JP2018096420A - Fluid dynamic pressure bearing device, oil-containing porous bearing used in the same, and manufacturing method thereof - Google Patents

Fluid dynamic pressure bearing device, oil-containing porous bearing used in the same, and manufacturing method thereof Download PDF

Info

Publication number
JP2018096420A
JP2018096420A JP2016240219A JP2016240219A JP2018096420A JP 2018096420 A JP2018096420 A JP 2018096420A JP 2016240219 A JP2016240219 A JP 2016240219A JP 2016240219 A JP2016240219 A JP 2016240219A JP 2018096420 A JP2018096420 A JP 2018096420A
Authority
JP
Japan
Prior art keywords
oil
bearing
green compact
shaft member
fluid dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016240219A
Other languages
Japanese (ja)
Inventor
柴原 克夫
Katsuo Shibahara
克夫 柴原
和慶 原田
Kazunori Harada
和慶 原田
慎治 小松原
Shinji Komatsubara
慎治 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2016240219A priority Critical patent/JP2018096420A/en
Priority to PCT/JP2017/031782 priority patent/WO2018047765A1/en
Priority to US16/330,432 priority patent/US11428266B2/en
Priority to CN201780051542.3A priority patent/CN109642611B/en
Publication of JP2018096420A publication Critical patent/JP2018096420A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce an oil amount charged inside an oil-containing porous bearing without increasing costs.SOLUTION: A fluid dynamic pressure bearing device 1 includes a shaft member 2, an oil-containing porous bearing (bearing sleeve 8), a bottomed-cylindrical housing 7, and a seal part 9. Between an inner peripheral surface 9a of the seal part 9 and an outer peripheral surface 2a1 of the shaft member 2, a seal space S for holding an oil level is formed. The oil-containing porous bearing comprises a green compact where iron particles 11 are connected to each other through an oxide film 12 formed on the surface of the iron particle 11. The oil content of the oil-containing porous bearing is not more than 4 vol%.SELECTED DRAWING: Figure 5

Description

本発明は、流体動圧軸受装置に関し、特に、多孔質含油軸受を有する流体動圧軸受装置に関する。   The present invention relates to a fluid dynamic bearing device, and particularly to a fluid dynamic bearing device having a porous oil-impregnated bearing.

流体動圧軸受装置は、軸と軸受部材との相対回転に伴って、これらの間の軸受隙間に形成される油膜の圧力により、軸を相対回転自在に非接触支持するものである。流体動圧軸受装置は、HDD、ポリゴンミラーモータ、小型クーリングファンモータなど、小型で高速、高精度回転用の軸受装置として広く用いられている。   The fluid dynamic pressure bearing device supports the shaft in a non-contact manner so as to be relatively rotatable by the pressure of the oil film formed in the bearing gap between the shaft and the bearing member in association with the relative rotation. The fluid dynamic pressure bearing device is widely used as a small, high-speed, high-precision bearing device such as an HDD, a polygon mirror motor, and a small cooling fan motor.

流体動圧軸受装置は、内部に油(又はグリース、以下同様)が完全に充填されたフルフィル構造と、内部に空気層が存在するパーシャルフィル構造とに大別される。   Fluid dynamic pressure bearing devices are roughly classified into a full-fill structure in which oil (or grease, hereinafter the same) is completely filled, and a partial fill structure in which an air layer exists inside.

フルフィルタイプの流体動圧軸受装置は、パーシャルフィルの流体動圧軸受装置と比べて油面の位置が変動しにくいため、油漏れは比較的生じにくいが、油漏れを確実に防止するためにシール構造を設けることが一般的である。例えば、特許文献1では、ハウジングの開口部に設けたシール部材の内周面と、軸部材の外周面に設けたテーパ面との間に、断面楔状のシール空間(いわゆる、テーパシール)を形成している。テーパシールでは、毛細管作用により油面をシール空間内に維持すると共に、温度上昇に伴う油の体積増加をシール空間で緩衝することにより、油の流出を防止している。   Full-fill type fluid dynamic bearing device is less likely to cause oil leakage because the oil level position is less likely to fluctuate compared to partial fill fluid dynamic bearing device, but seals are provided to prevent oil leakage reliably. It is common to provide a structure. For example, in Patent Document 1, a wedge-shaped seal space (so-called taper seal) is formed between an inner peripheral surface of a seal member provided in an opening of a housing and a tapered surface provided on an outer peripheral surface of a shaft member. doing. In the taper seal, the oil surface is maintained in the seal space by a capillary action, and the oil volume is prevented from flowing out by buffering the increase in the oil volume accompanying the temperature rise in the seal space.

特開2003−065324号公報JP 2003-065324 A

上記のようなシール空間は、温度変化に伴う油の体積変化を吸収可能な容積が必要となるため、流体動圧軸受装置の内部に充填される油の量が多いほど、シール空間の容積を大きくする必要が生じる。特に、軸受部材として、焼結金属等の多孔質材からなる多孔質含油軸受を使用した場合、軸受部材の内部気孔にも油が含浸されるため、その分、油量が増えてしまい、シール空間の容積のさらなる拡大を招く。   Since the seal space as described above needs a volume capable of absorbing the volume change of the oil accompanying the temperature change, the larger the amount of oil filled in the fluid dynamic bearing device, the smaller the volume of the seal space. There is a need to increase it. In particular, when a porous oil-impregnated bearing made of a porous material such as sintered metal is used as the bearing member, oil is also impregnated in the internal pores of the bearing member. This leads to further expansion of the volume of the space.

一方、流体動圧軸受装置が組み込まれる機器の小型化、薄型化に伴い、流体動圧軸受装置の全長(軸方向長さ)はおのずと制限される。上記の特許文献1に示されている流体動圧軸受装置のように、シール空間とラジアル軸受隙間とが軸方向に並べて設けられている場合、シール空間の容積を確保するためにシール空間の軸方向寸法を大きくすると、ラジアル軸受隙間の軸方向長さ(軸受スパン)を十分に確保することができなくなり、軸受の負荷容量や剛性の低下を招くおそれがある。   On the other hand, with the downsizing and thinning of devices in which the fluid dynamic bearing device is incorporated, the total length (axial length) of the fluid dynamic bearing device is naturally limited. When the seal space and the radial bearing gap are provided side by side in the axial direction as in the fluid dynamic bearing device disclosed in Patent Document 1, the shaft of the seal space is used to secure the volume of the seal space. If the directional dimension is increased, the axial length (bearing span) of the radial bearing gap cannot be sufficiently secured, and the load capacity and rigidity of the bearing may be reduced.

例えば、焼結金属からなる軸受部材の内部気孔を少なくすれば、軸受部材の内部に含浸される油量、ひいては、流体動圧軸受装置の内部に充填される総油量が減じられるため、シール空間の容積を縮小し、シール空間の軸方向長さを短くすることができる。軸受部材の内部気孔を少なくする方法としては、例えば圧粉体の密度を上げることが考えられるが、この場合、圧粉体を成形する際に大きな成形圧力が必要となるため、成形プレス機の大型化等によるコストアップを招く。   For example, if the internal pores of the bearing member made of sintered metal are reduced, the amount of oil impregnated in the bearing member, and hence the total amount of oil filled in the fluid dynamic bearing device, is reduced. The volume of the space can be reduced, and the axial length of the seal space can be shortened. As a method of reducing the internal pores of the bearing member, for example, it is conceivable to increase the density of the green compact. However, in this case, a large molding pressure is required when molding the green compact. Incurs cost increase due to size increase.

以上のような事情から、本発明は、多孔質含油軸受を有する流体動圧軸受装置において、コストアップを招くことなく、内部に充填される油量を減じることによりシール空間の軸方向寸法を縮小し、もって流体動圧軸受装置の軸方向寸法の縮小、あるいは軸受スパンの拡大による負荷容量及び軸受剛性の向上を図ることを目的とする。   In view of the above circumstances, the present invention reduces the axial dimension of the seal space by reducing the amount of oil filled in the fluid dynamic pressure bearing device having a porous oil-impregnated bearing without causing an increase in cost. Therefore, it is an object to improve the load capacity and the bearing rigidity by reducing the axial dimension of the fluid dynamic pressure bearing device or by expanding the bearing span.

前記課題を解決するために、本発明は、軸部材と、内周に前記軸部材が挿入された多孔質含油軸受と、前記多孔質含油軸受を内周に保持する有底筒状のハウジングと、前記ハウジングの開口部に設けられたシール部と、前記多孔質含油軸受の内周面と前記軸部材の外周面との間のラジアル軸受隙間に生じる油膜の動圧作用で前記軸部材を相対回転自在に支持するラジアル軸受部と、前記シール部の内周面と前記軸部材の外周面との間に形成され、前記ハウジングの内部に満たされた油と大気との界面を保持するシール空間とを備えた流体動圧軸受装置において、前記多孔質含油軸受が、金属粉末の粒子の表面に形成された酸化物被膜を介して前記粒子同士が結合された圧粉体を有し、前記多孔質含油軸受の含油率が4vol%以下であることを特徴とする。   In order to solve the above-described problems, the present invention provides a shaft member, a porous oil-impregnated bearing having the shaft member inserted in an inner periphery, and a bottomed cylindrical housing that holds the porous oil-impregnated bearing in the inner periphery. The shaft member is relatively moved by the dynamic pressure action of the oil film generated in the seal portion provided in the opening of the housing and the radial bearing gap between the inner peripheral surface of the porous oil-impregnated bearing and the outer peripheral surface of the shaft member. A radial bearing portion that is rotatably supported, and a seal space that is formed between the inner peripheral surface of the seal portion and the outer peripheral surface of the shaft member, and holds an interface between oil and the atmosphere filled in the housing. The porous oil-impregnated bearing includes a green compact in which the particles are bonded to each other through an oxide film formed on the surface of the metal powder particles. The oil content of the oil-impregnated bearing is 4 vol% or less. And features.

