JP2010091002A - Sintered bearing and manufacturing method therefor - Google Patents

Sintered bearing and manufacturing method therefor Download PDF

Info

Publication number
JP2010091002A
JP2010091002A JP2008261784A JP2008261784A JP2010091002A JP 2010091002 A JP2010091002 A JP 2010091002A JP 2008261784 A JP2008261784 A JP 2008261784A JP 2008261784 A JP2008261784 A JP 2008261784A JP 2010091002 A JP2010091002 A JP 2010091002A
Authority
JP
Japan
Prior art keywords
bearing
resin
sintered
impregnated
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008261784A
Other languages
Japanese (ja)
Inventor
Katsutoshi Muramatsu
勝利 村松
Norihide Sato
則秀 佐藤
Akihiro Omori
章弘 大森
Kazutoyo Murakami
和豊 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008261784A priority Critical patent/JP2010091002A/en
Priority to US13/059,551 priority patent/US20110142387A1/en
Priority to EP09811467A priority patent/EP2333366A4/en
Priority to PCT/JP2009/065169 priority patent/WO2010026941A1/en
Publication of JP2010091002A publication Critical patent/JP2010091002A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered bearing supplying oil from a bearing surface while reducing the quantity of internally impregnated oil. <P>SOLUTION: A sintered body is impregnated with a resin, whereby the quantity of oil impregnated in internal pores thereof can be reduced. Pores 80 not impregnated with the resin are opened in a bearing surface (inner circumferential surface 8a), whereby the oil retained in the pores 80 can be supplied to a bearing clearance, and the pores 80 can be made to function as a filter for trapping contamination such as abrasive powder within the bearing. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、軸受面を有する焼結軸受を製造するための方法に関する。   The present invention relates to a method for producing a sintered bearing having a bearing surface.

焼結軸受は、金属粉末の圧縮成形体を焼結することにより形成され、内部に無数の気孔を有することを特徴とする。例えば、特許文献1には、内部気孔に油を含浸させた焼結軸受(軸受スリーブ)と、焼結軸受の内周に挿入された軸部材とを有し、焼結軸受の内周面と軸部材の外周面との間のラジアル軸受隙間に生じる油膜で、軸部材を回転自在に支持する軸受装置が示されている。軸部材の回転時には、焼結軸受の内部に含浸された油が軸受面に開口した気孔からラジアル軸受隙間に供給され、これにより軸部材と焼結軸受との間の潤滑性が高められる。この軸受装置にはシール空間が設けられ、このシール空間で、軸受装置の内部に充填された潤滑油の温度上昇に伴う体積膨張を吸収することにより、潤滑油の外部への漏れ出しを防止している。   The sintered bearing is formed by sintering a compression-molded body of metal powder, and has countless pores inside. For example, Patent Document 1 includes a sintered bearing (bearing sleeve) in which internal pores are impregnated with oil, and a shaft member inserted into the inner periphery of the sintered bearing, There is shown a bearing device that rotatably supports a shaft member with an oil film generated in a radial bearing gap between the shaft member and the outer peripheral surface thereof. During rotation of the shaft member, oil impregnated in the sintered bearing is supplied to the radial bearing gap from the pores opened in the bearing surface, thereby improving the lubricity between the shaft member and the sintered bearing. This bearing device is provided with a seal space, which absorbs the volume expansion associated with the temperature rise of the lubricant filled in the bearing device, thereby preventing the lubricant from leaking to the outside. ing.

特開2007−250095号公報JP 2007-250095 A 特開2005−337274号公報JP 2005-337274 A

しかし、上記特許文献1のような軸受装置は、焼結軸受の内部気孔に潤滑油が含浸されることにより軸受内部に充填される油量が増大し、これに伴い温度変化に伴う油の体積変化も増大する。従って、油の体積変化を吸収するシール空間の容積を拡大する必要が生じ、軸受装置の軸方向寸法の拡大、あるいは、軸受スパンの縮小による軸受剛性の低下を招く恐れがある。   However, in the bearing device as described in Patent Document 1, the amount of oil filled in the bearing increases as the internal pores of the sintered bearing are impregnated with the lubricating oil. Change also increases. Therefore, it is necessary to expand the volume of the seal space that absorbs the volume change of the oil, and there is a risk that the axial dimension of the bearing device is increased or the bearing rigidity is reduced due to the reduction of the bearing span.

例えば、特許文献2のように、焼結軸受の内部気孔に樹脂を含浸・硬化させれば、焼結軸受の内部気孔に油が含浸されず、軸受内部に充填される油量を減じることができるため、上記の不具合を回避できる。しかし、焼結軸受全体に樹脂を含浸させると、焼結軸受の軸受面に開口した気孔から軸受隙間に油を供給することができないため、油不足による潤滑不良が生じる恐れがある。   For example, as in Patent Document 2, if the internal pores of the sintered bearing are impregnated and cured, the internal pores of the sintered bearing are not impregnated with oil, and the amount of oil filled in the bearing can be reduced. Therefore, the above-mentioned problems can be avoided. However, if the entire sintered bearing is impregnated with resin, oil cannot be supplied to the bearing gap from the pores opened in the bearing surface of the sintered bearing, and there is a risk of poor lubrication due to insufficient oil.

本発明の課題は、内部に含浸される油量を減じ、且つ、軸受面から油を供給可能な焼結軸受を提供することにある。   An object of the present invention is to provide a sintered bearing capable of reducing the amount of oil impregnated inside and supplying oil from the bearing surface.

前記課題を解決するために、本発明は、金属粉末の圧縮成形体を焼結して得られた焼結体の内部気孔に封孔材を含浸させてなる焼結軸受であって、軸受面に、封孔材が含浸されていない気孔を開口させている。   In order to solve the above-mentioned problems, the present invention provides a sintered bearing obtained by impregnating a sealing material into internal pores of a sintered body obtained by sintering a compression molded body of metal powder. In addition, the pores not impregnated with the sealing material are opened.

このように、焼結体に封孔材を含浸させることで、内部気孔に含浸される油量を減じることができる。また、軸受面に、封孔材が含浸されていない気孔を開口させることで、この気孔に潤滑剤(油)を保持することができるため、この油を摺動部に供給することで潤滑性が高められる。また、軸受面に開口した気孔が、軸受内部の摩耗粉等を捕捉するフィルター効果を発揮することにより、コンタミの発生を防止することができる。   Thus, the amount of oil impregnated in the internal pores can be reduced by impregnating the sintered body with the sealing material. In addition, since a lubricant (oil) can be retained in the pores by opening pores that are not impregnated with a sealing material on the bearing surface, lubrication can be achieved by supplying this oil to the sliding portion. Is increased. Further, the pores opened in the bearing surface exert a filter effect of capturing the wear powder and the like inside the bearing, thereby preventing the occurrence of contamination.

封孔材は、例えば、アクリル系・エポキシ系等の低粘度の樹脂や、スズ・亜鉛等の低融点金属を使用することができる。尚、低融点金属とは、焼結体の焼結温度よりも融点が低い金属材料のことを言うものとする。   As the sealing material, for example, a low-viscosity resin such as acrylic or epoxy, or a low melting point metal such as tin or zinc can be used. The low melting point metal means a metal material having a melting point lower than the sintering temperature of the sintered body.

