JP2008002650A - Dynamic-pressure bearing unit, its manufacturing method, and spindle motor - Google Patents

Dynamic-pressure bearing unit, its manufacturing method, and spindle motor Download PDF

Info

Publication number
JP2008002650A
JP2008002650A JP2006175033A JP2006175033A JP2008002650A JP 2008002650 A JP2008002650 A JP 2008002650A JP 2006175033 A JP2006175033 A JP 2006175033A JP 2006175033 A JP2006175033 A JP 2006175033A JP 2008002650 A JP2008002650 A JP 2008002650A
Authority
JP
Japan
Prior art keywords
bearing
housing
gap
bearing unit
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006175033A
Other languages
Japanese (ja)
Inventor
Katsutoshi Arai
勝敏 新居
Takashi Matsumura
隆志 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2006175033A priority Critical patent/JP2008002650A/en
Publication of JP2008002650A publication Critical patent/JP2008002650A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/30Material joints
    • F16C2226/40Material joints with adhesive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve durability and impact resistance of a spindle motor by further stably and surely obtaining prescribed fixing strength while maintaining bearing accuracy by a simple configuration and manufacturing method. <P>SOLUTION: A dynamic-pressure bearing unit 1 is provided with a housing 2, a bearing 3, which is fixed in the housing and has each dynamic-pressure generation groove on the shaft-hole inner periphery 30 and the bearing end face 32, a rotary shaft 4 inserted into a shaft hole of the bearing 3, and lubricating oil sealed in the housing. The dynamic-pressure bearing unit supports the rotary shaft 4 in the radial direction and in the thrust direction in a non-contact state by a dynamic-pressure action occurring in the dynamic-pressure generation grooves during rotation of the rotary shaft 4. The bearing 3 is joined to the inner periphery of the housing 2 by press-fitting imparted with a tightening margin. The dynamic-pressure bearing unit has a gap 25 located between the inner periphery of the housing 2 and the outer periphery of the bearing 3 and formed in the circumferential direction on the side of either of upper/lower end parts. The housing and the bearing are bonded with each other by an adhesive P arranged in the gap. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、磁気ディスク装置や光ディスク装置のディスクドライブモータに必要とされる高回転精度や高速安定性などに優れた動圧軸受ユニット及びその製造方法並びにスピンドルモータに関するものである。   The present invention relates to a hydrodynamic bearing unit excellent in high rotational accuracy and high-speed stability required for a disk drive motor of a magnetic disk device or an optical disk device, a manufacturing method thereof, and a spindle motor, for example.

磁気ディスク装置のハートディスクドライブに使用されるスピンドルモータは、特に記録の高密度化や情報の高速処理の面から高い回転精度が要求される。このため、最近のスピンドルモータは、特許文献1や2に開示されているように、軸体(回転軸)の回転を利用して摺動面に油膜圧力を発生させ、軸体をスラスト方向及びラジアル方向に非接触状態で支持可能な動圧式の軸受ユニットが使用されるようになった。ところで、この動圧軸受ユニットでは、例えば、ノートパソコン等の情報機器に適用される場合、軸受精度が過大な衝撃を受けても維持されるようにする上で、耐久性や耐衝撃性としてハウジングに対する軸受の固定強度を向上しなければならない。このような背景から、従来は、ハウジングに対する軸受の固定強度、すなわち抜去力を十分確保するためハウジング内周に対して軸受を圧入や焼き嵌めで固定していたが、ハウジングと軸受との締め代を大きくすると、軸孔内径が必要以上に収縮されたり変形し高回転精度や高速安定性が損なわれる。そこで、特許文献1や2では接着剤を用いて接合強度を増大する上での工夫を提案している。   A spindle motor used for a heart disk drive of a magnetic disk device is required to have high rotational accuracy particularly in terms of high recording density and high-speed information processing. For this reason, as disclosed in Patent Documents 1 and 2, recent spindle motors generate oil film pressure on the sliding surface using the rotation of the shaft body (rotating shaft), and the shaft body is moved in the thrust direction and Dynamic pressure type bearing units that can be supported in a non-contact state in the radial direction have come to be used. By the way, in this dynamic pressure bearing unit, for example, when applied to an information device such as a laptop computer, the housing has durability and impact resistance in order to maintain the bearing accuracy even if it receives an excessive impact. The fixing strength of the bearing against the must be improved. Against this background, in the past, the bearing was fixed to the inner periphery of the housing by press-fitting or shrink-fitting in order to ensure sufficient fixing strength of the bearing, that is, the removal force. If is increased, the inner diameter of the shaft hole is shrunk or deformed more than necessary, and high rotational accuracy and high-speed stability are impaired. Thus, Patent Documents 1 and 2 propose a device for increasing the bonding strength using an adhesive.

特開2006−17299号公報JP 2006-17299 A 特開2005−163903号公報JP 2005-163903 A

すなわち、特許文献1の動圧軸受ユニットでは、軸受の外周に接着剤用凹溝を全周に亘って設けるとともに、前記凹溝に対向する注入用孔をハウジングの周囲に貫通形成している。そして、この構造では、接着前工程で、軸受をハウジングに対して位置決めを確実に行うためにすきま嵌めないしは軽圧力(締め代2〜3μm)により嵌合した後、嫌気性の接着剤を前記孔から凹溝に注入し、毛細管現象を利用して接着剤を嵌合面に浸透させる方法をとっている。この構造では、軸受とハウジングの位置決めは問題ないが、毛細管現象を利用して接着剤を嵌合面に浸透させる場合、嵌合面の全域に対して接着剤の均一な広がりが期待できず、接着強度のばらつきが避けられない。また、軸受とハウジングをすきま嵌めで嵌合する構成だと、封入される潤滑油が軸受とハウジングの嵌合面に浸透するため軸受面の潤滑油不足を招く虞もある。   That is, in the hydrodynamic bearing unit of Patent Document 1, an adhesive groove is provided over the entire circumference of the bearing, and an injection hole facing the groove is formed around the housing. In this structure, in the pre-bonding process, after the bearing is fitted with a clearance fit or light pressure (tightening margin of 2 to 3 μm) in order to ensure the positioning of the bearing with respect to the housing, the anaerobic adhesive is applied to the hole. Then, it is poured into the concave groove and the capillary is used to allow the adhesive to penetrate into the fitting surface. In this structure, there is no problem in positioning the bearing and the housing, but when the adhesive is infiltrated into the mating surface using capillary action, the adhesive cannot be expected to spread uniformly over the entire mating surface. Variation in adhesive strength is inevitable. Further, when the bearing and the housing are fitted with a clearance fit, the lubricating oil to be sealed permeates the fitting surface of the bearing and the housing, which may cause a shortage of lubricating oil on the bearing surface.