本発明に係る流体動圧軸受装置の多孔質含油軸受は、一般的な焼結軸受のように圧粉体を高温(例えば850℃)で焼結するのではなく、圧粉体に比較的低温(例えば500℃)での加熱処理を施すことにより、圧粉体を構成する金属粉末の粒子の表面に酸化物被膜を生成させ、この酸化物被膜により粒子同士を結合したものである。この場合、酸化物被膜により圧粉体の内部気孔の少なくとも一部が埋められて、圧粉体の内部気孔が減じられるため、多孔質含油軸受の含油率を4vol%以下とすることができる。このように、多孔質含油軸受の内部に含浸される油量が減じられることで、流体動圧軸受装置の内部に充填される総油量が減じられる。これにより、油の体積変化を緩衝するシール空間の容積、特に、シール空間の軸方向寸法を縮小することができるため、流体動圧軸受装置の軸方向寸法の縮小、あるいは軸受スパンの拡大による負荷容量及び軸受剛性の向上を図ることができる。   The porous oil-impregnated bearing of the fluid dynamic pressure bearing device according to the present invention does not sinter the green compact at a high temperature (for example, 850 ° C.) unlike a general sintered bearing, but relatively low temperature in the green compact. By performing heat treatment at (for example, 500 ° C.), an oxide film is formed on the surface of the metal powder particles constituting the green compact, and the particles are bonded to each other by the oxide film. In this case, at least a part of the internal pores of the green compact is filled with the oxide film and the internal pores of the green compact are reduced, so that the oil content of the porous oil-impregnated bearing can be 4 vol% or less. As described above, the amount of oil impregnated in the porous oil-impregnated bearing is reduced, so that the total amount of oil filled in the fluid dynamic bearing device is reduced. As a result, the volume of the seal space for buffering the volume change of the oil, particularly the axial dimension of the seal space, can be reduced, so the load due to the reduction of the axial dimension of the fluid dynamic bearing device or the expansion of the bearing span. The capacity and bearing rigidity can be improved.

例えば、複数種の金属粉末を含む圧粉体に酸化処理を施すと、金属の種類によって酸化物被膜の形成状態に差異が生じ、酸化物被膜の厚さや、酸化物被膜と粒子との密着性が不均一となるおそれがある。従って、上記の多孔質含油軸受に含まれる金属粉末は、実質的に単一種の金属粉末のみで構成することが好ましい。具体的には、多孔質含油軸受を構成する圧粉体に含まれる金属粉末の99wt%以上を、単一種の金属粉末で構成することが好ましい。特に、多孔質含油軸受の耐久性(耐摩耗性)や強度、酸化物被膜の形成のしやすさ等を考慮すると、上記の単一種の金属粉末として鉄粉を用いることが好ましい。   For example, when a green compact containing multiple types of metal powders is oxidized, the oxide film formation state varies depending on the type of metal, and the thickness of the oxide film and the adhesion between the oxide film and the particles May be non-uniform. Therefore, it is preferable that the metal powder contained in the porous oil-impregnated bearing is substantially composed of only one kind of metal powder. Specifically, it is preferable that 99 wt% or more of the metal powder contained in the green compact constituting the porous oil-impregnated bearing is composed of a single type of metal powder. In particular, considering the durability (wear resistance) and strength of the porous oil-impregnated bearing, the ease of forming an oxide film, etc., it is preferable to use iron powder as the single type of metal powder.

上記の流体動圧軸受装置と、前記ハウジングおよび前記軸部材のうち、回転側に設けられたロータマグネットと、前記ハウジングおよび前記軸部材のうち、固定側に設けられたステータコイルとを備えたモータは、軸方向寸法の小型化、あるいは、回転精度の向上を図ることができる。   A motor including the fluid dynamic pressure bearing device described above, a rotor magnet provided on a rotating side of the housing and the shaft member, and a stator coil provided on a fixed side of the housing and the shaft member. Can reduce the size in the axial direction or improve the rotation accuracy.

上記の多孔質含油軸受は、金属粉末を圧縮して圧粉体を成形する工程と、前記圧粉体を加熱して、前記圧粉体を構成する金属粉末の粒子の表面に酸化物被膜を形成し、この酸化物被膜を介して前記粒子同士を結合する工程と、前記圧粉体の内部気孔に油を含浸させ、含油率が4vol%以下の多孔質含油軸受を得る工程とを経て製造することができる。   The porous oil-impregnated bearing includes a step of compressing metal powder to form a green compact, and heating the green compact to form an oxide film on the surface of the metal powder particles constituting the green compact. Produced through a step of forming and bonding the particles together through the oxide film, and a step of impregnating oil in the internal pores of the green compact to obtain a porous oil-impregnated bearing having an oil content of 4 vol% or less. can do.

前記圧粉体を空気雰囲気中で加熱することにより、水蒸気雰囲気中で加熱する場合と比べて、圧粉体の表面に酸化物被膜がマイルドに形成されるため、圧粉体の表面の粗さやうねりが抑えられる。例えば、実質的に鉄粉のみからなる圧粉体を空気雰囲気中で加熱した場合、前記酸化物被膜は、例えばFe又はFe、あるいはこれらの混合体で形成される。 By heating the green compact in an air atmosphere, an oxide film is mildly formed on the surface of the green compact as compared with the case of heating in a water vapor atmosphere. Swelling is suppressed. For example, when a green compact consisting essentially of iron powder is heated in an air atmosphere, the oxide film is formed of, for example, Fe 3 O 4 or Fe 2 O 3 , or a mixture thereof.

以上のように、本発明では、酸化物被膜により圧粉体の内部気孔を減じて、多孔質含油軸受の含油率を抑えることで、流体動圧軸受装置の内部に充填される総油量を減じることができるため、シール空間の軸方向寸法を縮小することができる。これにより、流体動圧軸受装置の軸方向寸法の縮小、あるいは軸受スパンの拡大による負荷容量及び軸受剛性の向上を図ることができる。   As described above, in the present invention, by reducing the internal pores of the green compact by the oxide film and suppressing the oil content of the porous oil-impregnated bearing, the total amount of oil filled in the fluid dynamic pressure bearing device is reduced. Since it can be reduced, the axial dimension of the seal space can be reduced. Thereby, the load capacity and bearing rigidity can be improved by reducing the axial dimension of the fluid dynamic bearing device or by increasing the bearing span.

スピンドルモータの断面図である。It is sectional drawing of a spindle motor. 流体動圧軸受装置の断面図である。It is sectional drawing of a fluid dynamic pressure bearing apparatus. 本発明の一実施形態に係る多孔質含油軸受(軸受スリーブ)の断面図である。It is sectional drawing of the porous oil-impregnated bearing (bearing sleeve) which concerns on one Embodiment of this invention. 上記多孔質含油軸受の下面図である。It is a bottom view of the said porous oil-impregnated bearing. 上記多孔質含油軸受の軸受面付近における断面図である。It is sectional drawing in the bearing surface vicinity of the said porous oil-impregnated bearing. 圧粉工程を行うフォーミング金型の断面図である(成形前)。It is sectional drawing of the forming metal mold | die which performs a compacting process (before shaping | molding). 圧粉工程を行うフォーミング金型の断面図である(成形完了時)。It is sectional drawing of the forming metal mold | die which performs a compacting process (at the time of shaping | molding completion). 圧粉工程を行うフォーミング金型の断面図である(離型時)。It is sectional drawing of the forming metal mold | die which performs a compacting process (at the time of mold release). 左図は加熱処理前の圧粉体の断面組織図、中央図は脱脂後の圧粉体の断面組織図、右図は酸化処理後の圧粉体の断面組織図である。The left figure is a cross-sectional structure diagram of the green compact before heat treatment, the center figure is a cross-sectional structure diagram of the green compact after degreasing, and the right figure is a cross-sectional structure diagram of the green compact after the oxidation treatment.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示すスピンドルモータは、HDD等のディスク駆動装置に用いられるものであり、軸部材2を回転自在に非接触支持する流体動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はケーシング6に取付けられ、ロータマグネット5はディスクハブ3に取付けられる。流体動圧軸受装置1のハウジング7は、ケーシング6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが所定枚数保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   The spindle motor shown in FIG. 1 is used in a disk drive device such as an HDD, and includes a fluid dynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, and a disk hub 3 mounted on the shaft member 2. And, for example, a stator coil 4 and a rotor magnet 5 that are opposed to each other via a gap in the radial direction. The stator coil 4 is attached to the casing 6, and the rotor magnet 5 is attached to the disk hub 3. The housing 7 of the fluid dynamic bearing device 1 is mounted on the inner periphery of the casing 6. The disk hub 3 holds a predetermined number of disks D such as magnetic disks. When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2に示すように、流体動圧軸受装置1は、本発明の一実施形態に係る多孔質含油軸受としての軸受スリーブ8と、軸受スリーブ8の内周に挿入された軸部材2と、軸受スリーブ8を内周に保持する有底筒状のハウジング7と、ハウジング7の軸方向一端の開口部に設けられたシール部9とを有する。図示例では、ハウジング7の側部7aと底部7bとが別体に形成され、ハウジング7の側部7aとシール部9とが一体に形成されている。尚、以下の説明では、便宜上、軸方向でハウジング7の閉塞側を下側、ハウジング7の開口側を上側と言うが、これは流体動圧軸受装置1の使用態様を限定する趣旨ではない。   As shown in FIG. 2, the fluid dynamic pressure bearing device 1 includes a bearing sleeve 8 as a porous oil-impregnated bearing according to an embodiment of the present invention, a shaft member 2 inserted in the inner periphery of the bearing sleeve 8, a bearing It has a bottomed cylindrical housing 7 that holds the sleeve 8 on the inner periphery, and a seal portion 9 provided in an opening at one axial end of the housing 7. In the illustrated example, the side portion 7a and the bottom portion 7b of the housing 7 are formed separately, and the side portion 7a and the seal portion 9 of the housing 7 are integrally formed. In the following description, for the sake of convenience, the closed side of the housing 7 is referred to as the lower side and the open side of the housing 7 is referred to as the upper side in the axial direction, but this is not intended to limit the usage mode of the fluid dynamic bearing device 1.

