JP2011021649A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2011021649A
JP2011021649A JP2009165866A JP2009165866A JP2011021649A JP 2011021649 A JP2011021649 A JP 2011021649A JP 2009165866 A JP2009165866 A JP 2009165866A JP 2009165866 A JP2009165866 A JP 2009165866A JP 2011021649 A JP2011021649 A JP 2011021649A
Authority
JP
Japan
Prior art keywords
bearing
bearing member
radial
thrust
hydrodynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009165866A
Other languages
Japanese (ja)
Inventor
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009165866A priority Critical patent/JP2011021649A/en
Publication of JP2011021649A publication Critical patent/JP2011021649A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid bearing device which can be manufactured at low cost and can stably maintain high bearing performance. <P>SOLUTION: The fluid bearing device 1 is equipped with a bearing member 7 containing radial bearing surfaces A1, A2 and a shaft member 2 inserted into an inner periphery of the bearing member 7. A radial bearing clearance filled with a lubricating oil is formed between the radial bearing surfaces A1, A2 of the bearing member 7 and an outer peripheral surface 2a1 of the shaft member 2. An upper end of the radial bearing clearance is connected to a lower end of a seal clearance S for holding an oil surface of lubricating oil in an upper end opening of the bearing member 7. The bearing member 7 is formed of a sintered-metal porous body having a seal surface 7b1 facing the seal clearance S. Hole sealing parts 9 for sealing surface opening holes on these surfaces are provided in at least the seal surface 7b1 and a surface exposed outside in the bearing member 7. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は流体軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

流体軸受装置は、軸受隙間に形成される潤滑油の油膜で軸部材を回転自在に支持するものである。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等の磁気ディスク装置やCD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、PC等のファンモータなどのモータ用軸受装置として好適に使用されている。   The hydrodynamic bearing device supports a shaft member rotatably with an oil film of lubricating oil formed in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, the hydrodynamic bearing device has been utilized as a motor bearing device for motors mounted on various electrical devices including information devices. More specifically, spindle motors for magnetic disk devices such as HDD, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, etc., polygon scanner motors for laser beam printers (LBP), PCs It is suitably used as a motor bearing device such as a fan motor.

例えば特許文献1には、少なくとも軸方向の一端が開口した軸受部材と、軸受部材の内周に挿入された軸部材とを主要な構成部材として備え、軸受部材のラジアル軸受面と軸部材の外周面との間のラジアル軸受隙間に形成される潤滑油の油膜で軸部材がラジアル方向に支持される流体軸受装置が開示されている。特許文献1に開示されているように、軸受部材は、ラジアル軸受面を有する焼結金属製の軸受スリーブと、軸受スリーブを内周に収容した非多孔質のハウジングとで構成される場合が多い。ラジアル軸受隙間の油膜切れ、および軸受外部への潤滑油漏れを防止することができるからである。また、軸受部材(ハウジング)の開口部には、軸部材の外周面との間に一端がラジアル軸受隙間に通じたシール隙間を形成するシール部材が配設される。シール隙間は、いわゆるバッファ機能を有し、流体軸受装置の使用温度範囲内では潤滑油の油面を常にその軸方向範囲内に保持する。これにより、軸受開口部からの潤滑油漏れが防止される。   For example, Patent Literature 1 includes a bearing member having at least one axial end opening and a shaft member inserted into the inner periphery of the bearing member as main components, and a radial bearing surface of the bearing member and an outer periphery of the shaft member. There has been disclosed a hydrodynamic bearing device in which a shaft member is supported in a radial direction by an oil film of lubricating oil formed in a radial bearing gap with a surface. As disclosed in Patent Document 1, the bearing member is often composed of a sintered metal bearing sleeve having a radial bearing surface and a non-porous housing in which the bearing sleeve is housed in the inner periphery. . This is because the oil film in the radial bearing gap can be prevented and the lubricating oil leakage to the outside of the bearing can be prevented. In addition, a seal member is formed in the opening of the bearing member (housing) so as to form a seal gap with one end leading to the radial bearing gap with the outer peripheral surface of the shaft member. The seal gap has a so-called buffer function, and always keeps the oil level of the lubricating oil within the axial range within the operating temperature range of the hydrodynamic bearing device. Thereby, the lubricating oil leakage from the bearing opening is prevented.

特開2003−336636号公報JP 2003-336636 A

ところで、ディスク装置の低価格化が急速に進展している昨今、流体軸受装置の低コスト化を図る必要が生じている。しかしながら、軸部材の他、ハウジング、軸受スリーブ、シール部材等、数多くの部材で構成される上記特許文献1に記載の流体軸受装置では、部材の製作コストや管理コスト、さらには部材同士の組み付けコストが嵩む。ましてや、かかる構成において所期の軸受性能を安定的に維持可能とするためには、個々の部材の製作精度を高めると共に部材同士の組み付け精度を高める必要があるため、低コスト化を図るのは一層困難となる。   By the way, in recent years when the price of the disk device has been rapidly reduced, it is necessary to reduce the cost of the hydrodynamic bearing device. However, in the hydrodynamic bearing device described in Patent Document 1 including a number of members such as a housing, a bearing sleeve, and a seal member in addition to the shaft member, the manufacturing cost and management cost of the member, and the assembly cost between the members are also included. Is bulky. In addition, in order to stably maintain the desired bearing performance in such a configuration, it is necessary to increase the manufacturing accuracy of individual members and the assembly accuracy between the members, so that the cost reduction can be achieved. It becomes even more difficult.