これに対し、特許文献2の動圧軸受ユニットでは、軸受とハウジングを軽圧入で嵌合する方法をとり、ハウジング内周面の周方向ないしは軸方向に複数の接着剤用溜まり部を設けておき、予めハウジング内周に接着剤を塗布してから、軸受を該ハウジング内に圧入している。軸受の圧入時に掻き出された余剰の接着剤は、接着剤溜まり部に捕捉されると共に、軸受端面には別のヌスミ部を設けておきこの部分に捕捉させる手段も採用している。この構造では、接着剤をハウジング内周に塗布するため作業性が悪く、軸受に焼結軸受を使用すると、接着剤が軸受に吸収されるので接着力の低下や、封入される潤滑油が軸受の気孔から接着剤溜まり部に浸透し、特許文献1と同様に軸受面の潤滑油不足を招く虞がある。   On the other hand, in the dynamic pressure bearing unit of Patent Document 2, a method of fitting the bearing and the housing by light press fitting is used, and a plurality of adhesive reservoirs are provided in the circumferential direction or axial direction of the inner peripheral surface of the housing. The adhesive is applied in advance to the inner periphery of the housing, and then the bearing is press-fitted into the housing. The surplus adhesive scraped out during the press-fitting of the bearing is captured by the adhesive reservoir, and another means is provided on the bearing end surface to capture the part at this portion. In this structure, since the adhesive is applied to the inner periphery of the housing, the workability is poor, and when a sintered bearing is used for the bearing, the adhesive is absorbed by the bearing, so the adhesive force is reduced and the enclosed lubricating oil In the same manner as in Patent Document 1, there is a possibility that the bearing surface lacks lubricating oil.

そこで、本発明は、簡明な構成及び製法によって軸受精度を維持しながら所定の固定強度をより安定かつ確実に得られ、それによりスピンドルモータの耐久性や耐衝撃性などを向上することを目的としている。   Therefore, the present invention aims to obtain a predetermined fixing strength more stably and reliably while maintaining the bearing accuracy by a simple structure and manufacturing method, thereby improving the durability and impact resistance of the spindle motor. Yes.

上記目的を達成するため請求項1の発明は、ハウジングと、軸孔内周及び軸受端面に動圧発生用溝を有し前記ハウジング内に固定された軸受と、前記軸受の軸孔に挿入された回転軸と、前記ハウジング内に封入された潤滑油とを備え、前記回転軸の回転時に前記動圧発生用溝で生じる動圧作用によって該回転軸をラジアル方向及びスラスト方向に非接触状態で支持可能な動圧軸受ユニットにおいて、前記ハウジング内周に対して前記軸受を締め代を与えた圧入により結合するとともに、前記ハウジングの内周と前記軸受の外周との間にあって上下何れかの端部側周方向に形成された隙間を有し、該隙間に配された接着剤により該ハウジングと該軸受とを接着していることを特徴としている。   In order to achieve the above object, the invention of claim 1 is characterized in that a housing, a bearing having a dynamic pressure generating groove on an inner periphery of the shaft hole and a bearing end face, and a shaft fixed to the housing are inserted into the shaft hole of the bearing. A rotating shaft and lubricating oil sealed in the housing, and the rotating shaft is brought into a non-contact state in a radial direction and a thrust direction by a dynamic pressure action generated in the dynamic pressure generating groove when the rotating shaft rotates. In the supportable hydrodynamic bearing unit, the bearing is coupled to the inner circumference of the housing by press-fitting with a tightening margin, and is located between the inner circumference of the housing and the outer circumference of the bearing, and either the upper or lower end. It has a gap formed in the side circumferential direction, and the housing and the bearing are bonded by an adhesive disposed in the gap.

以上の動圧軸受ユニットにおいては次のように具体化されることがより好ましい。
(ア)前記軸受は気孔を樹脂で封孔した焼結軸受であり、前記焼結軸受の締め代が1μmから10μmに形成されるとともに、前記隙間が0を超え、かつ20μmに形成されていること(請求項2)。
(イ)前記隙間が、端部側に拡径するテーパー形状となっていること(請求項3)。
(ウ)前記隙間の端部外側(接着剤を供給する側)に一段大径となる接着剤用供給部を有していること(請求項4)。
(エ)前記軸受の外周面には軸方向に延びる複数の溝が設けられているとともに、前記ハウジングの内周面には前記軸受側の溝に連通し、かつこの溝よりも深い周方向の溝が設けられていること(請求項5)。
The above hydrodynamic bearing unit is more preferably embodied as follows.
(A) The bearing is a sintered bearing in which pores are sealed with a resin, and the tightening allowance of the sintered bearing is formed from 1 μm to 10 μm, and the gap exceeds 0 and is formed to 20 μm. (Claim 2).
(A) The gap has a tapered shape that expands toward the end side (Claim 3).
(C) An adhesive supply section having a one-step larger diameter is provided on the outer side of the end of the gap (side where the adhesive is supplied) (Claim 4).
(D) A plurality of grooves extending in the axial direction are provided on the outer peripheral surface of the bearing, and the inner peripheral surface of the housing communicates with the groove on the bearing side and has a circumferential direction deeper than the groove. A groove is provided (Claim 5).

また、請求項6の発明は、以上の動圧軸受ユニットを製造方法から特定したものであり、前記軸受を前記ハウジング内に圧入により結合した後、前記接着剤を対応する端部側から前記隙間に供給して毛細管現象で該隙間のほぼ全域に行き渡らせることを特徴としている。これに対し、請求項7の発明は、用途から特定したもので、以上の動圧軸受ユニットを備えているスピンドルモータである。   According to a sixth aspect of the present invention, the above hydrodynamic bearing unit is specified from a manufacturing method, and after the bearing is coupled into the housing by press-fitting, the adhesive is introduced from the corresponding end side into the gap. And is spread over almost the entire region of the gap by capillary action. On the other hand, the invention of claim 7 is specified from the application, and is a spindle motor provided with the above hydrodynamic bearing unit.