軸部材2は、軸部2aと、軸部2aの下端に設けられたフランジ部2bとを備える。軸部材2は、例えば金属で形成され、本実施形態では、軸部2aおよびフランジ部2bを含む軸部材2全体がステンレス鋼で一体に形成される。   The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a. The shaft member 2 is formed of, for example, metal, and in this embodiment, the entire shaft member 2 including the shaft portion 2a and the flange portion 2b is integrally formed of stainless steel.

軸受スリーブ8は円筒状をなし、内周面8aに、軸部材2の外周面2a1と対向するラジアル軸受面が設けられる。図示例では、軸受スリーブ8の内周面8aの軸方向に離隔した2箇所にラジアル軸受面Aが形成される。本実施形態では、ラジアル軸受面Aの内径が、φ3〜5mmとされる。各ラジアル軸受面Aには動圧溝が形成され、本実施形態では、図3に示すように、各ラジアル軸受面Aにへリングボーン形状に配列された動圧溝G1,G2が設けられる。図中クロスハッチングで示す領域は、内径側に盛り上がった丘部を示している(図4においても同様)。上側の動圧溝G1は軸方向で非対称な形状を成し、下側の動圧溝G2は軸方向で対称な形状を成している。軸方向非対称形状の上側の動圧溝G1により、ラジアル軸受隙間の油が軸方向に押し込まれ、ハウジング7の内部で油が強制的に循環される。   The bearing sleeve 8 has a cylindrical shape, and a radial bearing surface facing the outer peripheral surface 2a1 of the shaft member 2 is provided on the inner peripheral surface 8a. In the illustrated example, radial bearing surfaces A are formed at two locations spaced in the axial direction of the inner peripheral surface 8 a of the bearing sleeve 8. In the present embodiment, the radial bearing surface A has an inner diameter of 3 to 5 mm. In each radial bearing surface A, dynamic pressure grooves are formed, and in this embodiment, as shown in FIG. 3, dynamic pressure grooves G1, G2 arranged in a herringbone shape are provided in each radial bearing surface A. A region indicated by cross-hatching in the figure indicates a hill raised on the inner diameter side (the same applies to FIG. 4). The upper dynamic pressure groove G1 has an asymmetric shape in the axial direction, and the lower dynamic pressure groove G2 has a symmetrical shape in the axial direction. The oil in the radial bearing gap is pushed in the axial direction by the upper dynamic pressure groove G <b> 1 having the axially asymmetric shape, and the oil is forcibly circulated inside the housing 7.

尚、上下の動圧溝G1,G2の双方を軸方向対称形状としてもよい。また、上下の動圧溝G1,G2を軸方向で連続させたり、上下の動圧溝G1,G2の一方あるいは双方を省略したりしてもよい。また、ラジアル軸受面に、スパイラル形状の動圧溝や軸方向に延びる動圧溝を形成してもよい。また、軸受スリーブ8の内周面8a(ラジアル軸受面A)を円筒面として、軸部材2の外周面2a1に動圧溝を形成してもよい。あるいは、軸受スリーブ8の内周面8aおよび軸部材2の外周面2a1の双方を円筒面として、真円軸受を構成してもよい。この場合、軸部材2の振れ回りにより、軸受スリーブ8と軸部材2との間の軸受隙間の油膜に動圧が生じ、この動圧により軸を浮上支持する流体動圧軸受が構成される。   Note that both the upper and lower dynamic pressure grooves G1, G2 may have an axially symmetrical shape. The upper and lower dynamic pressure grooves G1 and G2 may be continuous in the axial direction, or one or both of the upper and lower dynamic pressure grooves G1 and G2 may be omitted. Further, a spiral dynamic pressure groove or a dynamic pressure groove extending in the axial direction may be formed on the radial bearing surface. Further, the inner circumferential surface 8a (radial bearing surface A) of the bearing sleeve 8 may be a cylindrical surface, and a dynamic pressure groove may be formed on the outer circumferential surface 2a1 of the shaft member 2. Or you may comprise a perfect circle bearing by making both the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft member 2 into a cylindrical surface. In this case, a dynamic pressure is generated in the oil film in the bearing gap between the bearing sleeve 8 and the shaft member 2 due to the swing of the shaft member 2, and a fluid dynamic pressure bearing that supports the shaft in a floating manner is configured by this dynamic pressure.

軸受スリーブ8の下側端面8bには、軸部材2のフランジ部2bの上側端面2b1と対向するスラスト軸受面Bが設けられる。スラスト軸受面Bには、図4に示すようなポンプインタイプのスパイラル形状の動圧溝G3が形成される。尚、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。また、軸受スリーブ8の下側端面8b(スラスト軸受面B)を平坦面として、軸部材2のフランジ部2bの上側端面2b1に動圧溝を形成してもよい。   A thrust bearing surface B facing the upper end surface 2b1 of the flange portion 2b of the shaft member 2 is provided on the lower end surface 8b of the bearing sleeve 8. On the thrust bearing surface B, a pump-in type spiral-shaped dynamic pressure groove G3 as shown in FIG. 4 is formed. In addition, as a shape of the dynamic pressure groove, a herringbone shape, a radiation groove shape, or the like may be adopted. Further, a dynamic pressure groove may be formed on the upper end surface 2b1 of the flange portion 2b of the shaft member 2 with the lower end surface 8b (thrust bearing surface B) of the bearing sleeve 8 as a flat surface.

軸受スリーブ8の上側端面8cには、環状溝8c1と、環状溝8c1の内径側に設けられた複数の半径方向溝8c2とが形成される(図3参照)。軸受スリーブ8の外周面8dには、複数の軸方向溝8d1が円周方向等間隔に設けられる。これらの軸方向溝8d1、環状溝8c1、及び半径方向溝8c2等を介して、軸部材2のフランジ部2bの外径側の空間がシール空間Sと連通することで、この空間における負圧の発生が防止される。尚、軸受スリーブ8の上側端面8cを平坦面とし、この面と当接するシール部9の下面に半径方向溝を設けてもよい。   An annular groove 8c1 and a plurality of radial grooves 8c2 provided on the inner diameter side of the annular groove 8c1 are formed on the upper end surface 8c of the bearing sleeve 8 (see FIG. 3). A plurality of axial grooves 8d1 are provided on the outer peripheral surface 8d of the bearing sleeve 8 at equal intervals in the circumferential direction. The space on the outer diameter side of the flange portion 2b of the shaft member 2 communicates with the seal space S through the axial groove 8d1, the annular groove 8c1, the radial groove 8c2, and the like. Occurrence is prevented. The upper end surface 8c of the bearing sleeve 8 may be a flat surface, and a radial groove may be provided on the lower surface of the seal portion 9 that contacts the surface.

軸受スリーブ8は、酸化処理が施された圧粉体、すなわち、金属粉末の粒子同士が酸化物被膜を介して結合された圧粉体の内部気孔に油を含浸させた多孔質含油軸受である。本実施形態の圧粉体は、実質的に単一種の金属粉末からなる圧粉体で構成され、具体的には、圧粉体を構成する金属粉末の99wt%以上が、単一種の金属粉末(粒子表面の酸化物被膜を含む)で構成される。本実施形態では、軸受スリーブ8が、金属粉末として鉄粉(特に還元鉄粉)のみからなる圧粉体で構成される。具体的に、軸受スリーブ8は、図5に示すように、鉄粒子11と、鉄粒子11の表面に形成された酸化物被膜12とからなる圧粉体で構成される。鉄粒子11は、酸化物被膜12により互いに結合されている。詳しくは、各鉄粒子11の表面に形成された酸化物被膜12が、鉄粒子11間に行き渡ってネットワークを形成することにより、軸受スリーブ8の強度が確保されている。   The bearing sleeve 8 is a porous oil-impregnated bearing in which oil is impregnated in the internal pores of a green compact subjected to an oxidation treatment, that is, a green compact in which metal powder particles are bonded together via an oxide film. . The green compact of the present embodiment is composed of a green compact substantially made of a single type of metal powder. Specifically, 99 wt% or more of the metal powder constituting the green compact is a single type of metal powder. (Including oxide coating on the particle surface). In the present embodiment, the bearing sleeve 8 is composed of a green compact made only of iron powder (particularly reduced iron powder) as metal powder. Specifically, as shown in FIG. 5, the bearing sleeve 8 is composed of a green compact composed of iron particles 11 and an oxide film 12 formed on the surface of the iron particles 11. The iron particles 11 are bonded to each other by an oxide coating 12. Specifically, the oxide coating 12 formed on the surface of each iron particle 11 spreads between the iron particles 11 to form a network, thereby ensuring the strength of the bearing sleeve 8.

