (en) 2022-09-01 2023-08-29 Sintered oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022139277A JP2024034792A (en) 2022-09-01 2022-09-01 Sintered oil-impregnated bearing

Publications (1)

Publication Number Publication Date
JP2024034792A true JP2024034792A (en) 2024-03-13

Family

ID=90029318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022139277A Pending JP2024034792A (en) 2022-09-01 2022-09-01 Sintered oil-impregnated bearing

Country Status (3)

Country Link
JP (1) JP2024034792A (en)
CN (1) CN117628053A (en)
WO (1) WO2024048202A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3607478B2 (en) * 1997-12-18 2005-01-05 Ntn株式会社 Dynamic pressure type porous oil-impregnated bearing
JP3774614B2 (en) * 2000-03-31 2006-05-17 Ntn株式会社 Sintered oil-impregnated bearing material using copper-coated iron powder and manufacturing method thereof
JP2002327203A (en) * 2001-04-26 2002-11-15 Daihaku Kogyo Kk Sintered compact, sintering method, and sintering device
JP4408788B2 (en) * 2004-10-25 2010-02-03 パナソニック株式会社 Brushless motor and manufacturing method thereof
JP2008039104A (en) * 2006-08-08 2008-02-21 Ntn Corp Fluid bearing device
JP5442145B1 (en) * 2012-10-24 2014-03-12 Ntn株式会社 Sintered bearing
JP6625321B2 (en) * 2014-11-28 2019-12-25 Ntn株式会社 Dynamic pressure bearing and manufacturing method thereof
JP6812113B2 (en) * 2016-02-25 2021-01-13 Ntn株式会社 Sintered oil-impregnated bearing and its manufacturing method
CN109154043B (en) * 2016-05-19 2019-11-19 日立化成株式会社 Iron series sintered metal bearing
JP7076266B2 (en) * 2018-04-03 2022-05-27 Ntn株式会社 Manufacturing method of sintered oil-impregnated bearing

Also Published As

Publication number Publication date
WO2024048202A1 (en) 2024-03-07
CN117628053A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
JP5384014B2 (en) Sintered bearing
JP5619550B2 (en) Sintered bearing, fluid dynamic pressure bearing device including the same, and method for manufacturing sintered bearing
US20150043844A1 (en) Sintered metal bearing
JP6812113B2 (en) Sintered oil-impregnated bearing and its manufacturing method
JP2012241728A (en) Sintered bearing and fluid dynamic pressure bearing device including the same
WO2024048202A1 (en) Sintered oil-impregnated bearing
JP2006316896A (en) Method for manufacturing oil-impregnated sintered bearing and oil-impregnated sintered bearing
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP6961332B2 (en) Dynamic pressure bearings and their manufacturing methods
JP2003336636A (en) Dynamic pressure bearing device
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
US11428266B2 (en) Slide bearing
JP6026123B2 (en) Sintered metal bearing
JP2009092197A (en) Dynamic pressure bearing device and its manufacturing method
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP6999259B2 (en) Plain bearing
JP7094118B2 (en) Sintered metal dynamic pressure bearing
JP4327038B2 (en) Spindle motor
WO2023189389A1 (en) Oil-impregnated sintered bearing and fluid dynamic bearing device including same
JP6890405B2 (en) Dynamic pressure bearings and their manufacturing methods
JP2018179018A (en) Porous dynamic pressure bearing
JP2004197889A (en) Dynamic-pressure bearing device
WO2020067155A1 (en) Sintered bearing, hydrodynamic pressure bearing device, and motor
JP2018096420A (en) Fluid dynamic pressure bearing device, oil-containing porous bearing used in the same, and manufacturing method thereof
JP2013044395A (en) Fluid dynamic-pressure bearing device