上記のような焼結軸受は、金属粉末の圧縮成形体を焼結して焼結体を形成し、この焼結体の表面のうち、軸受面以外の領域から封孔材を含浸させることにより、封孔材が含浸されていない気孔を軸受面に開口させることで製造することができる。   The sintered bearing as described above is obtained by sintering a compression molded body of metal powder to form a sintered body, and impregnating a sealing material from a region other than the bearing surface in the surface of the sintered body. It can be manufactured by opening pores not impregnated with a sealing material on the bearing surface.

例えば焼結体が内周面に軸受面を有する筒状をなしている場合、焼結体の外周面に封孔材を滴下することにより、軸受面以外の領域(外周面)から封孔材を気孔に含浸することができる。あるいは、封孔材を入れた容器の中で焼結体を転がすことにより、外周面から気孔に封孔材を含浸することができる。また、軸受面を被覆剤で覆った状態で封孔材に浸漬することにより、軸受面以外の領域から封孔材を含浸することもできる。   For example, when the sintered body has a cylindrical shape having a bearing surface on the inner peripheral surface, the sealing material is dropped from a region (outer peripheral surface) other than the bearing surface by dropping the sealing material on the outer peripheral surface of the sintered body. Can be impregnated into the pores. Alternatively, the pores can be impregnated into the pores from the outer peripheral surface by rolling the sintered body in a container containing the sealing material. Further, the sealing material can be impregnated from a region other than the bearing surface by immersing in the sealing material with the bearing surface covered with a coating agent.

焼結体に封孔材を含浸させた後にサイジング(再圧縮)を施すと、焼結体の気孔の内部で硬化した封孔材が弾性的に反発して、焼結軸受の寸法精度(軸受面の面精度、内径寸法、外径寸法、軸方向寸法等)を十分に高められない恐れがある。従って、封孔材の含浸は、焼結体のサイジングの後にすることが好ましい。尚、上記のように、軸受面以外の領域から樹脂を含浸させることで、樹脂を含浸されていない気孔が軸受面に残されるため、軸受面を塑性変形させやすくなり、サイジングにより軸受面を精度良く加工することができる。従って、軸受面以外の部分の寸法精度に問題が無ければ、封孔材を含浸した後、焼結体にサイジングを施すことも可能である。   When the sintered body is impregnated with a sealing material and then sized (recompressed), the sealing material cured inside the pores of the sintered body is elastically repelled, and the dimensional accuracy of the sintered bearing (bearing Surface accuracy, inner diameter, outer diameter, axial dimension, etc.) may not be sufficiently increased. Therefore, it is preferable to impregnate the sealing material after sizing the sintered body. As described above, impregnation with resin from a region other than the bearing surface leaves pores not impregnated with resin on the bearing surface, which facilitates plastic deformation of the bearing surface. Can be processed well. Therefore, if there is no problem in the dimensional accuracy of the part other than the bearing surface, it is possible to size the sintered body after impregnating the sealing material.

以上のように、本発明によれば、内部に含浸される油量を減じ、且つ、軸受面から油を供給可能な焼結軸受を得ることができる。   As described above, according to the present invention, it is possible to obtain a sintered bearing capable of reducing the amount of oil impregnated inside and supplying oil from the bearing surface.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る焼結軸受(軸受スリーブ8)を有する情報機器用スピンドルモータである。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する流体動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はモータブラケット6の外周に取付けられ、ロータマグネット5は、ディスクハブ3の内周に取付けられている。ディスクハブ3は、その外周に磁気ディスクDを一枚または複数枚(図1では2枚)保持している。このように構成されたスピンドルモータにおいて、ステータコイル4に通電するとロータマグネット5が回転し、これに伴ってディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 is a spindle motor for information equipment having a sintered bearing (bearing sleeve 8) according to an embodiment of the present invention. The spindle motor is used in a disk drive device such as an HDD, and includes a fluid dynamic bearing device 1 that rotatably supports the shaft member 2 in a non-contact manner, a disk hub 3 mounted on the shaft member 2, and a radius, for example. A stator coil 4 and a rotor magnet 5 are provided to face each other with a gap in the direction. The stator coil 4 is attached to the outer periphery of the motor bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The disk hub 3 holds one or a plurality of magnetic disks D (two in FIG. 1) on its outer periphery. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 rotates, and accordingly, the disk hub 3 and the disk D held by the disk hub 3 rotate integrally with the shaft member 2.

図2に示す流体動圧軸受装置1は、軸部材2と、有底筒状のハウジング7と、焼結軸受としての軸受スリーブ8と、シール部材9とを主な構成要素として構成されている。なお、以下の説明では、説明の便宜上、軸方向でハウジング7の閉塞側を下側、開口側を上側とする。   A fluid dynamic pressure bearing device 1 shown in FIG. 2 includes a shaft member 2, a bottomed cylindrical housing 7, a bearing sleeve 8 as a sintered bearing, and a seal member 9 as main components. . In the following description, for convenience of description, the closed side of the housing 7 in the axial direction is defined as the lower side, and the opening side is defined as the upper side.

軸部材2は、例えばステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に設けられたフランジ部2bとを備えている。軸部2aは、円筒状の外周面2a1と、上方へ向けて漸次縮径したテーパ面2a2とを有する。軸部2aの外周面2a1は軸受スリーブ8の内周に配され、テーパ面2a2はシール部材9の内周に配される。軸部材2は、軸部2aおよびフランジ部2bを一体に形成する他、一部(例えばフランジ部2bの両端面2b1・2b2)を樹脂で形成することもできる。尚、フランジ部2bは必ずしも設ける必要はなく、例えば、軸部の端部に球面部を形成し、この球面部とハウジング7の底部7bとを接触摺動させることでピボット軸受を構成することもできる。   The shaft member 2 is formed of a metal material such as stainless steel, for example, and includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a. The shaft portion 2a has a cylindrical outer peripheral surface 2a1 and a tapered surface 2a2 that is gradually reduced in diameter upward. The outer peripheral surface 2 a 1 of the shaft portion 2 a is disposed on the inner periphery of the bearing sleeve 8, and the tapered surface 2 a 2 is disposed on the inner periphery of the seal member 9. In addition to integrally forming the shaft portion 2a and the flange portion 2b, the shaft member 2 can also be partially formed of resin (for example, both end faces 2b1 and 2b2 of the flange portion 2b). The flange portion 2b is not necessarily provided. For example, a pivot bearing may be configured by forming a spherical portion at the end of the shaft portion and sliding the spherical portion and the bottom portion 7b of the housing 7 in contact with each other. it can.