軸受スリーブ8は、酸化物被膜12により鉄粒子11間の隙間(内部気孔)が減じられることで、含油率が4vol%以下、好ましくは2vol%以下とされる。軸受スリーブ8の表面、特にラジアル軸受面Aおよびスラスト軸受面Bには、内部気孔13bと連通していない多数の微小凹部13aや、内部気孔13bと連通した開口部13cが形成される。尚、軸受スリーブ8の含油率は、JIS Z 2501:2000に記載された開放気孔率の測定方法により測定される。   The bearing sleeve 8 has an oil content of 4 vol% or less, preferably 2 vol% or less, by reducing gaps (internal pores) between the iron particles 11 by the oxide coating 12. On the surface of the bearing sleeve 8, particularly on the radial bearing surface A and the thrust bearing surface B, a large number of minute recesses 13a that are not in communication with the internal pores 13b and openings 13c that are in communication with the internal pores 13b are formed. The oil content of the bearing sleeve 8 is measured by the open porosity measurement method described in JIS Z 2501: 2000.

軸受スリーブ8の表面は、動圧溝G1、G2、G3の溝底面や、丘部の頂面および側面を含め、全域が型成形された面となっている。軸受スリーブ8には、酸化処理後のサイジングは施されておらず、表面に摺動痕は形成されていない。   The entire surface of the bearing sleeve 8, including the groove bottom surfaces of the dynamic pressure grooves G1, G2, and G3 and the top and side surfaces of the hills, is a molded surface. The bearing sleeve 8 is not sized after the oxidation treatment, and no sliding trace is formed on the surface.

ハウジング7は、円筒状の側部7aと、側部7aの下端の開口部を閉塞する底部7bとを備える(図2参照)。本実施形態では、側部7aと底部7bとが別体に形成されている。側部7aは、樹脂あるいは金属で円筒状に形成される。側部7aの内周面7a1には、軸受スリーブ8の外周面8dが、接着や圧入等の適宜の手段で固定される。底部7bは、例えば、樹脂あるいは金属で円盤状に形成され、側部7aの下端部に、圧入、接着等の適宜の手段で固定される。底部7bの上側端面7b1にはスラスト軸受面Cが形成される。スラスト軸受面Cには、例えばポンプインタイプのスパイラル形状の動圧溝が形成される(図示省略)。尚、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。また、底部7bの上側端面7b1(スラスト軸受面C)を平坦面として、軸部材2のフランジ部2bの下側端面2b2に動圧溝を形成してもよい。また、ハウジング7の側部7aと底部7bとを一体に形成してもよい。   The housing 7 includes a cylindrical side portion 7a and a bottom portion 7b that closes the opening at the lower end of the side portion 7a (see FIG. 2). In this embodiment, the side part 7a and the bottom part 7b are formed separately. The side part 7a is formed in a cylindrical shape with resin or metal. The outer peripheral surface 8d of the bearing sleeve 8 is fixed to the inner peripheral surface 7a1 of the side portion 7a by an appropriate means such as adhesion or press fitting. The bottom portion 7b is formed in a disk shape with, for example, resin or metal, and is fixed to the lower end portion of the side portion 7a by appropriate means such as press-fitting and adhesion. A thrust bearing surface C is formed on the upper end surface 7b1 of the bottom 7b. The thrust bearing surface C is formed with, for example, a pump-in type spiral dynamic pressure groove (not shown). In addition, as a shape of the dynamic pressure groove, a herringbone shape, a radiation groove shape, or the like may be adopted. Alternatively, the dynamic pressure groove may be formed in the lower end surface 2b2 of the flange portion 2b of the shaft member 2 with the upper end surface 7b1 (thrust bearing surface C) of the bottom portion 7b as a flat surface. Further, the side portion 7a and the bottom portion 7b of the housing 7 may be integrally formed.

シール部9は、ハウジング7の側部7aの上端から内径側に突出している。本実施形態では、シール部9がハウジング7の側部7aと一体に形成される。シール部9の内周面9aは、下方に向けて漸次縮径したテーパ状を成す。シール部9の内周面9aと軸部2aの外周面2a1との間には、下方に向けて半径方向幅を徐々に狭めた断面楔状のシール空間Sが形成される。シール空間Sの軸方向寸法は、例えば、軸受スリーブ8の軸方向寸法の20%以下とされる。この他、シール部9の内周面を円筒面とする一方で、軸部2aの外周面に上方に向けて漸次縮径するテーパ面を設けたり、シール部9の内周面及び軸部2aの外周面の双方にテーパ面を設けたりしてもよい。また、シール部9を、ハウジング7の側部7aと別体に形成し、側部7aの上端開口部に固定してもよい。   The seal portion 9 protrudes from the upper end of the side portion 7a of the housing 7 toward the inner diameter side. In the present embodiment, the seal portion 9 is formed integrally with the side portion 7 a of the housing 7. The inner peripheral surface 9a of the seal portion 9 has a tapered shape that is gradually reduced in diameter toward the lower side. Between the inner peripheral surface 9a of the seal portion 9 and the outer peripheral surface 2a1 of the shaft portion 2a, a seal space S having a wedge-shaped cross section is formed in which the radial width is gradually narrowed downward. The axial dimension of the seal space S is, for example, 20% or less of the axial dimension of the bearing sleeve 8. In addition, while the inner peripheral surface of the seal portion 9 is a cylindrical surface, a tapered surface that gradually decreases in diameter is provided on the outer peripheral surface of the shaft portion 2a, or the inner peripheral surface of the seal portion 9 and the shaft portion 2a. A taper surface may be provided on both of the outer peripheral surfaces. Alternatively, the seal portion 9 may be formed separately from the side portion 7a of the housing 7 and fixed to the upper end opening of the side portion 7a.

上記の構成の流体動圧軸受装置1の内部に、油が注入される。本実施形態では、ハウジング7の内周の空間が、軸受スリーブ8の内部気孔を含めて油で満たされ、シール空間S内に油面が保持される。   Oil is injected into the fluid dynamic bearing device 1 having the above-described configuration. In the present embodiment, the inner circumferential space of the housing 7 is filled with oil including the internal pores of the bearing sleeve 8, and the oil level is held in the seal space S.

シール空間Sは、流体動圧軸受装置1の内部に満たされた油の体積変化を吸収し得る容積を有している。すなわち、シール空間Sの容積は、流体動圧軸受装置1の想定使用温度範囲における油の体積変化量よりも大きくなるように設定される。本実施形態では、軸受スリーブ8の内部気孔の一部が酸化物被膜で埋められ、含油率が4%以下となっているため、軸受スリーブ8の内部に含浸される油量、ひいては流体動圧軸受装置1の内部の総油量が減じられ、シール空間Sの容積(特に軸方向寸法)を縮小することができる。   The seal space S has a volume that can absorb the volume change of the oil filled in the fluid dynamic bearing device 1. That is, the volume of the seal space S is set to be larger than the volume change amount of the oil in the assumed operating temperature range of the fluid dynamic bearing device 1. In the present embodiment, part of the internal pores of the bearing sleeve 8 is filled with an oxide film, and the oil content is 4% or less. Therefore, the amount of oil impregnated in the bearing sleeve 8 and thus the fluid dynamic pressure The total amount of oil inside the bearing device 1 is reduced, and the volume (particularly the axial dimension) of the seal space S can be reduced.

例えば、内径φ4mm、軸方向寸法12.4mmの軸受スリーブ8を、従来の焼結含油軸受で構成した場合、シール空間Sの軸方向寸法は、少なくとも軸受スリーブ8の軸方向寸法の20%より大きくする必要があった。これに対し、上記サイズの軸受スリーブ8を、酸化処理を施した上記の圧粉体で構成した場合は、シール空間Sの軸方向寸法を軸受スリーブ8の軸方向寸法の20%以下とすることが可能となった。このように、シール空間Sの軸方向寸法を縮小することで、流体動圧軸受装置1の軸方向寸法を縮小することができる。あるいは、流体動圧軸受装置1の軸方向寸法を維持したまま、シール空間Sの軸方向寸法を縮小した分だけラジアル軸受部R1、R2の軸方向間隔(軸受スパン)を拡大して、負荷容量や軸受剛性の増大を図ることができる。   For example, when the bearing sleeve 8 having an inner diameter of 4 mm and an axial dimension of 12.4 mm is constituted by a conventional sintered oil-impregnated bearing, the axial dimension of the seal space S is at least larger than 20% of the axial dimension of the bearing sleeve 8. There was a need to do. On the other hand, when the bearing sleeve 8 having the above size is formed of the above-described green compact subjected to the oxidation treatment, the axial dimension of the seal space S should be 20% or less of the axial dimension of the bearing sleeve 8. Became possible. Thus, by reducing the axial dimension of the seal space S, the axial dimension of the fluid dynamic bearing device 1 can be reduced. Alternatively, while maintaining the axial dimension of the fluid dynamic bearing device 1, the axial distance (bearing span) between the radial bearing portions R1 and R2 is increased by reducing the axial dimension of the seal space S, and the load capacity is increased. In addition, the bearing rigidity can be increased.