請求項1の動圧軸受ユニットでは、締め代を与えて圧入するため軸受の位置決めを確実に行え、その上で、締め代に応じた圧入強度及び隙間に応じた接着強度によりハウジングと軸受との固定強度のばらつきを抑え、かつ軸受精度を維持して固定強度を増大可能にする。そして、この構造では、請求項6の製造方法、つまり軸受をハウジング内に圧入により結合した後、接着剤を隙間に毛細管現象により隙間全域に行き渡らせる。
換言すると、請求項1と6の発明は、締め代を与えて圧入だけで結合する従来技術に比べ要求される抜け強度を圧入強度と接着強度とにより精度を維持して付与でき、また、軸受を接着力で専ら固定する従来構造(特許文献1など)に比べ端部側の局部接着であるため接着強度のばらつきを抑えることができ、接着剤を予め塗布した状態から軸受をハウジングに圧入する従来構造(特許文献2など)に比べ圧入力と接着力とが明確に区分けされているため目的の固定強度をばらつきを抑えて確実に付与できる。
In the hydrodynamic bearing unit according to the first aspect of the present invention, since the press-fitting is performed with a tightening allowance, the positioning of the bearing can be surely performed. In addition, the press-fitting strength according to the tightening allowance and the adhesive strength according to the gap can be used to connect the housing and the bearing. The variation in the fixing strength is suppressed, and the fixing strength can be increased while maintaining the bearing accuracy. In this structure, the manufacturing method of claim 6, that is, after the bearing is coupled into the housing by press fitting, the adhesive is spread over the entire gap by capillarity.
In other words, the inventions of claims 1 and 6 can provide the required removal strength as compared with the prior art in which a tightening margin is given and only coupled by press-fitting while maintaining accuracy with the press-fitting strength and adhesive strength. Compared with the conventional structure (such as Patent Document 1) in which the adhesive is fixed exclusively by the adhesive force, it is possible to suppress variations in adhesive strength because it is a local adhesive on the end side, and the bearing is press-fitted into the housing from a state where the adhesive has been applied in advance. Compared to conventional structures (such as Patent Document 2), the pressure input and the adhesive force are clearly separated, so that the desired fixing strength can be reliably imparted while suppressing variations.

請求項2〜6の発明では、まず、焼結軸受の気孔を樹脂で封孔しているため接着強度の低下を防止できる。請求項2の発明では、例えば、締め代の上限値(10μm)は軸受精度が収縮変形で低下する虞を解消し、隙間の上限値(20μm)は接着剤が厚くなって接着力が低下する虞を防ぐ。これに対し、請求項3の発明では、隙間をテーパー状として接着剤を毛細管現象により隙間全域に効率よく行き渡るようにする。これに対し、請求項4の発明では、隙間の外側に接着剤の供給部を設けて、接着剤を滴下し易くするとともに、該隙間に接着剤を確実に供給する。
これに対し、請求項5の発明において、軸受外周面の軸方向の溝は、ハウジングに軸受を固定した後、真空含浸法により潤滑剤を封入する際、溝を通じて空気を抜いて潤滑剤の入りを良好にする。ハウジング内周面の周方向の溝は、軸方向の溝同士を連通するとともに軸方向の溝が接着剤で塞がれないようにする。
In the inventions of claims 2 to 6, since the pores of the sintered bearing are sealed with resin, it is possible to prevent a decrease in adhesive strength. In the invention of claim 2, for example, the upper limit value (10 μm) of the tightening allowance eliminates the possibility that the bearing accuracy is reduced due to shrinkage deformation, and the upper limit value (20 μm) of the gap is that the adhesive becomes thick and the adhesive force is reduced. Prevent fear. On the other hand, in the invention of claim 3, the gap is tapered so that the adhesive is efficiently spread over the entire gap by capillary action. On the other hand, in the invention of claim 4, an adhesive supply section is provided outside the gap so that the adhesive can be easily dropped, and the adhesive is reliably supplied to the gap.
On the other hand, in the invention of claim 5, the axial groove on the outer peripheral surface of the bearing is inserted into the lubricant by removing air through the groove when the lubricant is sealed by vacuum impregnation after the bearing is fixed to the housing. Make it better. The circumferential grooves on the inner peripheral surface of the housing allow the axial grooves to communicate with each other and prevent the axial grooves from being blocked by the adhesive.

請求項7の発明では、以上の動圧軸受ユニット、つまり軸受内周及び軸受端面に動圧発生用溝を有し、該溝の動圧作用によって回転軸を精度よく支持するとともに、ハウジングと軸受が強固に固定されて耐衝撃性に優れていることから、例えばスピンドルモータを組み込んでいるディスク装置等を落下させても、回転精度が損なわれずそれにより品質及び信頼性を向上できる。   According to the seventh aspect of the present invention, the dynamic pressure bearing unit described above, that is, the bearing inner peripheral surface and the bearing end surface have the dynamic pressure generating grooves, and the dynamic pressure action of the grooves supports the rotating shaft with high accuracy. Is firmly fixed and excellent in impact resistance. For example, even if a disk device or the like incorporating a spindle motor is dropped, the rotational accuracy is not impaired, thereby improving the quality and reliability.

次に、本発明形態を図面を参照しながら説明する。図1は形態例の動圧軸受ユニット(以下、軸受ユニットと略す)を示し、図2は軸受ユニットの要部断面を示し、図3は軸受け単品を示し、図4は軸受ユニットの変形例を示し、図5はスピンドルモータを示している。なお、図1(a)及び図4(a)、図5では接着剤を省略し、また、要部の隙間や溝などは実際よりも大きく誇張して図示している。以下の説明では、軸受構造、組立、変形例、スピンドルモータの順に言及する。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a hydrodynamic bearing unit (hereinafter abbreviated as a bearing unit) of an embodiment, FIG. 2 shows a cross section of the main part of the bearing unit, FIG. 3 shows a single bearing, and FIG. 4 shows a modification of the bearing unit. FIG. 5 shows a spindle motor. Note that the adhesive is omitted in FIGS. 1A, 4A, and 5, and the gaps and grooves of the main parts are shown exaggerated larger than actual. In the following description, the bearing structure, assembly, modification, and spindle motor will be referred to in this order.