軸受スリーブ8は、金属粉末の圧縮成形体を焼結した焼結体で構成され、本実施形態では略円筒状に形成される。軸受スリーブ8の内周面8aはラジアル軸受面として機能し、下側端面8cはスラスト軸受面として機能する。軸受スリーブ8の軸受面(ラジアル軸受面及びスラスト軸受面、以下同様)を除く領域には、封孔材として例えば樹脂が含浸される。図3(a)及び(b)では、樹脂が含浸された領域をハッチングで示している。本実施形態では、軸受スリーブ8の表面のうち、内周面8a(ラジアル軸受面)、下側端面8c(スラスト軸受面)、および上側端面8bには樹脂が含浸されず、外周面8dに開口した気孔、およびこの気孔とつながった内部の気孔に樹脂が含浸されている。これにより、軸受面となる内周面8aおよび下側端面8cは、焼結金属の母材の金属材料(本実施形態では銅あるいは銅及び鉄)で形成されると共に、軸受面の全域に、樹脂が含浸されていない無数の気孔が開口している。詳しくは、図3(b)に概念的に示すように、軸受面8a(8c)に連通した気孔80には所定深さまで樹脂が含浸されない領域(樹脂が全く存在しない領域)が設けられ、この領域に潤滑油を保持することができる。   The bearing sleeve 8 is composed of a sintered body obtained by sintering a compression molded body of metal powder, and is formed in a substantially cylindrical shape in this embodiment. The inner peripheral surface 8a of the bearing sleeve 8 functions as a radial bearing surface, and the lower end surface 8c functions as a thrust bearing surface. For example, a resin is impregnated as a sealing material in a region excluding the bearing surfaces of the bearing sleeve 8 (radial bearing surface and thrust bearing surface, the same applies hereinafter). 3 (a) and 3 (b), the region impregnated with the resin is indicated by hatching. In the present embodiment, of the surface of the bearing sleeve 8, the inner peripheral surface 8a (radial bearing surface), the lower end surface 8c (thrust bearing surface), and the upper end surface 8b are not impregnated with resin, and are opened in the outer peripheral surface 8d. The resin is impregnated with the pores inside and the pores connected to the pores. Accordingly, the inner peripheral surface 8a and the lower end surface 8c serving as bearing surfaces are formed of a sintered metal base metal material (copper or copper and iron in the present embodiment), and over the entire bearing surface, Innumerable pores that are not impregnated with resin are opened. Specifically, as conceptually shown in FIG. 3 (b), the pore 80 communicating with the bearing surface 8a (8c) is provided with a region not impregnated with resin to a predetermined depth (region where no resin is present). Lubricating oil can be retained in the region.

軸受スリーブ8の内周面8aには、ラジアル軸受隙間の流体膜(油膜)に動圧作用を発生させるためのラジアル動圧発生部が形成され、本実施形態では図3(a)に示すように、ヘリングボーン形状の動圧溝8a1・8a2を配列した2つの動圧溝領域が軸方向に離隔して形成される。2つの動圧溝領域のうち、動圧溝8a1・8a2を除くクロスハッチングを付した部分は丘部となる。上側の動圧溝領域では、動圧溝8a1が軸方向非対称形状に形成され、具体的には、丘部の軸方向略中央部に形成された帯状部分に対して、上側の溝の軸方向寸法X1が下側の溝の軸方向寸法X2よりも大きくなっている(X1>X2)。下側の動圧溝領域では、動圧溝8a2が軸方向対称形状に形成される。以上に述べた上下動圧溝領域でのポンピング能力のアンバランスにより、軸部材2の回転中は、軸受スリーブ8の内周面8aと軸部2aの外周面との間に満たされた油が下方に押し込まれるようになる。   On the inner peripheral surface 8a of the bearing sleeve 8, a radial dynamic pressure generating portion for generating a dynamic pressure action on the fluid film (oil film) in the radial bearing gap is formed. In this embodiment, as shown in FIG. In addition, two dynamic pressure groove regions in which herringbone-shaped dynamic pressure grooves 8a1 and 8a2 are arranged are formed apart from each other in the axial direction. Of the two dynamic pressure groove regions, portions with cross hatching except for the dynamic pressure grooves 8a1 and 8a2 are hill portions. In the upper dynamic pressure groove region, the dynamic pressure groove 8a1 is formed in an axially asymmetric shape, specifically, the axial direction of the upper groove with respect to the belt-like portion formed in the substantially central portion in the axial direction of the hill. The dimension X1 is larger than the axial dimension X2 of the lower groove (X1> X2). In the lower dynamic pressure groove region, the dynamic pressure groove 8a2 is formed in an axially symmetrical shape. Due to the unbalance of the pumping ability in the vertical dynamic pressure groove region described above, the oil filled between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface of the shaft portion 2a is rotated during the rotation of the shaft member 2. It will be pushed downward.

軸受スリーブ8の下側端面8cには、スラスト軸受隙間の油膜に動圧作用を発生させるためのスラスト動圧発生部が形成される。本実施形態では、スラスト動圧発生部は、図3(c)に示すようにスパイラル形状を成している。軸受スリーブ8の外周面8dには、円周方向等間隔の複数箇所(例えば3箇所)に軸方向溝8d1が形成される。軸受スリーブ8の外周面8dとハウジング7の内周面7cとを固定した状態で、軸方向溝8d1は油の連通路として機能し、この連通路により軸受内部の圧力バランスを適正範囲内に保つことができる。   A thrust dynamic pressure generating portion for generating a dynamic pressure action on the oil film in the thrust bearing gap is formed on the lower end surface 8 c of the bearing sleeve 8. In the present embodiment, the thrust dynamic pressure generating portion has a spiral shape as shown in FIG. On the outer peripheral surface 8d of the bearing sleeve 8, axial grooves 8d1 are formed at a plurality of locations (for example, three locations) at equal intervals in the circumferential direction. In a state where the outer peripheral surface 8d of the bearing sleeve 8 and the inner peripheral surface 7c of the housing 7 are fixed, the axial groove 8d1 functions as an oil communication path, and the pressure balance inside the bearing is maintained within an appropriate range by this communication path. be able to.

ハウジング7は、軸方向一方を開口したコップ状を成し、内周に軸受スリーブ8が保持された筒状の側部7aと、側部7aの下端を閉塞する底部7bとを一体に有する。ハウジング7の材料は特に限定されず、真鍮やアルミニウム合金などの金属、樹脂、ガラス等の無機物などを用いることができる。樹脂材料としては、熱可塑性樹脂、熱硬化性樹脂のどちらでも用いることができる。また必要に応じて、ガラス繊維やカーボン繊維、カーボンブラックなどのカーボンナノ材料や黒鉛などの様々な添加材を配合した樹脂組成物を用いることもできる。ハウジング7の底部7bの上側端面7b1には、スラスト軸受隙間の油膜に動圧作用を発生させるためのスラスト動圧発生部として、例えばスパイラル形状の動圧溝が形成される(図示省略)。   The housing 7 has a cup shape opened in one axial direction, and integrally includes a cylindrical side portion 7a in which a bearing sleeve 8 is held on the inner periphery and a bottom portion 7b that closes the lower end of the side portion 7a. The material of the housing 7 is not particularly limited, and a metal such as brass or an aluminum alloy, an inorganic material such as resin, glass, or the like can be used. As the resin material, either a thermoplastic resin or a thermosetting resin can be used. Further, if necessary, a resin composition in which various additives such as carbon nanomaterials such as glass fiber, carbon fiber, and carbon black, and graphite are blended can be used. On the upper end surface 7b1 of the bottom 7b of the housing 7, for example, a spiral dynamic pressure groove is formed as a thrust dynamic pressure generating portion for generating a dynamic pressure action on the oil film in the thrust bearing gap (not shown).