軸部材2が回転すると、軸受スリーブ8の内周面8aのラジアル軸受面Aと軸部2aの外周面2a1との間にラジアル軸受隙間が形成され、ラジアル軸受面Aに設けられた動圧溝G1,G2によりラジアル軸受隙間の油膜の圧力が高められることで、軸部材2をラジアル方向に非接触支持する第1ラジアル軸受部R1及び第2ラジアル軸受部R2が構成される。これと同時に、軸受スリーブ8の下側端面8b(スラスト軸受面B)とフランジ部2bの上側端面2b1との間、及び、ハウジング7の底部7bの上側端面7b1(スラスト軸受面C)とフランジ部2bの下側端面2b2との間にそれぞれスラスト軸受隙間が形成され、各スラスト軸受面B、Cに設けられた動圧溝により各スラスト軸受隙間の油膜の圧力が高められることで、軸部材2を両スラスト方向に非接触支持する第1スラスト軸受部T1及び第2スラスト軸受部T2が構成される。   When the shaft member 2 rotates, a radial bearing gap is formed between the radial bearing surface A of the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a, and the dynamic pressure groove provided on the radial bearing surface A The first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner in the radial direction are configured by increasing the pressure of the oil film in the radial bearing gap by G1 and G2. At the same time, between the lower end surface 8b (thrust bearing surface B) of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b, and the upper end surface 7b1 (thrust bearing surface C) of the bottom portion 7b of the housing 7 and the flange portion. A thrust bearing gap is formed between the lower end face 2b2 of 2b, and the pressure of the oil film in each thrust bearing gap is increased by the dynamic pressure grooves provided on the thrust bearing faces B and C, whereby the shaft member 2 The first thrust bearing portion T1 and the second thrust bearing portion T2 are configured to support in a non-contact manner in both thrust directions.

本実施形態では、軸受スリーブ8の軸受面A、Bに、多数の微小凹部13aが設けられている(図5参照)。この微小凹部13aは、酸化物被膜12により内部気孔13bとの連通が遮断されており、油を保持する油溜まりとなる。軸部材2の回転時には、微小凹部13aに保持された油が軸受隙間に供給されることで、軸受隙間における油膜切れを防止して、軸受スリーブ8と軸部材2との摺動性を確保することができる。   In the present embodiment, a large number of minute recesses 13a are provided on the bearing surfaces A and B of the bearing sleeve 8 (see FIG. 5). The minute recesses 13a are blocked from communicating with the internal pores 13b by the oxide coating 12, and serve as an oil reservoir for retaining oil. When the shaft member 2 rotates, the oil retained in the minute recesses 13a is supplied to the bearing gap, thereby preventing the oil film from being cut in the bearing gap and ensuring the slidability between the bearing sleeve 8 and the shaft member 2. be able to.

ここで、上記の軸受スリーブ8の製造方法を説明する。軸受スリーブ8は、圧粉工程、脱脂工程、酸化工程、及び含油工程を経て製造される。以下、各工程を詳しく説明する。   Here, a manufacturing method of the bearing sleeve 8 will be described. The bearing sleeve 8 is manufactured through a dusting process, a degreasing process, an oxidation process, and an oil impregnation process. Hereinafter, each process will be described in detail.

(1)圧粉工程
圧粉工程は、原料粉末を金型に供給し、圧縮成形することで、円筒状の圧粉体を得る工程である。原料粉末は、粒子表面に酸化物被膜の形成が可能な金属粉末(イオン化傾向の大きな金属)を含み、例えば鉄粉や銅粉等を含む。鉄粉は、製法を問わず使用可能であり、例えば、アトマイズ粉や還元粉を使用できる。銅粉も、製法を問わず使用可能であり、例えば電解粉、アトマイズ粉、還元粉を使用できる。この他、主成分が鉄または銅である合金粉(例えば、予合金化したプレアロイ粉、部分的に拡散合金化させた部分拡散合金粉)を使用することも可能である。また、高強度化や潤滑性向上などのため、Sn、Znなどの低融点金属粉末、黒鉛やカーボンブラックなどの炭素系粉末を原料粉末に添加してもよい。
(1) Compacting step The compacting step is a step of obtaining a cylindrical compact by supplying raw material powder to a mold and compression molding. The raw material powder includes metal powder (metal having a large ionization tendency) capable of forming an oxide film on the particle surface, and includes, for example, iron powder and copper powder. Iron powder can be used regardless of the production method, and for example, atomized powder or reduced powder can be used. Copper powder can also be used regardless of a manufacturing method, for example, electrolytic powder, atomized powder, and reduced powder can be used. In addition, it is also possible to use an alloy powder whose main component is iron or copper (for example, prealloyed pre-alloy powder, partially diffusion alloyed partial diffusion alloy powder). In order to increase strength and improve lubricity, low melting point metal powders such as Sn and Zn, and carbon-based powders such as graphite and carbon black may be added to the raw material powder.

本実施形態では、原料粉末に含まれる金属粉末が、実質的に単一種の金属粉末からなる。具体的には、原料粉末に含まれる金属粉末の99wt%以上(あるいは、原料粉末全体の95wt%以上)が、単一種の金属粉末からなる。複数種の金属粉末を含む原料粉末を使用すると、金属粉末の種類によって、粒子の表面に形成される酸化物被膜の厚さや、酸化物被膜と粒子との密着性などが異なるため、寸法精度や軸受特性が満足できないおそれがあるからである。尚、寸法精度や軸受特性が満たされるのであれば、複数種の金属粉末を混合してもよい。   In this embodiment, the metal powder contained in the raw material powder is substantially composed of a single type of metal powder. Specifically, 99 wt% or more of the metal powder contained in the raw material powder (or 95 wt% or more of the entire raw material powder) is composed of a single type of metal powder. When raw material powder containing multiple types of metal powder is used, the thickness of the oxide film formed on the surface of the particle and the adhesion between the oxide film and the particle differ depending on the type of metal powder. This is because the bearing characteristics may not be satisfactory. In addition, as long as dimensional accuracy and bearing characteristics are satisfied, a plurality of types of metal powders may be mixed.

原料粉末には、後の圧粉工程における原料粉末と金型との潤滑、あるいは原料粉末同士の潤滑を担保するべく、成形用潤滑剤が添加される。成形用潤滑剤としては、金属セッケンやアミドワックスなどが使用できる。成形用潤滑剤は、粉末として原料粉末に混合する他、上記に挙げた成形用潤滑剤を溶剤に分散させた溶液を、金属粉末に噴霧又は浸漬させ、溶剤成分を揮発・除去することで、成形用潤滑剤を金属粉末の表面に被覆させてもよい。   A molding lubricant is added to the raw material powder in order to ensure lubrication between the raw material powder and the mold in the subsequent compacting process or between the raw material powders. As the molding lubricant, metal soap or amide wax can be used. The molding lubricant is mixed with the raw material powder as a powder, and a solution in which the above-mentioned molding lubricant is dispersed in a solvent is sprayed or immersed in a metal powder to volatilize and remove the solvent component. A molding lubricant may be coated on the surface of the metal powder.

本実施形態では、原料粉末が、純鉄粉(還元鉄粉)および成形用潤滑剤のみからなる。原料粉末中の成形用潤滑剤は、例えば0.1〜1wt%、好ましくは0.3〜0.6wt%とされる。   In the present embodiment, the raw material powder consists only of pure iron powder (reduced iron powder) and a molding lubricant. The molding lubricant in the raw material powder is, for example, 0.1 to 1 wt%, preferably 0.3 to 0.6 wt%.

圧粉工程は、図6に示すフォーミング金型を用いて行われる。フォーミング金型は、ダイ21、コアロッド22、上パンチ23および下パンチ24を備える。コアロッド22の外周面には、動圧溝G1、G2に対応した形状の成形型22a、22bが設けられる。下パンチ24の上面には、動圧溝G3に対応した形状の成形型24aが設けられる。この他、図示は省略するが、ダイ21の内周面には、軸方向溝8d1に対応した形状の成形型が設けられ、上パンチ23の下面には、環状溝8c1および半径方向溝8c2に対応した形状の成形型が設けられる。   The compacting process is performed using a forming mold shown in FIG. The forming mold includes a die 21, a core rod 22, an upper punch 23 and a lower punch 24. On the outer peripheral surface of the core rod 22, molding dies 22a and 22b having shapes corresponding to the dynamic pressure grooves G1 and G2 are provided. On the upper surface of the lower punch 24, a molding die 24a having a shape corresponding to the dynamic pressure groove G3 is provided. In addition, although illustration is omitted, a molding die having a shape corresponding to the axial groove 8d1 is provided on the inner peripheral surface of the die 21, and an annular groove 8c1 and a radial groove 8c2 are formed on the lower surface of the upper punch 23. A mold having a corresponding shape is provided.