(軸受構造)図1の軸受ユニット1は、有底筒形のハウジング2と、動圧発生用溝を形成している軸孔内周30及び上側の軸受端面32を有してハウジング2の内周20に圧入及び接着で固定される軸受3と、軸受3の軸孔に挿入された回転軸4と、ハウジング2内に封入される不図示の潤滑油などを備えている。なお、この軸受ユニット1は、スラスト軸受部S(SFDB)が軸受3の上側軸受端面32と回転軸4に設けられたフランジ41との間に設定され、ラジアル軸受部R(RFDB)が軸受3の軸孔内周30と回転軸4の外周との間に設定されている。但し、構造的には、スラスト軸受部S(SFDB)が特許文献1のように軸受の下側軸受面と回転軸の対応部との間に設定されるタイプでもよい。 (Bearing structure) The bearing unit 1 in FIG. 1 has a bottomed cylindrical housing 2, a shaft hole inner periphery 30 forming a dynamic pressure generating groove, and an upper bearing end surface 32. The bearing 3 is fixed to the circumference 20 by press-fitting and bonding, the rotary shaft 4 inserted into the shaft hole of the bearing 3, and a lubricating oil (not shown) sealed in the housing 2. In this bearing unit 1, the thrust bearing portion S (SFDB) is set between the upper bearing end surface 32 of the bearing 3 and the flange 41 provided on the rotating shaft 4, and the radial bearing portion R (RFDB) is the bearing 3. Is set between the inner periphery 30 of the shaft hole and the outer periphery of the rotating shaft 4. However, structurally, a type in which the thrust bearing portion S (SFDB) is set between the lower bearing surface of the bearing and the corresponding portion of the rotating shaft as in Patent Document 1 may be used.

ここで、ハウジング2は、内周20に軸受3の全体がほぼ入る筒形で、内周20の下側が底板21で閉じられている。底板21は、ハウジング2に対し溶接などで機密性を保って固定されている。ハウジング内周20と軸受3の外周31との間には、上端部側周方向に隙間25が設けられている。なお、回転軸4は、軸受3の軸孔に挿入される軸部40と、軸部40の上側に設けられて軸受3の上側の軸受端面32に対向するフランジ41と、フランジ41の中央部から突出している軸部42と、軸部40の外周に設けられている周方向の溝43とを備えている。   Here, the housing 2 has a cylindrical shape in which the entire bearing 3 enters the inner periphery 20, and the lower side of the inner periphery 20 is closed by a bottom plate 21. The bottom plate 21 is fixed to the housing 2 by welding or the like while maintaining confidentiality. A gap 25 is provided between the housing inner periphery 20 and the outer periphery 31 of the bearing 3 in the upper end side circumferential direction. The rotating shaft 4 includes a shaft portion 40 inserted into the shaft hole of the bearing 3, a flange 41 provided above the shaft portion 40 and facing the bearing end surface 32 on the upper side of the bearing 3, and a central portion of the flange 41. And a circumferential groove 43 provided on the outer periphery of the shaft portion 40.

前記隙間25は、接着剤を配置する空間であり、外側(上側)に一段大きい接着剤用供給部25aを有している。この隙間25は、使用する接着剤Pの粘性等によって0を超えて20μm以下の範囲に形成される。この値は、接着剤Pが供給部25aに滴下されたとき、毛細管現象により隙間25の全域に行き渡るようにする上で好ましい大きさである。また、隙間25及び供給部25aは、ハウジング内周20の対応部に設けられたテーパー22、つまり奥側の滑らかなテーパー22a、及び端側の鋭角なテーパー22bにより区画されている。但し、形状は、この例で示したV形以外でもよく、また図1(c)に例示したように軸受外周30にもテーパー22a等に対応するテーパー30aなどを形成したり、同図のごとく軸受外周30とハウジング内周20との両方に形成するようにしてもよい。このような隙間を形成すると、テーパーの先端部で隙間がより狭くなって毛細管力によって接着剤が吸引され接着力が向上する。   The gap 25 is a space for placing an adhesive, and has an adhesive supply portion 25a that is one step larger on the outside (upper side). The gap 25 is formed in a range of more than 0 and 20 μm or less depending on the viscosity of the adhesive P used. This value is a preferable size when the adhesive P is dripped onto the supply part 25a so as to spread over the entire area of the gap 25 by capillary action. Further, the gap 25 and the supply portion 25a are partitioned by a taper 22 provided at a corresponding portion of the housing inner periphery 20, that is, a smooth taper 22a on the back side and an acute taper 22b on the end side. However, the shape may be other than the V shape shown in this example, and a taper 30a corresponding to the taper 22a or the like may be formed on the outer periphery 30 of the bearing as illustrated in FIG. You may make it form in both the bearing outer periphery 30 and the housing inner periphery 20. FIG. When such a gap is formed, the gap becomes narrower at the tip of the taper, and the adhesive is sucked by the capillary force to improve the adhesive force.

軸受3は、量産性やコスト的に好ましい焼結軸受であり、焼結体の気孔に樹脂を含浸している。また、軸受30は、ハウジング内周20に対して締め代を与えた圧入力と、隙間25に配置される接着剤Pを介した接着力とにより固定される。なお、圧入で固定される軸部分は、接着される軸部分より大きく設定されることが好ましい。圧入力を主とし、接着力を副とすることで固定強度のばらつきを抑えるためである。また、締め代は1μm〜10μmに設定され、より好ましくは3μm〜10μmに設定することである。これは、内径が直径3mm程度の軸受の場合、実験結果から、締め代が2μmぐらいだとハウジング2と軸受3との位置決めが維持されない場合があり、締め代が10μmを超えると軸受内径が収縮変形するためである。   The bearing 3 is a sintered bearing preferable in terms of mass productivity and cost, and the pores of the sintered body are impregnated with resin. Further, the bearing 30 is fixed by a pressure input that gives a tightening margin to the inner periphery 20 of the housing and an adhesive force through an adhesive P disposed in the gap 25. In addition, it is preferable that the shaft portion fixed by press-fitting is set larger than the shaft portion to be bonded. This is to suppress variations in fixing strength by mainly using the pressure input and using the adhesive force as a sub. The tightening margin is set to 1 μm to 10 μm, more preferably 3 μm to 10 μm. This is because, in the case of a bearing with an inner diameter of about 3 mm, the experimental results show that the positioning of the housing 2 and the bearing 3 may not be maintained if the tightening margin is about 2 μm, and if the tightening margin exceeds 10 μm, the bearing inner diameter shrinks This is for deformation.

なお、ディスクドライブ用スピンドルモータの場合、ディスク径2.5インチのクラスでは1000G〜1500Gの耐衝撃性が要求されており、これを軸受の抜け強度に換算すると概略400N程度の荷重になる。前記締め代(ハウジングと軸受の圧入代)が11μm以上にすると、この程度の抜け強度は得られるが、これ以下の締め代では接着剤を併用しないと抜け強度が充足されなくなる。本発明は、そのような知見を基にし、特に接着力のばらつきを如何に抑えるかの点から工夫されたものである。   In the case of a disk drive spindle motor, the impact resistance of 1000 G to 1500 G is required in the class of 2.5 inch disk diameter, and when this is converted into the bearing pull-out strength, the load is approximately 400 N. If the tightening allowance (housing and bearing press-fit allowance) is 11 μm or more, this degree of pull-out strength can be obtained. The present invention has been devised in particular from the viewpoint of how to suppress variations in adhesive strength based on such knowledge.