シール部材9は、例えば樹脂材料や金属材料で環状に形成され、ハウジング7の側部7aの上端部内周に配設される。シール部材9の内周面9aは、軸部2aの外周に設けられたテーパ面2a2と径方向に対向し、これらの間に下方へ向けて径方向寸法を漸次縮小したシール空間Sが形成される。このシール空間Sの毛細管力により、潤滑油が軸受内部側に引き込まれ、油の漏れ出しが防止される。本実施形態では、軸部2a側にテーパ面2a2を形成しているため、シール空間Sは遠心力シールとしても機能する。   The seal member 9 is formed in an annular shape with, for example, a resin material or a metal material, and is disposed on the inner periphery of the upper end portion of the side portion 7 a of the housing 7. The inner peripheral surface 9a of the seal member 9 is opposed to the tapered surface 2a2 provided on the outer periphery of the shaft portion 2a in the radial direction, and a seal space S in which the radial dimension is gradually reduced downward is formed therebetween. The Due to the capillary force of the seal space S, the lubricating oil is drawn into the inside of the bearing, and oil leakage is prevented. In this embodiment, since the taper surface 2a2 is formed on the shaft portion 2a side, the seal space S also functions as a centrifugal force seal.

シール部材9で密封されたハウジング7の内部空間に充満した潤滑油の油面は、シール空間Sの範囲内に維持される。すなわち、シール空間Sは、潤滑油の体積変化を吸収できる容積を有する。本実施形態では、上記のように、軸受スリーブ8の内部気孔に樹脂が含浸されるため、内部気孔に入り込む油量が減り、これにより軸受内部に充満される油の総量が減る。従って、軸受スリーブ8の内部気孔に樹脂が含浸されない場合と比べて、温度に伴う油の体積変化が小さくなるため、シール空間Sの容積を縮小することができる。これにより、シール部材9の軸方向寸法を縮小することができるため、流体動圧軸受装置1の小型化が図られる。あるいは、装置の大きさを変えることなく、第1および第2ラジアル軸受部R1・R2の軸方向間隔(軸受スパン)を拡大して、軸受剛性(特にモーメント剛性)の向上を図ることができる。   The oil level of the lubricating oil filled in the internal space of the housing 7 sealed with the seal member 9 is maintained within the range of the seal space S. That is, the seal space S has a volume that can absorb the volume change of the lubricating oil. In the present embodiment, as described above, the internal pores of the bearing sleeve 8 are impregnated with the resin, so that the amount of oil entering the internal pores is reduced, thereby reducing the total amount of oil filled in the bearing. Therefore, compared with the case where the resin is not impregnated in the internal pores of the bearing sleeve 8, the volume change of the oil with the temperature is reduced, so that the volume of the seal space S can be reduced. Thereby, since the axial direction dimension of the sealing member 9 can be reduced, size reduction of the fluid dynamic pressure bearing apparatus 1 is achieved. Alternatively, the axial rigidity (bearing span) of the first and second radial bearing portions R1 and R2 can be expanded without changing the size of the device, thereby improving the bearing rigidity (especially moment rigidity).

上記構成の流体動圧軸受装置1において、軸部材2が回転すると、軸受スリーブ8の内周面8a(ラジアル軸受面)と軸部2aの外周面2a1との間にラジアル軸受隙間が形成される。このラジアル軸受隙間に生じた油膜の圧力が、軸受スリーブ8の内周面8aに形成された動圧溝8a1・8a2により高められ、この動圧作用により軸部2aを回転自在に非接触支持する第1ラジアル軸受部R1および第2ラジアル軸受部R2が構成される。   In the fluid dynamic bearing device 1 having the above configuration, when the shaft member 2 rotates, a radial bearing gap is formed between the inner peripheral surface 8a (radial bearing surface) of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a. . The oil film pressure generated in the radial bearing gap is increased by the dynamic pressure grooves 8a1 and 8a2 formed on the inner peripheral surface 8a of the bearing sleeve 8, and the dynamic pressure action allows the shaft portion 2a to be rotatably supported in a non-contact manner. A first radial bearing portion R1 and a second radial bearing portion R2 are configured.

これと同時に、フランジ部2bの上側端面2b1と軸受スリーブ8の下側端面8c(スラスト軸受面)との間のスラスト軸受隙間、およびフランジ部2bの下側端面2b2とハウジング7の底部7bの上側端面7b1との間のスラスト軸受隙間に油膜が形成され、動圧溝の動圧作用により油膜の圧力が高められる。この動圧作用により、フランジ部2bを両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1および第2スラスト軸受部T2とが構成される。   At the same time, a thrust bearing gap between the upper end surface 2b1 of the flange portion 2b and the lower end surface 8c (thrust bearing surface) of the bearing sleeve 8, and the lower end surface 2b2 of the flange portion 2b and the upper portion of the bottom portion 7b of the housing 7 An oil film is formed in the thrust bearing gap with the end surface 7b1, and the pressure of the oil film is increased by the dynamic pressure action of the dynamic pressure groove. By this dynamic pressure action, the first thrust bearing portion T1 and the second thrust bearing portion T2 are configured to support the flange portion 2b in a non-contact manner so as to be rotatable in both thrust directions.

このとき、上記のように、軸受スリーブ8の軸受面(内周面8a、下側端面8c)には樹脂が含浸されていないため、軸受面に開口した気孔を油溜りとして機能させることができる。この気孔に保持した油をラジアル軸受隙間あるいはスラスト軸受隙間に供給することで、軸部材2と軸受スリーブ8との間の潤滑性が高められる。また、軸受面に開口した気孔が、軸受スリーブ8と軸部材2との接触により生じた摩耗粉を捕捉するフィルターとして機能することにより、軸受隙間の油膜にコンタミが混入することを防止できる。特に、軸受面に開口した複数の気孔を軸受スリーブ8の内部で連通させ、この軸受内部の経路に油を通過させることで、上記フィルター効果を高めることができる。   At this time, as described above, since the bearing surface (inner peripheral surface 8a, lower end surface 8c) of the bearing sleeve 8 is not impregnated with resin, the pores opened in the bearing surface can function as an oil reservoir. . By supplying the oil retained in the pores to the radial bearing gap or the thrust bearing gap, the lubricity between the shaft member 2 and the bearing sleeve 8 is enhanced. Further, since the pores opened in the bearing surface function as a filter that captures wear powder generated by contact between the bearing sleeve 8 and the shaft member 2, contamination can be prevented from entering the oil film in the bearing gap. In particular, the filter effect can be enhanced by allowing a plurality of pores opened in the bearing surface to communicate with each other inside the bearing sleeve 8 and allowing oil to pass through a path inside the bearing.