まず、図6に示すように、ダイ21、コアロッド22、および下パンチ24で区画されたキャビティに、原料粉末Mを充填する。次に、図7に示すように、上パンチ23を降下させて原料粉末Mを圧縮し、圧粉体8’を成形する。これと同時に、コアロッド22の成形型22a、22bにより、圧粉体8’の内周面に動圧溝G1、G2が成形されると共に、下パンチ24の成形型24aにより、圧粉体8’の下側端面に動圧溝G3が成形される。尚、圧粉体8’の下側端面の動圧溝G3は、別工程で形成してもよい。   First, as shown in FIG. 6, a raw material powder M is filled into a cavity defined by a die 21, a core rod 22, and a lower punch 24. Next, as shown in FIG. 7, the upper punch 23 is lowered to compress the raw material powder M to form a green compact 8 '. At the same time, the dynamic pressure grooves G1 and G2 are formed on the inner peripheral surface of the green compact 8 ′ by the molds 22a and 22b of the core rod 22, and the green compact 8 ′ by the mold 24a of the lower punch 24. A dynamic pressure groove G3 is formed on the lower end surface of the lower surface. The dynamic pressure groove G3 on the lower end face of the green compact 8 'may be formed in a separate process.

その後、図8に示すように、圧粉体8’をダイ21の内周から排出することにより、圧粉体8’に加わっていた内径向きの力が解放され、圧粉体8’にスプリングバックが生じる。これにより、圧粉体8’の内周面が拡径し、圧粉体8’がコアロッド22の成形型22a、22bから離型される。   Thereafter, as shown in FIG. 8, the green compact 8 ′ is discharged from the inner periphery of the die 21, so that the force directed to the inner diameter applied to the green compact 8 ′ is released, and a spring is applied to the green compact 8 ′. Back occurs. As a result, the inner peripheral surface of the green compact 8 ′ increases in diameter, and the green compact 8 ′ is released from the molds 22 a and 22 b of the core rod 22.

通常、焼結部品においては密度が高い方が強度は向上する。しかし、本実施形態のように、圧粉体に酸化処理を施すことで高強度化を図る場合は、圧粉密度が高すぎると、圧粉体内部まで空気等の酸化性ガスが侵入できず、酸化物被膜の形成が圧粉体のごく表層に限られるため、強度が向上しにくくなる。この点に鑑み、圧粉密度は、7.2g/cm以下(真密度比91%以下)、好ましくは7.0g/cm以下(真密度比89%以下)とするのがよい。 Usually, in a sintered part, the higher the density, the higher the strength. However, as in this embodiment, in the case of increasing the strength by subjecting the green compact to oxidation treatment, if the density of the green compact is too high, an oxidizing gas such as air cannot penetrate into the green compact. Since the formation of the oxide film is limited to the very surface layer of the green compact, the strength is hardly improved. In view of this point, the green density is 7.2 g / cm 3 or less (true density ratio 91% or less), preferably 7.0 g / cm 3 or less (true density ratio 89% or less).

一方、圧粉密度が低すぎると、取扱い時に欠けや割れが発生してしまう(ラトラ値が大きい)、粒子間距離が長過ぎて酸化物被膜が粒子間にわたって形成されない、といった懸念がある。この点に鑑み、圧粉密度は、5.8g/cm3以上(真密度比74%以上)、好ましくは6.0g/cm3以上(真密度比76%以上)とするのがよい。特に、軸受スリーブ8の含油率を4vol%以下とするためには、圧粉密度を高めに設定することが好ましく、具体的には、圧粉密度を6.3g/cm3以上(真密度比80%以上)、好ましくは6.7g/cm3以上(真密度比85%以上)とするのがよい。尚、圧粉密度の測定は、寸法測定法による。また、圧粉体の密度は、後の脱脂工程および酸化工程を経てもほとんど変わらない。 On the other hand, if the powder density is too low, chipping or cracking may occur during handling (the rattra value is large), and there is a concern that the interparticle distance is too long to form an oxide film between the particles. In view of this point, the green density should be 5.8 g / cm 3 or more (true density ratio 74% or more), preferably 6.0 g / cm 3 or more (true density ratio 76% or more). In particular, in order to reduce the oil content of the bearing sleeve 8 to 4 vol% or less, it is preferable to set the dust density higher. Specifically, the dust density is set to 6.3 g / cm 3 or more (true density ratio). 80% or more), preferably 6.7 g / cm 3 or more (true density ratio 85% or more). In addition, the measurement of a compacting density is based on the dimension measuring method. Further, the density of the green compact remains almost unchanged even after the subsequent degreasing process and oxidation process.

(2)脱脂工程
脱脂工程は、圧粉体を加熱して、圧粉体に含まれる成形用潤滑剤を除去(脱ろう)する工程である。脱脂工程は、成形用潤滑剤の分解温度より高く、後述の酸化工程よりも低い温度で行われ、例えば300〜400℃で60〜120分間加熱される。脱脂前の圧粉体8’は、図9の左図に示すように、鉄粒子11の間の隙間に成形用潤滑剤14が配されているが、脱脂工程を施すことにより、図9の中央図に示すように、成形用潤滑剤14が消失し、鉄粒子11のみからなる圧粉体8’が得られる。
(2) Degreasing process The degreasing process is a process in which the green compact is heated to remove (dewax) the molding lubricant contained in the green compact. The degreasing step is performed at a temperature higher than the decomposition temperature of the molding lubricant and lower than the below-described oxidation step, and is heated, for example, at 300 to 400 ° C. for 60 to 120 minutes. As shown in the left diagram of FIG. 9, the green compact 8 ′ before degreasing is provided with a molding lubricant 14 in the gaps between the iron particles 11, but by performing a degreasing step, FIG. As shown in the center view, the molding lubricant 14 disappears, and a green compact 8 ′ composed only of iron particles 11 is obtained.

従来の焼結軸受の製造工程では、焼結工程において圧粉体が高温で保持されるため、圧粉体に含まれる潤滑剤成分は分解し、焼結後の製品中には含まれない。しかし、本発明を適用した場合、圧粉体の密度や酸化処理温度、保持時間によっては潤滑剤成分が残存し得る。そのため、酸化処理に先立ち、あらかじめ潤滑剤成分を分解・除去するための脱脂工程を設け、脱脂工程後に連続して同じ雰囲気で酸化処理をする、といった手法を取ることが望ましい。ただし、脱脂工程を設けずに、成形用潤滑剤を含有したまま酸化処理をしても、高強度化が図られることは確認済みである。また、脱脂工程を、別途の加熱装置を用いて、酸化工程とは異なる雰囲気(例えば、不活性ガスや還元性ガス、真空中など)で実施してもよい。   In a conventional sintered bearing manufacturing process, since the green compact is held at a high temperature in the sintering process, the lubricant component contained in the green compact is decomposed and is not included in the sintered product. However, when the present invention is applied, the lubricant component may remain depending on the density of the green compact, the oxidation treatment temperature, and the holding time. Therefore, it is desirable to take a technique in which a degreasing process for decomposing and removing the lubricant component is provided in advance prior to the oxidation process, and the oxidation process is continuously performed in the same atmosphere after the degreasing process. However, it has been confirmed that high strength can be achieved even if an oxidation treatment is carried out while containing a molding lubricant without providing a degreasing step. In addition, the degreasing step may be performed in an atmosphere (for example, an inert gas, a reducing gas, or in a vacuum) different from the oxidation step using a separate heating device.

(3)酸化工程
酸化工程では、圧粉体を酸化性雰囲気中で加熱する。これにより、図9の右図に示すように金属粉末(鉄粉)の各粒子11の表面に酸化物被膜12を生成させ、この酸化物被膜12を介して粒子11同士を結合することで、圧粉体8’の強度が高められる。具体的には、酸化工程により、金属粉末の各粒子の表面に生成される酸化物被膜が、鉄粒子11間に行き渡ってネットワークを形成することで、従来のような高温での焼結による結合力を代替し、圧粉体8’が高強度化される。また、本実施形態では、主成分となる鉄粉の全粒子が酸化物被膜を介して接合されているわけではなく、一部の粒子同士が酸化物被膜を介することなく直接接触して融着している。
(3) Oxidation step In the oxidation step, the green compact is heated in an oxidizing atmosphere. Thereby, as shown to the right figure of FIG. 9, the oxide film 12 is produced | generated on the surface of each particle | grain 11 of metal powder (iron powder), and particle | grains 11 are couple | bonded through this oxide film 12, The strength of the green compact 8 ′ is increased. Specifically, the oxide film formed on the surface of each particle of the metal powder by the oxidation process spreads between the iron particles 11 to form a network, thereby bonding by sintering at a high temperature as in the past. Instead of the force, the green compact 8 'is strengthened. Further, in this embodiment, not all particles of iron powder as a main component are bonded via an oxide film, but some particles are directly in contact with each other without an oxide film and fused. doing.