軸孔内周30には、図3(b)に示されるように、動圧発生用溝として断面が略半円弧状で、軸方向に連続して真っ直ぐ延び、かつ軸孔内周を周方向に等分する複数の分離溝35が設けられている。各分離溝35の深さは0.05〜0.15mmに設定されることが好ましい。隣接する分離溝35同士の間には、水平断面において軸芯を支点とした円に対し偏芯し、かつ逆時計回り方向に向かうにしたがって内周側に縮径していく形状の円弧面36が形成されている。各円弧面36は、回転軸4の対応軸部40の外周との間の微少すきまが回転軸の回転方向に向かうにしたがって次第に狭小となる断面くさび状に形成される。   As shown in FIG. 3B, the shaft hole inner periphery 30 has a substantially semicircular cross section as a dynamic pressure generating groove and extends straight in the axial direction, and the shaft hole inner periphery extends in the circumferential direction. A plurality of separation grooves 35 that are equally divided into two are provided. The depth of each separation groove 35 is preferably set to 0.05 to 0.15 mm. Between adjacent separation grooves 35, an arcuate surface 36 having a shape that is eccentric with respect to a circle having an axial center as a fulcrum in a horizontal cross section and is reduced in diameter toward the inner peripheral side in the counterclockwise direction. Is formed. Each circular arc surface 36 is formed in a wedge shape in which a minute clearance between the outer periphery of the corresponding shaft portion 40 of the rotating shaft 4 is gradually narrowed toward the rotating direction of the rotating shaft.

上側の軸受端面32には、逆時計回り方向に向かうにしたがって内周側に湾曲しながら延びる複数の動圧発生用スパイラル溝37(図面上、この溝には分かり易くするためハッチングした)が周方向に等間隔に設けられている。各スパイラル溝37は、例えば、内周側の端部が軸孔に開放されておらず閉塞されているのに対し、外周側の端部が軸受外周に開放されている構成、内周側及び外周側の各端部が軸孔や軸受外周に共に開放されている構成というように種々工夫される。   The upper bearing end surface 32 has a plurality of spiral grooves 37 for generating dynamic pressure that are curved toward the inner peripheral side in the counterclockwise direction (in the drawing, these grooves are hatched for easy understanding). It is provided at equal intervals in the direction. Each spiral groove 37 has a configuration in which, for example, the inner peripheral end is not opened to the shaft hole but is closed, whereas the outer peripheral end is open to the bearing outer periphery, the inner peripheral side, Various contrivances are made such that each end on the outer peripheral side is open to the shaft hole and the outer periphery of the bearing.

なお、以上の軸受3は圧粉、焼結、再圧縮、封孔処理である樹脂含浸を経て作製される。圧粉では、原料粉末が成形金型により圧粉体として圧縮形成される。焼結では、前記圧粉体が焼結処理により多孔質の焼結体として形成される。再圧縮では、前記焼結体がサイジング等の塑性加工により設計軸受形状として分離溝35及び円弧面36、スパイラル溝37が金型の転写方式でそれぞれ形成される。樹脂含浸では、再圧縮後の焼結体、つまり軸受気孔が樹脂で封孔処理される。この処理では、樹脂含浸した状態で固化させると軸受3の表面に薄い樹脂の膜が残る。これを放置すると、軸受表面に残った樹脂の膜の上に接着剤を塗布しても接着力がほとんど得られない。このため、この作業では、樹脂を含浸した後、固化する前に軸受表面を水洗浄し、表面の樹脂を完全に除去する。   In addition, the above bearing 3 is produced through resin impregnation which is powder compaction, sintering, recompression, and sealing treatment. In the green compact, the raw material powder is compressed and formed as a green compact with a molding die. In sintering, the green compact is formed as a porous sintered body by a sintering process. In the recompression, the sintered body is formed into a designed bearing shape by plastic processing such as sizing, and the separation groove 35, the circular arc surface 36, and the spiral groove 37 are respectively formed by a mold transfer method. In the resin impregnation, the sintered body after recompression, that is, the bearing pores, is sealed with resin. In this process, if the resin is impregnated and solidified, a thin resin film remains on the surface of the bearing 3. If this is allowed to stand, even if an adhesive is applied on the resin film remaining on the bearing surface, almost no adhesive force can be obtained. For this reason, in this operation, after impregnating the resin, the bearing surface is washed with water before solidifying to completely remove the resin on the surface.

(組立)組立作業では、まず、軸受3がハウジング2内に圧入されながら位置決め固定される。この構造では、軸受3がハウジング2内に位置決めされた状態において、底板21と軸受3の下端面との間に所定の隙間26が形成される。後述する潤滑剤は隙間26にも溜められる。底板21は、ハウジング2に対し軸受3を圧入する前に固着しておく方法、ハウジング2に底板21を固着した後、軸受3をハウジング2に圧入する方法の何れでもよい。 (Assembly) In the assembly operation, the bearing 3 is first positioned and fixed while being press-fitted into the housing 2. In this structure, a predetermined gap 26 is formed between the bottom plate 21 and the lower end surface of the bearing 3 in a state where the bearing 3 is positioned in the housing 2. The lubricant described later is also stored in the gap 26. The bottom plate 21 may be either a method of fixing the bearing 3 to the housing 2 before press-fitting the bearing 3 or a method of pressing the bearing 3 to the housing 2 after the bottom plate 21 is fixed to the housing 2.