以下、本発明の実施形態に係る焼結軸受(軸受スリーブ8)の製造方法を図面に基づいて説明する。軸受スリーブ8は、圧縮成形工程(図4参照)、焼結工程(図示省略)、サイジング工程(図5参照)、および樹脂含浸工程(図6参照)を経て製造される。   Hereinafter, the manufacturing method of the sintered bearing (bearing sleeve 8) which concerns on embodiment of this invention is demonstrated based on drawing. The bearing sleeve 8 is manufactured through a compression molding process (see FIG. 4), a sintering process (not shown), a sizing process (see FIG. 5), and a resin impregnation process (see FIG. 6).

圧縮成形工程では、まず、図4(a)に示すように、ダイ11、コアロッド12、および下パンチ13で囲まれた円筒状のキャビティに、金属粉末Mを充填する。充填される金属粉末Mは、例えば銅粉や銅合金粉、あるいはこれらに鉄粉を配合したものが使用され、この金属粉末に必要に応じてグラファイト等が適量添加・混合される。この状態から上パンチ14を下降させ、金属粉末Mを軸方向上側から圧縮し(図4(b)参照)、その後、圧縮成形体Maが金型から離型される(図4(c)参照)。   In the compression molding step, first, as shown in FIG. 4A, the metal powder M is filled into a cylindrical cavity surrounded by the die 11, the core rod 12, and the lower punch 13. As the metal powder M to be filled, for example, copper powder, copper alloy powder, or those in which iron powder is blended are used, and an appropriate amount of graphite or the like is added to and mixed with the metal powder as necessary. From this state, the upper punch 14 is lowered, the metal powder M is compressed from the upper side in the axial direction (see FIG. 4B), and then the compression molded body Ma is released from the mold (see FIG. 4C). ).

焼結工程では、圧縮成形体Maを所定の焼結温度で焼結し、これにより円筒状の焼結体15が得られる。焼結工程は、例えば真空中、あるいは不活性ガス雰囲気中で行われ、所定の焼結温度で焼結される。上記のように、金属粉末Mとして銅粉や鉄粉を用いた場合、焼結温度はおよそ700〜1100℃の範囲内に設定される。   In the sintering step, the compression molded body Ma is sintered at a predetermined sintering temperature, whereby a cylindrical sintered body 15 is obtained. The sintering process is performed, for example, in a vacuum or in an inert gas atmosphere, and is sintered at a predetermined sintering temperature. As described above, when copper powder or iron powder is used as the metal powder M, the sintering temperature is set within a range of about 700 to 1100 ° C.

サイジング工程では、樹脂を含浸した焼結体15の内周面、外周面、および軸方向寸法が適正寸法に矯正されると共に、内周面および下側端面に動圧発生部が形成される。具体的には、まず、図5(a)に示すように、焼結体15を上下パンチ18・19によって軸方向両側から支持(拘束)した状態で、図5(b)に示すように、ダイ16の内周に焼結体15を圧入する。これにより、焼結体15はダイ16と上下パンチ18・19とから圧迫力を受けて変形し、径方向にサイジングされる。これに伴い、焼結体15の内周面15aがコアロッド17の成形型17aに押し当てられ、成形型17aの凸凹形状が焼結体15の内周面15aに転写されて、この面に動圧溝が成形される。これと同時に、焼結体15の下側端面15cが下パンチ19の上側端面19aの成形型(図示省略)に押し当てられ、この面に動圧溝が成形される。その後、図5(c)に示すように、ダイ16を下降させて焼結体15をダイ16から抜き、径方向の圧迫力を解除する。このとき、ダイ16からの離型に伴い、焼結体15に径方向のスプリングバックが発生し、焼結体15とコアロッド17との間に微小隙間が形成され、両者が分離可能な状態となる。そして、焼結体15をコアロッド17から引き抜くことにより、焼結体15が離型される。尚、図5では理解の容易化のため動圧溝および成形型17aの深さを誇張して描いている。   In the sizing process, the inner peripheral surface, outer peripheral surface, and axial dimension of the sintered body 15 impregnated with resin are corrected to appropriate dimensions, and dynamic pressure generating portions are formed on the inner peripheral surface and the lower end surface. Specifically, first, as shown in FIG. 5 (a), as shown in FIG. 5 (b), the sintered body 15 is supported (restrained) from both sides in the axial direction by the upper and lower punches 18 and 19. The sintered body 15 is press-fitted into the inner periphery of the die 16. As a result, the sintered body 15 is deformed by receiving a pressing force from the die 16 and the upper and lower punches 18 and 19, and is sized in the radial direction. Along with this, the inner peripheral surface 15a of the sintered body 15 is pressed against the molding die 17a of the core rod 17, and the irregular shape of the molding die 17a is transferred to the inner peripheral surface 15a of the sintered body 15, and moves on this surface. A pressure groove is formed. At the same time, the lower end surface 15c of the sintered body 15 is pressed against a forming die (not shown) of the upper end surface 19a of the lower punch 19, and a dynamic pressure groove is formed on this surface. Then, as shown in FIG.5 (c), the die | dye 16 is lowered | hung and the sintered compact 15 is extracted from the die | dye 16, and the radial direction compression force is cancelled | released. At this time, with release from the die 16, a radial spring back is generated in the sintered body 15, a minute gap is formed between the sintered body 15 and the core rod 17, and both are separable. Become. Then, by pulling the sintered body 15 out of the core rod 17, the sintered body 15 is released. In FIG. 5, the depths of the dynamic pressure grooves and the molding die 17a are exaggerated for easy understanding.

樹脂含浸工程では、焼結体15のラジアル軸受面(内周面15a)およびスラスト軸受面(端面15c)を除く領域に樹脂が含浸される。このとき使用される樹脂は、焼結体15の内部空孔に含浸されやすいように粘度が低いものが適しており、例えばアクリル系(粘度:約20mPa・s)あるいはエポキシ系樹脂(粘度:約40〜50mPa・s)が好適に使用可能である。また、樹脂溶液中に、硬化剤等の添加剤を配合してもよい。   In the resin impregnation step, the resin is impregnated in a region excluding the radial bearing surface (inner peripheral surface 15a) and the thrust bearing surface (end surface 15c) of the sintered body 15. As the resin used at this time, a resin having a low viscosity is suitable so that the internal pores of the sintered body 15 are easily impregnated. For example, an acrylic resin (viscosity: about 20 mPa · s) or an epoxy resin (viscosity: about 40 to 50 mPa · s) can be preferably used. Moreover, you may mix | blend additives, such as a hardening | curing agent, in the resin solution.