酸化物被膜12の生成により、圧粉体8’の内部気孔が減じられる(図5参照)。具体的には、圧粉体8’の内部気孔の一部が酸化物被膜12で埋められたり、表面に開口した連通気孔が酸化物被膜12で塞がれて独立気孔となったりする。これにより、油が浸入可能な気孔が減じられ、含油率が低減される。本実施形態では、酸化物被膜12を生成することで、圧粉体8’の含油率が4vol%以下となる。   Due to the formation of the oxide coating 12, the internal pores of the green compact 8 'are reduced (see FIG. 5). Specifically, some of the internal pores of the green compact 8 ′ are filled with the oxide film 12, or the continuous air holes opened on the surface are closed with the oxide film 12 to become independent pores. Thereby, the pores into which oil can enter is reduced, and the oil content is reduced. In the present embodiment, by forming the oxide film 12, the oil content of the green compact 8 'is 4 vol% or less.

上記の酸化処理の処理条件(加熱温度、加熱時間、加熱雰囲気)は、圧粉体8’に、動圧軸受として要求される強度が付与され、且つ、酸化物被膜12により、圧粉体8’の含油率が4vol%以下となるように設定される。具体的に、本実施形態の酸化工程における加熱温度は、350℃以上、好ましくは400℃以上に設定される。また、加熱温度が高すぎると、圧粉体の寸法変化が大きくなるため、加熱温度は600℃以下、好ましくは550℃以下に設定される。加熱時間は、5分〜2時間の範囲で、適宜設定され、例えば10〜20分とされる。酸化工程を経た圧粉体は、軸受スリーブ8に必要とされる強度、具体的には圧環強さ120MPa以上、好ましくは150MPa以上を有する。   The processing conditions (heating temperature, heating time, heating atmosphere) of the above-described oxidation treatment are such that the strength required for a dynamic pressure bearing is imparted to the green compact 8 ′, and the green compact 8 is formed by the oxide coating 12. The oil content of 'is set to 4 vol% or less. Specifically, the heating temperature in the oxidation step of the present embodiment is set to 350 ° C. or higher, preferably 400 ° C. or higher. Further, if the heating temperature is too high, the dimensional change of the green compact becomes large, so the heating temperature is set to 600 ° C. or lower, preferably 550 ° C. or lower. The heating time is appropriately set in the range of 5 minutes to 2 hours, for example, 10 to 20 minutes. The green compact subjected to the oxidation step has a strength required for the bearing sleeve 8, specifically, a crushing strength of 120 MPa or more, preferably 150 MPa or more.

加熱雰囲気は、積極的な酸化を促すために酸化性雰囲気とされる。ただし、水蒸気雰囲気は、酸化物被膜の生成速度が速すぎるため、水蒸気雰囲気よりも酸化物被膜の生成速度が遅い酸化性雰囲気とすることが好ましい。具体的には、空気又は酸素、あるいはこれらに窒素やアルゴンなどの不活性ガスを混合した酸化性ガスの何れかの雰囲気中で加熱することが好ましく、空気雰囲気中で加熱することが最も好ましい。空気雰囲気で酸化処理を行うことで、圧粉体の表面に形成される酸化物被膜が抑えられるため、圧粉体の表面粗さの低下を抑えることができる。また、軸受スリーブ8として使用に耐える強度(例えば圧環強さ120MPa以上)を得るためには、加熱雰囲気中の酸素分率を2vol%以上とすることが好ましい。   The heating atmosphere is an oxidizing atmosphere in order to promote positive oxidation. However, since the generation rate of the oxide film is too high in the water vapor atmosphere, it is preferable to use an oxidizing atmosphere in which the generation rate of the oxide film is lower than that of the water vapor atmosphere. Specifically, heating is preferably performed in an atmosphere of air or oxygen, or an oxidizing gas in which an inert gas such as nitrogen or argon is mixed, and most preferably heating is performed in an air atmosphere. By performing the oxidation treatment in an air atmosphere, the oxide film formed on the surface of the green compact can be suppressed, so that a reduction in the surface roughness of the green compact can be suppressed. Further, in order to obtain a strength that can be used as the bearing sleeve 8 (for example, a crushing strength of 120 MPa or more), the oxygen fraction in the heating atmosphere is preferably 2 vol% or more.

鉄粉の表面に形成される鉄酸化物被膜は、Fe、Fe、FeO等からなる。これらの酸化物被膜の比率は、材料および処理条件によって異なる。 The iron oxide film formed on the surface of the iron powder is made of Fe 3 O 4 , Fe 2 O 3 , FeO, or the like. The ratio of these oxide coatings varies depending on the material and processing conditions.

上記の酸化工程は、従来の高温での焼結工程と比べて処理温度が低いため、酸化処理による圧粉体の寸法変化が抑えられる。また、上記のように、圧粉体を構成する金属粉末を、実質的に単一種の金属粉末(鉄粉)で構成することにより、金属粉末の粒子表面に酸化物被膜を均一に形成することができるため、酸化処理による圧粉体の寸法変化がさらに抑えられる。また、本実施形態では、圧粉体の酸化処理を空気雰囲気で行うことで、圧粉体の表面に酸化物被膜がマイルドに形成されるため、圧粉体の表面性状が粗くなることを防止できる。   Since the above oxidation process has a lower processing temperature than the conventional high temperature sintering process, the dimensional change of the green compact due to the oxidation process can be suppressed. Further, as described above, the metal powder constituting the green compact is substantially composed of a single type of metal powder (iron powder), thereby forming an oxide film uniformly on the particle surface of the metal powder. Therefore, the dimensional change of the green compact due to the oxidation treatment can be further suppressed. Further, in this embodiment, by performing the oxidation treatment of the green compact in an air atmosphere, an oxide film is mildly formed on the surface of the green compact, thereby preventing the surface properties of the green compact from becoming rough. it can.

以上のように、酸化処理による圧粉体の寸法精度や表面精度の悪化が抑えられることで、金型で高精度に成形された圧粉体の寸法精度が維持される。特に、本実施形態のように、圧粉工程において圧粉体の成形と同時に動圧溝を成形した場合、その後の酸化工程による圧粉体の寸法変化が抑えられることで、圧粉体の内周面及び動圧溝の寸法精度(溝深さ等)が維持される。これにより、酸化工程後のサイジング工程を省略することができるため、軸受の製造工程が短縮され、コストが低減できると共に、軸受及びフォーミング金型の設計が容易になる。   As described above, the deterioration of the dimensional accuracy and surface accuracy of the green compact due to the oxidation treatment is suppressed, so that the dimensional accuracy of the green compact formed with high accuracy by the mold is maintained. In particular, as in this embodiment, when the dynamic pressure groove is formed at the same time as the green compact is formed in the green compacting process, the dimensional change of the green compact due to the subsequent oxidation process is suppressed, so that The dimensional accuracy (groove depth, etc.) of the peripheral surface and the dynamic pressure groove is maintained. Thereby, since the sizing process after the oxidation process can be omitted, the manufacturing process of the bearing can be shortened, the cost can be reduced, and the design of the bearing and the forming mold can be facilitated.

上記の酸化工程は、圧粉体の形状や寸法によらず適用可能である。また、酸化工程を施した圧粉体の表面は酸化物被膜で覆われるため、防錆効果が高く、場合によっては防錆処理が不要となる。また、酸化工程の処理温度が比較的低いため、この処理温度を超える温度で変性、分解するような添加剤(例えば摺動性や潤滑性を有する材料)を添加して、製品の高機能化を図ることも可能である。   The above oxidation step can be applied regardless of the shape and size of the green compact. Moreover, since the surface of the green compact which performed the oxidation process is covered with an oxide film, a rust prevention effect is high and a rust prevention process is unnecessary depending on the case. In addition, since the processing temperature of the oxidation process is relatively low, an additive that denatures and decomposes at a temperature exceeding this processing temperature (for example, a material having slidability and lubricity) is added to enhance the functionality of the product. It is also possible to plan.

(4)含油工程
含油工程では、酸化処理を施した圧粉体の内部気孔に、油が含浸される。具体的には、減圧環境下で圧粉体を油中に浸漬した後、大気圧に戻すことにより、圧粉体の表面の開口部から内部気孔に油が入り込む。以上により、多孔質含油軸受としての軸受スリーブ8が完成する。尚、含油工程を省略し、内部に油が含浸されていない圧粉体を用いて、流体動圧軸受装置1を組み立ててもよい。この場合、流体動圧軸受装置1の内部に真空含浸等により油を充填する際に、ドライ状態の圧粉体の内部気孔に油が含浸されることで、多孔質含油軸受としての軸受スリーブ8が得られる。
(4) Oil impregnation step In the oil impregnation step, oil is impregnated in the internal pores of the green compact subjected to the oxidation treatment. Specifically, after the green compact is immersed in oil under a reduced pressure environment, the pressure is returned to atmospheric pressure, so that the oil enters the internal pores from the opening on the surface of the green compact. Thus, the bearing sleeve 8 as a porous oil-impregnated bearing is completed. In addition, you may assemble the fluid dynamic pressure bearing apparatus 1 using the green compact which abbreviate | omitted an oil impregnation process and the oil is not impregnated inside. In this case, when the fluid dynamic pressure bearing device 1 is filled with oil by vacuum impregnation or the like, the oil is impregnated into the internal pores of the green compact in the dry state, whereby a bearing sleeve 8 as a porous oil-impregnated bearing is obtained. Is obtained.