次に、接着剤Pが隙間25に配置される。この操作では、接着剤が供給部25aに適量だけ滴下される。すると、接着剤Pは、供給部25aから毛細管現象により隙間25の全域に広がって均一に行き渡る。このため、軸受3は、ハウジング2の内周20に対し略中間より下側が締め代を付与した圧入で結合され、上側が接着剤Pの薄い膜を介して接合される。以上の構造において、供給部25aは、接着剤の使用量を受け入れる大きさに設定され、受け入れた接着剤をここから毛細管現象で隙間25内へ効率よく導出可能にしたり、余分な接着剤がハウジングや軸受の端面側にはみ出さないようにする。以上のようにして、軸受3がハウジング2内に圧入力及び接着力により固定された後、回転軸4が軸受3の軸孔内周30に対し軸部4aを挿入するが、その際に潤滑剤が前記した分離溝35等からハウジング2内に封入操作されるとともに、フランジ41が軸受端面32に対向配置されることになる。   Next, the adhesive P is disposed in the gap 25. In this operation, an appropriate amount of adhesive is dropped onto the supply unit 25a. Then, the adhesive P spreads from the supply part 25a to the entire area of the gap 25 by the capillary phenomenon and spreads uniformly. For this reason, the bearing 3 is coupled to the inner periphery 20 of the housing 2 by press-fitting with a tightening margin on the lower side from the middle and the upper side is joined via a thin film of the adhesive P. In the above structure, the supply unit 25a is set to a size that accepts the amount of adhesive used, and the received adhesive can be efficiently led out from here into the gap 25 by capillarity, or excess adhesive can be contained in the housing. Do not protrude from the end face side of the bearing. As described above, after the bearing 3 is fixed in the housing 2 by pressure input and adhesive force, the rotating shaft 4 inserts the shaft portion 4a into the inner periphery 30 of the shaft hole of the bearing 3. The agent is sealed in the housing 2 from the separation groove 35 and the like, and the flange 41 is disposed to face the bearing end surface 32.

(変形例)図4は以上の軸受ユニット1の変形例であり、(a)は図1(a)対応させて示す断面図、(b)は(a)のD−D線断面図である。この変形例では、上記形態と同じ部材や部位に同じ符号を付して重複説明を省き、変更点だけを詳述する。すなわち、この変形例では、軸受外周31に設けられて軸方向に連続している溝38と、ハウジング2の内周20に設けられている周方向の溝23とを有している。溝23は、ハウジング内周面にあって溝38に連通し、かつこの溝38よりも深い周方向の溝形状となっている。 (Modification) FIG. 4 is a modification of the bearing unit 1 described above, (a) is a sectional view corresponding to FIG. 1 (a), and (b) is a sectional view taken along the line DD of (a). . In this modification, the same reference numerals are assigned to the same members and parts as those in the above-described embodiment, and a duplicate description is omitted, and only changes are described in detail. That is, in this modified example, it has the groove | channel 38 provided in the bearing outer periphery 31 and continuing in the axial direction, and the circumferential groove 23 provided in the inner periphery 20 of the housing 2. The groove 23 is on the inner peripheral surface of the housing, communicates with the groove 38, and has a circumferential groove shape deeper than the groove 38.

溝38は、軸受周方向に等分する箇所で、それぞれ軸方向に真っ直ぐ延びている複数(この例では3つ)設けられている。この各溝38は、ハウジング2内の脱気用の溝であり、ハウジング内周20に設けられた周方向の溝23によって連通されている。すなわち、この構造は、ハウジング2と底板21及び軸受3の内周面などで構成される潤滑剤用の隙間がきわめて狭くなっているので、軸受ユニット1に潤滑剤を封入する場合、予め軸受ユニット1内を真空引きしておき、その状態で設計量の潤滑剤を例えば回転軸4のフランジ41の外周部や溝38に沿って注油し、その後、大気圧に開放することで、潤滑剤を軸受ユニット1内の各部の隙間に引き込み封入可能にする。なお、各溝38は、前工程の接着剤Pを毛管現象により隙間25に配置するときに、隙間25が狭隘であるため、接着剤は隙間25に毛細管力により吸引されてこの溝38に広がらない。また、溝38に接着剤が進入したとしても、周方向の溝23が接着剤のポケットとなり溝38が接着剤で塞がれることはない。   The groove 38 is provided at a portion equally divided in the bearing circumferential direction, and a plurality (three in this example) each extending straight in the axial direction are provided. Each groove 38 is a deaeration groove in the housing 2, and is communicated with a circumferential groove 23 provided on the inner periphery 20 of the housing. That is, in this structure, since the gap for the lubricant constituted by the housing 2 and the bottom plate 21 and the inner peripheral surface of the bearing 3 is extremely narrow, when the lubricant is sealed in the bearing unit 1, the bearing unit in advance. 1 is evacuated, and in that state, a designed amount of lubricant is lubricated along, for example, the outer peripheral portion of the flange 41 of the rotary shaft 4 and the groove 38, and then released to atmospheric pressure, so that the lubricant is released. It is possible to draw in and enclose in the gaps between the parts in the bearing unit 1. Each groove 38 has a narrow gap 25 when the adhesive P in the previous step is disposed in the gap 25 by capillary action, so that the adhesive is sucked into the gap 25 by the capillary force and spreads in the groove 38. Absent. Even if the adhesive enters the groove 38, the circumferential groove 23 becomes an adhesive pocket, and the groove 38 is not blocked by the adhesive.

(スピンドルモータ)図5のスピンドルモータ10は、ディスク駆動用のモータであり、上記した軸受ユニット(以下、軸受ユニットと略称する)1と、該軸受ユニット1を保持しているベース5と、ディスクハブ6と、ローター7と、コアにコイルを巻回したステータ8などを備えている。ここで、ベース5は、筒形の保持部50を有し、該保持部50の筒内に軸受ユニット1を装着している。保持部50の外周には、外部電源に不図示の配線基板などを介して接続されているステータ8が装着されている。なお、ディスクハブ6は、不図示のディスクを保持するもので、軸受ユニット1の回転軸4に支持されて一体的に回転される。ローター7は、ディスクハブ6の内周に取り付けられてステータ8に対向されている。 (Spindle Motor) A spindle motor 10 in FIG. 5 is a disk drive motor, and includes the above-described bearing unit (hereinafter abbreviated as a bearing unit) 1, a base 5 holding the bearing unit 1, and a disk. A hub 6, a rotor 7, a stator 8 having a coil wound around a core, and the like are provided. Here, the base 5 has a cylindrical holding portion 50, and the bearing unit 1 is mounted in the cylinder of the holding portion 50. A stator 8 connected to an external power source via a wiring board (not shown) is mounted on the outer periphery of the holding unit 50. The disk hub 6 holds a disk (not shown), and is supported by the rotating shaft 4 of the bearing unit 1 and rotated integrally. The rotor 7 is attached to the inner periphery of the disk hub 6 and faces the stator 8.