具体的には、図6に示すように、焼結体15を軸方向が水平となるように配置し、この焼結体15の内周に軸41を挿入し、焼結体15及び軸41を一体に回転させながら、ノズル40から焼結体15の外周面15dに樹脂を滴下する。外周面15dに滴下された樹脂は、焼結体15の内径側に浸透するとともに(図6(a)の矢印参照)、軸方向両側に広がる(図6(b)の矢印参照)。このとき、焼結体15の内部にしみ込んだ樹脂が、ラジアル軸受面となる内周面15aやスラスト軸受面となる端面15cまで達しないように、樹脂の滴下量および滴下速度や、樹脂の粘度、焼結体15の回転速度、あるいは焼結体15の気孔率(密度)を調整する。また、図示のように、ノズル40を、焼結体15の軸方向中央部からスラスト軸受面となる端面15cから離隔する側にオフセットして配置すれば、樹脂がスラスト軸受面となる端面15cに達することを防止できる。その後、樹脂を硬化させて、樹脂含浸工程が完了する。   Specifically, as shown in FIG. 6, the sintered body 15 is arranged so that the axial direction is horizontal, and a shaft 41 is inserted into the inner periphery of the sintered body 15, so that the sintered body 15 and the shaft 41 are inserted. The resin is dropped from the nozzle 40 onto the outer peripheral surface 15d of the sintered body 15 while rotating the nozzle integrally. The resin dropped on the outer peripheral surface 15d penetrates into the inner diameter side of the sintered body 15 (see arrows in FIG. 6A) and spreads on both sides in the axial direction (see arrows in FIG. 6B). At this time, the dripping amount and dropping speed of the resin, the viscosity of the resin, and the resin soaked into the sintered body 15 do not reach the inner peripheral surface 15a serving as the radial bearing surface and the end surface 15c serving as the thrust bearing surface. The rotational speed of the sintered body 15 or the porosity (density) of the sintered body 15 is adjusted. Further, as shown in the figure, if the nozzle 40 is arranged offset from the axially central portion of the sintered body 15 to the side away from the end surface 15c serving as the thrust bearing surface, the resin is disposed on the end surface 15c serving as the thrust bearing surface. Can be prevented. Thereafter, the resin is cured to complete the resin impregnation step.

上記のように、樹脂含浸工程の前にサイジング工程を行うことにより、内部気孔に樹脂が含浸されていない焼結体にサイジングを施すことができるため、樹脂の反発が無く軸受スリーブ8の寸法精度を十分に高めることができる。   As described above, by performing the sizing step before the resin impregnation step, it is possible to size the sintered body in which the internal pores are not impregnated with the resin. Can be increased sufficiently.

尚、上記とは逆に樹脂含浸工程の後にサイジング工程を行った場合、軸受面以外の部分は樹脂の反発により寸法精度が低下する恐れがあるが、上記の樹脂含浸方法によれば、軸受面となる内周面15aおよび下側端面15cに樹脂が含浸されていない気孔(すなわち内部が空洞の気孔)が残されるため、サイジング工程において焼結体15の軸受面を塑性変形させやすくなり、軸受面の成形精度を確保できる。特に、上記のように、軸受面に動圧発生部(動圧溝)を成形する場合は、平滑な軸受面と比べてサイジングによる塑性変形量が大きいため、樹脂が含浸されていない気孔を軸受面に残して成形性を高めることが有効となる。従って、樹脂の種類や焼結体の気孔率等の条件、あるいは軸受軸受の用途等により、軸受面以外の寸法精度に問題がないようであれば、樹脂含浸工程の後にサイジング工程を行うことも可能である。   Contrary to the above, when the sizing process is performed after the resin impregnation process, there is a risk that the dimensional accuracy of parts other than the bearing surface may be reduced due to the repulsion of the resin. Since pores not impregnated with resin (that is, pores having a hollow inside) are left on the inner peripheral surface 15a and the lower end surface 15c, the bearing surface of the sintered body 15 is easily plastically deformed in the sizing process. Surface molding accuracy can be secured. In particular, as described above, when the dynamic pressure generating portion (dynamic pressure groove) is formed on the bearing surface, the amount of plastic deformation due to sizing is larger than that of a smooth bearing surface. It is effective to leave the surface and improve the moldability. Therefore, the sizing process may be performed after the resin impregnation process if there is no problem in the dimensional accuracy other than the bearing surface depending on the type of resin, the porosity of the sintered body, or the use of the bearing. Is possible.

本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記実施形態と同様の構成・機能を有する箇所には同一の符号を付して説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, other embodiments of the present invention will be described, but the same reference numerals are given to portions having the same configurations and functions as those of the above-described embodiments, and description thereof will be omitted.

上記の実施形態では、軸受スリーブ8の樹脂含浸工程において、ノズル40から焼結体15の外周面15dに樹脂を直接滴下しているが、これに限らず、図7に示すように、予め樹脂を含浸させたフェルト等からなる塗布部材42を用いて、焼結体15に樹脂を含浸させることもできる。具体的には、塗布部材42を焼結体15の外周面15dに接触させ、塗布部材42に対して焼結体15を回転させることで、塗布部材42に含浸された樹脂が焼結体15側に引き込まれる。焼結体15に引き込まれた樹脂は、図5に示す例と同様に、内径側及び軸方向両側に浸透し、これにより焼結体15の所定領域の気孔に樹脂が含浸される。このように、塗布部材42と焼結体15とが所定の軸方向領域で接触させることにより、この接触領域全域から焼結体15に樹脂が供給されるため、焼結体15の内部に均一に樹脂を含浸させることができる。また、図示のように、ノズル40から塗布部材42に樹脂を滴下しながら樹脂含浸を行えば、塗布部材42に常に潤沢な樹脂を含浸させておくことができるため、焼結体15へ十分な量の樹脂を供給することができる。また、スラスト軸受面まで樹脂が達しないように、塗布部材42は、図5に示すノズル40と同様に、焼結体15の軸方向中央部に対して、スラスト軸受面となる端面15cから離隔する方向にオフセットさせて配することが好ましい。   In the above embodiment, in the resin impregnation step of the bearing sleeve 8, the resin is directly dropped from the nozzle 40 to the outer peripheral surface 15 d of the sintered body 15, but not limited to this, as shown in FIG. It is also possible to impregnate the sintered body 15 with a resin by using an application member 42 made of felt or the like impregnated with a resin. Specifically, the resin impregnated in the application member 42 is made to contact the outer peripheral surface 15d of the sintered body 15 and the sintered body 15 is rotated with respect to the application member 42 so that the resin impregnated in the application member 42 is sintered. Pulled into the side. As in the example shown in FIG. 5, the resin drawn into the sintered body 15 permeates both the inner diameter side and the axial direction, thereby impregnating the resin in the pores in a predetermined region of the sintered body 15. As described above, since the application member 42 and the sintered body 15 are brought into contact with each other in a predetermined axial region, the resin is supplied from the entire contact region to the sintered body 15, so that the inside of the sintered body 15 is uniform. Can be impregnated with resin. Further, as shown in the figure, if the resin impregnation is performed while dripping the resin from the nozzle 40 to the application member 42, the application member 42 can be always impregnated with abundant resin. An amount of resin can be supplied. Further, in order to prevent the resin from reaching the thrust bearing surface, the application member 42 is separated from the end surface 15c serving as the thrust bearing surface with respect to the central portion in the axial direction of the sintered body 15 in the same manner as the nozzle 40 shown in FIG. It is preferable to arrange it in an offset direction.