本発明の実施形態は上記に限られない。例えば、上記の実施形態では、軸受スリーブ8を固定し、軸部材2を回転させる、軸回転タイプの流体動圧軸受装置1を示したが、これとは逆に、軸部材2を固定し、軸受スリーブ8を回転させる、軸固定タイプの流体動圧軸受装置に本発明を適用してもよい。また、本発明に係る流体動圧軸受装置は、HDD等のディスク駆動装置用のスピンドルモータのみならず、冷却ファン用のファンモータやレーザビームプリンタ用のポリゴンスキャナモータなどに組み込んで使用することもできる。   The embodiment of the present invention is not limited to the above. For example, in the above-described embodiment, the shaft rotation type fluid dynamic pressure bearing device 1 in which the bearing sleeve 8 is fixed and the shaft member 2 is rotated is shown, but on the contrary, the shaft member 2 is fixed, The present invention may be applied to a shaft fixed type fluid dynamic pressure bearing device that rotates the bearing sleeve 8. The fluid dynamic pressure bearing device according to the present invention can be used by being incorporated not only in a spindle motor for a disk drive device such as an HDD but also in a fan motor for a cooling fan or a polygon scanner motor for a laser beam printer. it can.

1 流体動圧軸受装置
2 軸部材
7 ハウジング
8 軸受スリーブ(多孔質含油軸受)
8’ 圧粉体
9 シール部
11 鉄粒子
12 酸化物被膜
14 成形用潤滑剤
A ラジアル軸受面
B,C スラスト軸受面
G1,G2,G3 動圧溝
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 7 Housing 8 Bearing sleeve (porous oil-impregnated bearing)
8 'Compact 9 Seal part 11 Iron particle 12 Oxide coating 14 Molding lubricant A Radial bearing surface B, C Thrust bearing surface G1, G2, G3 Dynamic pressure grooves R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space

Claims (8)

軸部材と、内周に前記軸部材が挿入された多孔質含油軸受と、前記多孔質含油軸受を内周に保持する有底筒状のハウジングと、前記ハウジングの開口部に設けられたシール部と、前記多孔質含油軸受の内周面と前記軸部材の外周面との間のラジアル軸受隙間に生じる油膜の動圧作用で前記軸部材を相対回転自在に支持するラジアル軸受部と、前記シール部の内周面と前記軸部材の外周面との間に形成され、前記ハウジングの内部に満たされた油と大気との界面を保持するシール空間とを備えた流体動圧軸受装置において、
前記多孔質含油軸受が、金属粉末の粒子の表面に形成された酸化物被膜を介して前記粒子同士が結合された圧粉体を有し、
前記多孔質含油軸受の含油率が4vol%以下であることを特徴とする流体動圧軸受装置。
A shaft member, a porous oil-impregnated bearing in which the shaft member is inserted in the inner periphery, a bottomed cylindrical housing that holds the porous oil-impregnated bearing in the inner periphery, and a seal portion provided in an opening of the housing A radial bearing portion that supports the shaft member in a relatively rotatable manner by a dynamic pressure action of an oil film generated in a radial bearing gap between an inner peripheral surface of the porous oil-impregnated bearing and an outer peripheral surface of the shaft member; and the seal A fluid dynamic bearing device comprising a seal space that is formed between an inner peripheral surface of a portion and an outer peripheral surface of the shaft member and that holds an interface between oil and the atmosphere filled in the housing;
The porous oil-impregnated bearing has a green compact in which the particles are bonded to each other through an oxide film formed on the surface of the metal powder particles,
The fluid dynamic bearing device according to claim 1, wherein an oil content of the porous oil-impregnated bearing is 4 vol% or less.
前記多孔質含油軸受の内径がφ3〜5mmであり、前記シール空間の軸方向寸法が前記多孔質含油軸受の軸方向寸法の20%以下である請求項1に記載の流体動圧軸受装置。 2. The fluid dynamic bearing device according to claim 1, wherein an inner diameter of the porous oil-impregnated bearing is 3 to 5 mm and an axial dimension of the seal space is 20% or less of an axial dimension of the porous oil-impregnated bearing. 前記圧粉体に含まれる金属粉末の99wt%以上が鉄粉である請求項1又は2に記載の流体動圧軸受装置。   3. The fluid dynamic bearing device according to claim 1, wherein 99 wt% or more of the metal powder contained in the green compact is iron powder. 4. 前記酸化物被膜が、Fe又はFe、あるいはこれらの混合体である請求項3に記載の流体動圧軸受装置。 The fluid dynamic bearing device according to claim 3 , wherein the oxide film is Fe 3 O 4, Fe 2 O 3 , or a mixture thereof. 請求項1〜4の何れか1項に記載の流体動圧軸受装置と、前記ハウジングおよび前記軸部材のうち、回転側に設けられたロータマグネットと、前記ハウジングおよび前記軸部材のうち、固定側に設けられたステータコイルとを備えたモータ。   The fluid dynamic pressure bearing device according to any one of claims 1 to 4, a rotor magnet provided on a rotation side among the housing and the shaft member, and a fixed side among the housing and the shaft member. And a stator coil provided on the motor. 金属粉末の粒子の表面に形成された酸化物被膜を介して前記粒子同士が結合された圧粉体を有し、内部気孔に油が含浸された多孔質含油軸受であって、
含油率が4vol%以下であることを特徴とする多孔質含油軸受。
A porous oil-impregnated bearing having a green compact in which the particles are bonded to each other through an oxide film formed on the surface of the metal powder particles, and the internal pores are impregnated with oil,
A porous oil-impregnated bearing having an oil content of 4 vol% or less.
金属粉末を圧縮して圧粉体を成形する工程と、前記圧粉体を加熱して、前記圧粉体を構成する金属粉末の粒子の表面に酸化物被膜を形成し、この酸化物被膜を介して前記粒子同士を結合する工程と、前記圧粉体の内部気孔に油を含浸させ、含油率が4vol%以下の多孔質含油軸受を得る工程とを有する多孔質含油軸受の製造方法。   Forming a green compact by compressing the metal powder; and heating the green compact to form an oxide film on the surface of the metal powder particles constituting the green compact. A method for producing a porous oil-impregnated bearing comprising: a step of bonding the particles to each other; and a step of impregnating oil in the pores of the green compact to obtain a porous oil-impregnated bearing having an oil content of 4 vol% or less. 前記圧粉体を空気雰囲気中で加熱することにより、前記酸化物被膜を形成する請求項7に記載の多孔質含油軸受の製造方法。
The method for producing a porous oil-impregnated bearing according to claim 7, wherein the oxide film is formed by heating the green compact in an air atmosphere.
JP2016240219A 2016-09-06 2016-12-12 Fluid dynamic pressure bearing device, oil-containing porous bearing used in the same, and manufacturing method thereof Pending JP2018096420A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016240219A JP2018096420A (en) 2016-12-12 2016-12-12 Fluid dynamic pressure bearing device, oil-containing porous bearing used in the same, and manufacturing method thereof
PCT/JP2017/031782 WO2018047765A1 (en) 2016-09-06 2017-09-04 Slide bearing
US16/330,432 US11428266B2 (en) 2016-09-06 2017-09-04 Slide bearing
CN201780051542.3A CN109642611B (en) 2016-09-06 2017-09-04 Sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240219A JP2018096420A (en) 2016-12-12 2016-12-12 Fluid dynamic pressure bearing device, oil-containing porous bearing used in the same, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2018096420A true JP2018096420A (en) 2018-06-21

Family

ID=62634688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240219A Pending JP2018096420A (en) 2016-09-06 2016-12-12 Fluid dynamic pressure bearing device, oil-containing porous bearing used in the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2018096420A (en)

Similar Documents

Publication Publication Date Title
JP5384014B2 (en) Sintered bearing
CN107110209B (en) Hydrodynamic bearing and its manufacturing method
WO2013141205A1 (en) Sintered metal bearing
JP6199106B2 (en) Sintered bearing, method for manufacturing the same, and fluid dynamic bearing device provided with the sintered bearing
KR20120022518A (en) Method for producing fluid dynamic pressure bearing
JP6961332B2 (en) Dynamic pressure bearings and their manufacturing methods
WO2017145648A1 (en) Oil-impregnated sintered bearing and method for manufacturing same
JP4573349B2 (en) Manufacturing method of hydrodynamic bearing
JP6461483B2 (en) Sintered bearing, fluid dynamic pressure bearing device including the same, and method for manufacturing sintered bearing
CN109642611B (en) Sliding bearing
JP6999259B2 (en) Plain bearing
JP2006316896A (en) Method for manufacturing oil-impregnated sintered bearing and oil-impregnated sintered bearing
JP2018096420A (en) Fluid dynamic pressure bearing device, oil-containing porous bearing used in the same, and manufacturing method thereof
EP2333366A1 (en) Sintered bearing and process for producing same
JP2008232230A (en) Sintered bearing, bearing device and method of manufacturing bearing device
JP6890405B2 (en) Dynamic pressure bearings and their manufacturing methods
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP2017166575A (en) Dynamic pressure bearing and process of manufacture thereof
WO2024048202A1 (en) Sintered oil-impregnated bearing
JP7094118B2 (en) Sintered metal dynamic pressure bearing
WO2018186221A1 (en) Porous dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
JP2018179018A (en) Porous dynamic pressure bearing
JP2021001629A (en) Bearing member and fluid dynamic pressure bearing device including the same
JP2010091002A (en) Sintered bearing and manufacturing method therefor
JP2023144590A (en) Sintered oil-containing bearing, and fluid dynamic bearing device comprising the same