そして、以上のスピンドルモータ10では、ステータ8に通電すると、ステータ8とローター7との間の励磁力によりローター7がステータ8に対しディスクハブ6及び回転軸4と共に回転される。ディスクハブ6は、回転軸4が回転すると、上記した軸受ユニット1の動圧発生用溝であるスパイラル溝37と分離溝32などによりラジアル及びスラスト方向の動圧が発生し、回転軸4が軸受3に対し非接触状態で精度よく支持される。また、このスピンドルモータ10では、上記軸受ユニット1において、ハウジング2と軸受3とが圧入力と接着力で強固に固定されているため耐衝撃性に優れており、スピンドルモータ10を採用しているディスク装置が不用意に落下されても、回転精度が損なわれることなく、それにより信頼性を向上できる。   In the spindle motor 10 described above, when the stator 8 is energized, the rotor 7 is rotated together with the disk hub 6 and the rotating shaft 4 by the exciting force between the stator 8 and the rotor 7. When the rotary shaft 4 rotates, the disk hub 6 generates dynamic pressure in the radial and thrust directions by the spiral groove 37 and the separation groove 32 that are the dynamic pressure generating grooves of the bearing unit 1 described above. 3 is supported with high accuracy in a non-contact state. Further, in the spindle motor 10, since the housing 2 and the bearing 3 are firmly fixed by pressure input and adhesive force in the bearing unit 1, the spindle motor 10 is excellent in impact resistance and adopts the spindle motor 10. Even if the disk device is dropped inadvertently, the rotational accuracy is not impaired, thereby improving the reliability.

なお、本発明は、以上の形態例に何ら制約されるものではなく、各請求項で特定される要件を除いて種々変形可能なものである。   In addition, this invention is not restrict | limited at all to the above example of embodiment, A various deformation | transformation is possible except the requirements specified by each claim.

(a)は発明形態の軸受ユニットを示す縦断面図、(b)は(a)のC部拡大図、(c)は変形例である。(A) is a longitudinal cross-sectional view showing the bearing unit of the invention form, (b) is an enlarged view of part C of (a), and (c) is a modification. (a),(b)は図1のA−A線とB−B線断面図である。(A), (b) is the sectional view on the AA line and BB line of FIG. (a),(b)は図1の軸受単品を示す側面図と上面図である。(A), (b) is the side view and top view which show the single bearing of FIG. (a)と(b)は変形例を示す模式断面図である。(A) And (b) is a schematic cross section which shows a modification. 上記軸受ユニットを使用したスピンドルモータを示す模式断面図である。It is a schematic cross section which shows the spindle motor which uses the said bearing unit.

符号の説明Explanation of symbols

1…軸受ユニット
2…ハウジング(20は内周、21は底板、23は周方向の溝)
3…軸受(30は軸孔内周、31は外周、32は軸受端面)
4…回転軸
10…スピンドルモータ(5はベース、6はハブ、7はローター、8はステータ)
25…隙間(25aは供給部)
35…分離溝
36…円弧面
37…スパイラル溝
38…軸方向の溝
P…接着剤
S…スラスト軸受部
R…ラジアル軸受部

DESCRIPTION OF SYMBOLS 1 ... Bearing unit 2 ... Housing (20 is an inner periphery, 21 is a baseplate, 23 is a circumferential groove | channel)
3 ... Bearing (30 is inner circumference of shaft hole, 31 is outer circumference, 32 is bearing end face)
4 ... Rotating shaft 10 ... Spindle motor (5 is base, 6 is hub, 7 is rotor, 8 is stator)
25 ... Gap (25a is a supply section)
35 ... separation groove 36 ... arc surface
37 ... spiral groove 38 ... axial groove
P: Adhesive S: Thrust bearing R: Radial bearing

Claims (7)

ハウジングと、軸孔内周及び軸受端面に動圧発生用溝を有し前記ハウジング内に固定された軸受と、前記軸受の軸孔に挿入された回転軸と、前記ハウジング内に封入された潤滑油とを備え、前記回転軸の回転時に前記動圧発生用溝で生じる動圧作用によって該回転軸をラジアル方向及びスラスト方向に非接触状態で支持可能な動圧軸受ユニットにおいて、
前記ハウジング内周に対して前記軸受を締め代を与えた圧入により結合するとともに、前記ハウジングの内周と前記軸受の外周との間にあって上下何れかの端部側周方向に形成された隙間を有し、該隙間に配された接着剤により該ハウジングと該軸受とを接着していることを特徴とする動圧軸受ユニット。
A housing, a bearing having a dynamic pressure generating groove on the inner periphery and end face of the shaft hole, fixed in the housing, a rotating shaft inserted in the shaft hole of the bearing, and a lubrication sealed in the housing A hydrodynamic bearing unit capable of supporting the rotary shaft in a non-contact state in a radial direction and a thrust direction by a dynamic pressure action generated in the dynamic pressure generating groove when the rotary shaft rotates.
The bearing is coupled to the inner periphery of the housing by press-fitting with a tightening margin, and a gap formed between the inner periphery of the housing and the outer periphery of the bearing and formed in either the upper or lower end side circumferential direction. A hydrodynamic bearing unit characterized in that the housing and the bearing are bonded by an adhesive disposed in the gap.
前記軸受は気孔を樹脂で封孔した焼結軸受であり、前記焼結軸受の締め代が1μmから10μmに形成されているとともに、前記隙間が0を超え、かつ20μm以下に形成されている請求項1に記載の動圧軸受ユニット。   The bearing is a sintered bearing in which pores are sealed with resin, and a tightening margin of the sintered bearing is formed from 1 μm to 10 μm, and the gap is formed to be greater than 0 and less than 20 μm. Item 2. The hydrodynamic bearing unit according to Item 1. 前記隙間が、端部側に拡径するテーパー形状を呈する請求項1又は2に記載の動圧軸受ユニット。   The hydrodynamic bearing unit according to claim 1, wherein the gap has a tapered shape whose diameter is increased toward the end. 前記隙間の端部外側に大径の接着剤用供給部が形成されている請求項1から3の何れかに記載の動圧軸受ユニット。   The hydrodynamic bearing unit according to any one of claims 1 to 3, wherein a large-diameter adhesive supply portion is formed outside an end portion of the gap. 前記軸受の外周面には軸方向に延びる複数の溝が設けられているとともに、前記ハウジングの内周面には前記軸受側の溝に連通し、かつこの溝よりも深い周方向の溝が設けられている請求項1から4の何れかに記載の動圧軸受ユニット。   A plurality of axially extending grooves are provided on the outer peripheral surface of the bearing, and a circumferential groove deeper than the groove is provided on the inner peripheral surface of the housing. The hydrodynamic bearing unit according to any one of claims 1 to 4. 請求項1から5の何れかに記載の動圧軸受ユニットの製造方法であって、前記軸受を前記ハウジング内に圧入により結合した後、前記接着剤を対応する端部側から前記隙間に供給して毛細管現象により該隙間のほぼ全域に行き渡らせることを特徴とする軸受ユニットの製造方法。   6. The method of manufacturing a hydrodynamic bearing unit according to claim 1, wherein after the bearing is coupled into the housing by press fitting, the adhesive is supplied to the gap from a corresponding end side. A method of manufacturing a bearing unit, wherein the gap is spread over substantially the entire region by capillary action. 請求項1から5の何れかに記載の動圧軸受ユニットを備えていることを特徴とするスピンドルモータ。











A spindle motor comprising the hydrodynamic bearing unit according to claim 1.