また、図5に示す樹脂含浸工程では、単一のノズル40から樹脂を滴下しているが、これに限らず、例えば図8に示すように複数のノズル40から樹脂を滴下してもよい。また、樹脂の滴下と同時に、図示のように焼結体15の内周にエアブロア等で高速の気流50を通過させれば、焼結体15の内周部の圧力が低下し、外周面15dに滴下された樹脂が内径側に含浸されやすくなる。   Further, in the resin impregnation step shown in FIG. 5, the resin is dropped from the single nozzle 40. However, the present invention is not limited to this. For example, the resin may be dropped from the plurality of nozzles 40 as shown in FIG. Simultaneously with the dropping of the resin, if a high-speed air flow 50 is passed through the inner periphery of the sintered body 15 by an air blower or the like as shown in the drawing, the pressure at the inner peripheral portion of the sintered body 15 is reduced, and the outer peripheral surface 15d. It becomes easy to impregnate the resin dripped in the inner diameter side.

また、上記の実施形態では、樹脂含浸工程において、焼結体15の上方のノズル40から外周面15dに樹脂を滴下したが、これに限らず、例えば、図9に示すように、樹脂60を入れた底の浅い容器61内で、焼結体15を転がすことにより、樹脂を含浸させてもよい。あるいは、焼結体15を転がす代わりに、図10に示すように、焼結体15を樹脂60と接触させた状態で、その場で焼結体15を回転させてもよい。尚、図9及び図10に示す方法によると、スラスト軸受面となる焼結体15の端面15cに樹脂が含浸されることになるが、ラジアル軸受面となる15aには樹脂が含浸されず、ラジアル軸受面に樹脂が含浸されていない気孔が開口する。このように、軸受面の少なくとも一部に、樹脂が含浸されていない気孔を開口させれば、本発明の効果を奏することができる。   In the above embodiment, in the resin impregnation step, the resin is dropped onto the outer peripheral surface 15d from the nozzle 40 above the sintered body 15. However, the present invention is not limited to this. For example, as shown in FIG. The resin may be impregnated by rolling the sintered body 15 in the container 61 having a shallow bottom. Alternatively, instead of rolling the sintered body 15, as shown in FIG. 10, the sintered body 15 may be rotated on the spot in a state where the sintered body 15 is in contact with the resin 60. In addition, according to the method shown in FIG.9 and FIG.10, resin will be impregnated to the end surface 15c of the sintered compact 15 used as a thrust bearing surface, However, Resin is not impregnated into 15a used as a radial bearing surface, The radial bearing surface has pores that are not impregnated with resin. Thus, if the pore which is not impregnated with resin is opened in at least a part of the bearing surface, the effect of the present invention can be obtained.

あるいは、図11に示すように、焼結体15のうち、ラジアル軸受面となる内周面15aおよびスラスト軸受面となる下側端面15cを被覆材71・72で被覆し、この状態で焼結体15を樹脂溶液中に浸漬することで、樹脂を含浸させることもできる。被覆材は、物理的または化学的作用で樹脂の浸入を防止できる材料で形成することが好ましく、例えばポリエチレンなどのフィルムや、ゲル状のポリビニルアルコールなど水を含有する物質を使用することができる。これにより、焼結体15のうち、被覆材71・72で覆われていない領域(図示例では外周面15dおよび上側端面15b)に開口した気孔から樹脂が含浸される。含浸が完了したら、樹脂溶液中から焼結体15を取り出し、被覆材71・72を除去する。以上により、焼結体15のうち、ラジアル軸受面(内周面15a)およびスラスト軸受面(下側端面15c)を除く領域に樹脂を含浸させることができる。   Alternatively, as shown in FIG. 11, in the sintered body 15, the inner peripheral surface 15 a serving as the radial bearing surface and the lower end surface 15 c serving as the thrust bearing surface are covered with the covering materials 71 and 72 and sintered in this state. It is also possible to impregnate the resin by immersing the body 15 in the resin solution. The covering material is preferably formed of a material capable of preventing the resin from entering by a physical or chemical action. For example, a film containing polyethylene or a substance containing water such as gel-like polyvinyl alcohol can be used. As a result, the resin is impregnated from the pores opened in the regions of the sintered body 15 that are not covered with the covering materials 71 and 72 (the outer peripheral surface 15d and the upper end surface 15b in the illustrated example). When the impregnation is completed, the sintered body 15 is taken out from the resin solution, and the covering materials 71 and 72 are removed. As described above, the resin can be impregnated in the sintered body 15 except for the radial bearing surface (inner peripheral surface 15a) and the thrust bearing surface (lower end surface 15c).

また、上記の実施形態では、焼結軸受に含浸される封孔材として樹脂を使用しているが、これに限らず、例えばスズ、亜鉛、マグネシウム合金、あるいはハンダ等の低融点金属を使用することもできる。この場合、焼結軸受の全ての気孔に金属材料が含浸されると、サイジングによる変形が困難となり、所望の寸法精度が得られない恐れがある。従って、封孔材として金属材料を含浸させる場合は、サイジングによる寸法調整を容易化するために、サイジング工程の後に樹脂含浸を行うことや、軸受面に封孔材が含浸されていない気孔を開口させることが特に有効となる。   In the above embodiment, the resin is used as the sealing material impregnated in the sintered bearing. However, the present invention is not limited to this. For example, a low melting point metal such as tin, zinc, magnesium alloy, or solder is used. You can also. In this case, if all the pores of the sintered bearing are impregnated with a metal material, deformation due to sizing becomes difficult, and the desired dimensional accuracy may not be obtained. Therefore, when a metal material is impregnated as a sealing material, in order to facilitate dimensional adjustment by sizing, resin impregnation is performed after the sizing process, or pores that are not impregnated with the sealing material are opened on the bearing surface. Is particularly effective.

また、上記の実施形態では、軸受スリーブ8の内周面8aおよび下側端面8cが軸受面として機能する場合を示しているが、これに限らず、例えば内周面のみが軸受面となる焼結軸受に本発明の製造方法を適用することもできる。   In the above embodiment, the inner peripheral surface 8a and the lower end surface 8c of the bearing sleeve 8 function as a bearing surface. However, the present invention is not limited to this. For example, only the inner peripheral surface is a bearing surface. The manufacturing method of the present invention can also be applied to a solid bearing.

スピンドルモータの断面図である。It is sectional drawing of a spindle motor. 流体動圧軸受装置の断面図である。It is sectional drawing of a fluid dynamic pressure bearing apparatus. (a)は軸受スリーブの断面図、(b)は同断面図の部分拡大図、(c)は軸受スリーブの下面図である。(A) is sectional drawing of a bearing sleeve, (b) is the elements on larger scale of the sectional drawing, (c) is a bottom view of a bearing sleeve. (a)〜(c)は、軸受スリーブの圧縮成形工程を示す断面図である。(A)-(c) is sectional drawing which shows the compression molding process of a bearing sleeve. (a)〜(c)は、軸受スリーブのサイジング工程を示す断面図である。(A)-(c) is sectional drawing which shows the sizing process of a bearing sleeve. (a)は軸受スリーブの樹脂含浸工程を示す横断面図であり、(b)は同縦断面図である。(A) is a cross-sectional view which shows the resin impregnation process of a bearing sleeve, (b) is the longitudinal cross-sectional view. 軸受スリーブの樹脂含浸工程の他の例を示す断面図である。It is sectional drawing which shows the other example of the resin impregnation process of a bearing sleeve. 軸受スリーブの樹脂含浸工程の他の例を示す断面図である。It is sectional drawing which shows the other example of the resin impregnation process of a bearing sleeve. 軸受スリーブの樹脂含浸工程の他の例を示す断面図である。It is sectional drawing which shows the other example of the resin impregnation process of a bearing sleeve. 軸受スリーブの樹脂含浸工程の他の例を示す断面図である。It is sectional drawing which shows the other example of the resin impregnation process of a bearing sleeve. 軸受スリーブの樹脂含浸工程の他の例を示す断面図である。It is sectional drawing which shows the other example of the resin impregnation process of a bearing sleeve.