JP2006175033A 2006-06-26 2006-06-26 Dynamic-pressure bearing unit, its manufacturing method, and spindle motor Pending JP2008002650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006175033A JP2008002650A (en) 2006-06-26 2006-06-26 Dynamic-pressure bearing unit, its manufacturing method, and spindle motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175033A JP2008002650A (en) 2006-06-26 2006-06-26 Dynamic-pressure bearing unit, its manufacturing method, and spindle motor

Publications (1)

Publication Number Publication Date
JP2008002650A true JP2008002650A (en) 2008-01-10

Family

ID=39007191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175033A Pending JP2008002650A (en) 2006-06-26 2006-06-26 Dynamic-pressure bearing unit, its manufacturing method, and spindle motor

Country Status (1)

Country Link
JP (1) JP2008002650A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2467969A (en) * 2009-02-24 2010-08-25 Dyson Technology Ltd Bearing support
US20110044810A1 (en) * 2009-02-24 2011-02-24 Dyson Technology Limited Bearing support
JP2011040596A (en) * 2009-08-12 2011-02-24 Tdk Corp Method of manufacturing coil component
US20120162818A1 (en) * 2010-12-27 2012-06-28 Nidec Corporation Spindle motor, and disk drive apparatus including the spindle motor
JP2013155865A (en) * 2012-01-27 2013-08-15 Samsung Electro-Mechanics Co Ltd Bearing assembly and spindle motor including the same
JP2014020631A (en) * 2012-07-13 2014-02-03 Hoshizaki Electric Co Ltd Ice-making part of automatic ice-making machine
US20140369831A1 (en) * 2007-01-29 2014-12-18 Edward Limited Vacuum Pump
US20150228300A1 (en) * 2010-12-27 2015-08-13 Nidec Corporation Spindle motor, and disk drive apparatus including the spindle motor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759256B2 (en) * 2007-01-29 2017-09-12 Edwards Limited Vacuum pump
US20140369831A1 (en) * 2007-01-29 2014-12-18 Edward Limited Vacuum Pump
JP2014142071A (en) * 2009-02-24 2014-08-07 Dyson Technology Ltd Assembly with bearing, compressor, and method of securing bearing
US20110044810A1 (en) * 2009-02-24 2011-02-24 Dyson Technology Limited Bearing support
GB2467969A (en) * 2009-02-24 2010-08-25 Dyson Technology Ltd Bearing support
JP2012518769A (en) * 2009-02-24 2012-08-16 ダイソン テクノロジー リミテッド Bearing support
GB2467969B (en) * 2009-02-24 2013-06-12 Dyson Technology Ltd Bearing support
US9109626B2 (en) 2009-02-24 2015-08-18 Dyson Technology Limited Bearing support
JP2011040596A (en) * 2009-08-12 2011-02-24 Tdk Corp Method of manufacturing coil component
JP2012152098A (en) * 2010-12-27 2012-08-09 Nippon Densan Corp Spindle motor, disk drive device, and method of manufacturing spindle motor
CN103929003A (en) * 2010-12-27 2014-07-16 日本电产株式会社 Spindle Motor For Disk Drive And Disk Drive Apparatus
CN103929004A (en) * 2010-12-27 2014-07-16 日本电产株式会社 Spindle motor for disk drive and disk drive apparatus
US8593756B2 (en) * 2010-12-27 2013-11-26 Nidec Corporation Spindle motor, and disk drive apparatus including the spindle motor
US20150228300A1 (en) * 2010-12-27 2015-08-13 Nidec Corporation Spindle motor, and disk drive apparatus including the spindle motor
US9190880B2 (en) * 2010-12-27 2015-11-17 Nidec Corporation Spindle motor, and disk drive apparatus including the spindle motor
US20120162818A1 (en) * 2010-12-27 2012-06-28 Nidec Corporation Spindle motor, and disk drive apparatus including the spindle motor
JP2013155865A (en) * 2012-01-27 2013-08-15 Samsung Electro-Mechanics Co Ltd Bearing assembly and spindle motor including the same
JP2014020631A (en) * 2012-07-13 2014-02-03 Hoshizaki Electric Co Ltd Ice-making part of automatic ice-making machine

Similar Documents

Publication Publication Date Title
JP2008002650A (en) Dynamic-pressure bearing unit, its manufacturing method, and spindle motor
USRE46300E1 (en) Spindle motor having a fluid dynamic bearing system and a stationary shaft
CN1807908B (en) Fluid lubrication bearing apparatus
JP2007107622A (en) Dynamic pressure bearing device and spindle motor using it
US7251891B2 (en) Production method for sintered bearing member, fluid dynamic pressure bearing device, and spindle motor
WO2011145426A1 (en) Bearing member and fluid dynamic bearing device using same
JPH10306827A (en) Dynamic pressure type oil-impregnated sintered bearing and manufacture thereof
JP2007211960A (en) Bearing unit and its manufacturing method
JP2002206534A (en) Dynamic pressure type multiporous oil retaining bearing and manufacturing method therefor
JPH11182533A (en) Dynamic pressure type porous oil impregnated bearing unit
US7789565B2 (en) Fluid dynamic bearing apparatus
JP2006038185A (en) Composite sintered bearing
JP2011021649A (en) Fluid bearing device
JP2006329391A (en) Dynamic pressure bearing arrangement
JP2005163903A (en) Dynamic bearing device
JP2004316926A (en) Dynamic pressure-type bearing unit and method for manufacturing the same
JP5606831B2 (en) Bearing member and manufacturing method thereof
JP2010091004A (en) Hydrodynamic pressure bearing device and manufacturing method therefor
JP4381545B2 (en) Sintered oil-impregnated bearing and spindle motor
JP2010091002A (en) Sintered bearing and manufacturing method therefor
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP2004340385A (en) Dynamic pressure type bearing unit
JP2007051782A (en) Dynamic pressure bearing unit and its manufacturing method
JP2005180707A (en) Dynamic pressure type sintered oil-impregnated bearing unit
JP2005265180A (en) Dynamic pressure bearing device