符号の説明Explanation of symbols

1 流体動圧軸受装置
2 軸部材
7 ハウジング
8 軸受スリーブ(焼結軸受)
9 シール部材
15 焼結体
40 ノズル
R1・R2 ラジアル軸受部
T1・T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 7 Housing 8 Bearing sleeve (sintered bearing)
9 Seal member 15 Sintered body 40 Nozzle R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space

Claims (9)

金属粉末の圧縮成形体を焼結して得られた焼結体の内部気孔に封孔材を含浸させてなる焼結軸受であって、
軸受面に、封孔材が含浸されていない気孔を開口させた焼結軸受。
A sintered bearing formed by impregnating a sealing material into the internal pores of a sintered body obtained by sintering a compression molded body of metal powder,
A sintered bearing having pores that are not impregnated with a sealing material on the bearing surface.
封孔材が樹脂である請求項1記載の焼結軸受。   The sintered bearing according to claim 1, wherein the sealing material is a resin. 封孔材が低融点金属である請求項1記載の焼結軸受。   The sintered bearing according to claim 1, wherein the sealing material is a low melting point metal. 金属粉末の圧縮成形体を焼結して焼結体を形成し、この焼結体の表面のうち、軸受面以外の領域から封孔材を含浸させることにより、封孔材が含浸されていない気孔を軸受面に開口させる焼結軸受の製造方法。   A sintered compact is formed by sintering a compression molded body of metal powder, and the sealing material is not impregnated by impregnating the sealing material from a region other than the bearing surface in the surface of the sintered body. A method of manufacturing a sintered bearing in which pores are opened in the bearing surface. 焼結体が内周面に軸受面を有する筒状をなし、焼結体の外周面に封孔材を滴下することにより封孔材を含浸させる請求項4記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to claim 4, wherein the sintered body has a cylindrical shape having a bearing surface on the inner peripheral surface, and the sealing material is impregnated by dropping the sealing material on the outer peripheral surface of the sintered body. 焼結体が内周面に軸受面を有する筒状をなし、封孔材を入れた容器の中で焼結体を転がすことにより封孔材を含浸させる請求項4記載の焼結軸受の製造方法。   The sintered bearing according to claim 4, wherein the sintered body has a cylindrical shape having a bearing surface on the inner peripheral surface, and the sealing material is impregnated by rolling the sintered body in a container containing the sealing material. Method. 軸受面を被覆剤で覆った状態で封孔材に浸漬することにより封孔材を含浸させる請求項4記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to claim 4, wherein the sealing material is impregnated by dipping in the sealing material in a state where the bearing surface is covered with a coating agent. 焼結体にサイジングを施した後、封孔材を含浸させる請求項4記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to claim 4, wherein the sintered body is impregnated with a sealing material after sizing. 焼結体に封孔材を含浸させた後、サイジングを施す請求項4記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to claim 4, wherein sizing is performed after impregnating the sintered body with a sealing material.
JP2008261784A 2008-09-05 2008-10-08 Sintered bearing and manufacturing method therefor Withdrawn JP2010091002A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008261784A JP2010091002A (en) 2008-10-08 2008-10-08 Sintered bearing and manufacturing method therefor
US13/059,551 US20110142387A1 (en) 2008-09-05 2009-08-31 Sintered bearing and manufacturing method for the same
EP09811467A EP2333366A4 (en) 2008-09-05 2009-08-31 Sintered bearing and process for producing same
PCT/JP2009/065169 WO2010026941A1 (en) 2008-09-05 2009-08-31 Sintered bearing and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261784A JP2010091002A (en) 2008-10-08 2008-10-08 Sintered bearing and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2010091002A true JP2010091002A (en) 2010-04-22

Family

ID=42253929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261784A Withdrawn JP2010091002A (en) 2008-09-05 2008-10-08 Sintered bearing and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2010091002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200337A (en) * 2014-04-04 2015-11-12 Ntn株式会社 Sintered bearing, fluid dynamic pressure bearing device including the same, and method of manufacturing sintered bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200337A (en) * 2014-04-04 2015-11-12 Ntn株式会社 Sintered bearing, fluid dynamic pressure bearing device including the same, and method of manufacturing sintered bearing
US10167899B2 (en) 2014-04-04 2019-01-01 Ntn Corporation Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method

Similar Documents

Publication Publication Date Title
JP5384014B2 (en) Sintered bearing
JP6100046B2 (en) Fluid dynamic bearing device and motor including the same
WO2016084546A1 (en) Dynamic pressure bearing and method for manufacturing same
JP6199106B2 (en) Sintered bearing, method for manufacturing the same, and fluid dynamic bearing device provided with the sintered bearing
JP2008002650A (en) Dynamic-pressure bearing unit, its manufacturing method, and spindle motor
US7251891B2 (en) Production method for sintered bearing member, fluid dynamic pressure bearing device, and spindle motor
WO2010026941A1 (en) Sintered bearing and process for producing same
JP2007113728A (en) Fluid dynamic bearing device and its manufacturing method
WO2017145648A1 (en) Oil-impregnated sintered bearing and method for manufacturing same
JP2010091002A (en) Sintered bearing and manufacturing method therefor
JP2010091001A (en) Sintered bearing and manufacturing method therefor
JP5323620B2 (en) Sintered metal bearing for fluid dynamic bearing device, and fluid dynamic bearing device provided with the bearing
JP6999259B2 (en) Plain bearing
JP2008248975A (en) Sintered metal part
US11428266B2 (en) Slide bearing
JP2009092197A (en) Dynamic pressure bearing device and its manufacturing method
JP2010060098A (en) Sintered bearing and process for producing the same
JP7184583B2 (en) Intermediate manufacturer of hydrodynamic bearing devices, motors and bearings
JP2010060099A (en) Slide bearing and manufacturing method for the same
JP7094118B2 (en) Sintered metal dynamic pressure bearing
WO2018186221A1 (en) Porous dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
JP6890405B2 (en) Dynamic pressure bearings and their manufacturing methods
JP2023144590A (en) Sintered oil-containing bearing, and fluid dynamic bearing device comprising the same
JP2021001629A (en) Bearing member and fluid dynamic pressure bearing device including the same
JP2018179018A (en) Porous dynamic pressure bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121227