流体軸受装置の低コスト化を図るための一手段として、軸受スリーブをインサート部品とし、ハウジング、さらにはシール部材を樹脂で射出成形することが考えられる。しかしながらこの場合、樹脂で射出成形された部分の成形収縮や温度変化に伴う寸法変動に起因して、モータブラケットに対する固定精度やシール隙間の保油能力、さらにはラジアル軸受隙間の幅精度に悪影響が及ぶおそれがある。そのため、所期の軸受性能を安定的に発揮、さらには維持するのが困難となる。   As one means for reducing the cost of the hydrodynamic bearing device, it is conceivable that the bearing sleeve is used as an insert part, and the housing and the seal member are injection molded with resin. However, in this case, due to molding shrinkage of the part injection-molded with resin and dimensional fluctuation due to temperature change, the fixing accuracy to the motor bracket, the oil retaining ability of the seal gap, and the width accuracy of the radial bearing gap are adversely affected. There is a risk. For this reason, it is difficult to stably exhibit and maintain the desired bearing performance.

本発明の課題は、低コストに製作可能でありながら、高い軸受性能を安定的に維持可能な流体軸受装置を提供することにある。   An object of the present invention is to provide a fluid dynamic bearing device that can be manufactured at low cost and can stably maintain high bearing performance.

上記課題を解決するため、本発明では、内周にラジアル軸受面を有し、少なくとも軸方向の一端が開口した軸受部材と、軸受部材の内周に挿入された軸部材と、軸受部材のラジアル軸受面と軸部材の外周面との間に形成され、潤滑油で満たされたラジアル軸受隙間と、軸方向の一端がラジアル軸受隙間に通じ、軸受部材の一端開口部で潤滑油の油面を保持するシール隙間とを備える流体軸受装置において、軸受部材が、シール隙間に面したシール面を有する焼結金属の多孔質体からなり、かつ、少なくともシール面と外部に露出した面の表面開孔を封止する封孔部を有することを特徴とする流体軸受装置を提供する。なお、ここでいうラジアル軸受面とは、ラジアル軸受隙間を形成する一方側の面を意図しており、この面に動圧溝等のラジアル動圧発生部が形成されているか否かは問わない。   In order to solve the above problems, in the present invention, a bearing member having a radial bearing surface on the inner periphery and having at least one axial end opened, a shaft member inserted in the inner periphery of the bearing member, and a radial of the bearing member A radial bearing gap formed between the bearing surface and the outer peripheral surface of the shaft member, filled with lubricating oil, and one end in the axial direction lead to the radial bearing gap, and the oil surface of the lubricating oil is passed through one end opening of the bearing member. In a hydrodynamic bearing device having a seal gap to be held, the bearing member is made of a sintered metal porous body having a seal surface facing the seal gap, and at least the surface opening of the seal surface and the surface exposed to the outside The hydrodynamic bearing device is characterized by having a sealing portion for sealing. Here, the radial bearing surface is intended to be a surface on one side forming a radial bearing gap, and it does not matter whether a radial dynamic pressure generating portion such as a dynamic pressure groove is formed on this surface. .

上記本発明の構成によれば、上記特許文献1においてハウジング、軸受スリーブ、およびシール部材という3つの部材で満足していた各種機能を、単一の軸受部材で満足することができる。そのため、部材点数や部材同士の組み付け工数を低減して、流体軸受装置の低コスト化を図ることができる。また、この軸受部材を得る上で部材同士の組み付けが不要であり、焼結金属製とされる軸受部材には温度変化に伴う形状(寸法)変動も殆ど生じないことから、高い軸受性能を安定的に維持することができる。また、外部に露出した面に加えてシール面にも封孔部を設けたことから、シール面の表面開孔からの潤滑油の滲み出しを防止し、所期のシール性能を安定的に維持することができる。   According to the configuration of the present invention, various functions that are satisfied by the three members of the housing, the bearing sleeve, and the seal member in Patent Document 1 can be satisfied by a single bearing member. Therefore, the number of members and the number of assembly steps between members can be reduced, and the cost of the hydrodynamic bearing device can be reduced. Also, in order to obtain this bearing member, it is not necessary to assemble the members, and the bearing member made of sintered metal has almost no shape (dimension) fluctuation due to temperature change, so high bearing performance is stable. Can be maintained. In addition to the externally exposed surface, the sealing surface is also provided with a sealing part, preventing the seepage of lubricating oil from the surface opening of the sealing surface and maintaining the desired sealing performance stably. can do.

封孔部は、例えば、上記各面に目潰し処理を施すことにより、上記各面の表層部に封孔材を含浸させることにより、あるいは上記各面に被膜を形成することにより得られる。封孔部は、これら何れの手法を用いて得ても構わないが、上記各面に形成した被膜で封孔部を構成する場合には、この被膜を導電性被膜とするのが望ましい。特に、ディスク装置に組み込まれるスピンドルモータ用の流体軸受装置には、運転中に空気との摩擦によってディスク等に帯電する静電気を接地側(一般には、流体軸受装置を内周に保持するモータブラケット)に放電するための導電経路を設ける必要があるからである。すなわち、封孔部を被膜で構成した場合であっても、この被膜に導電性を持たせておくことにより導電経路が遮断されるのを防止することができる。なお、導電性被膜は、例えば導電性充填材を含む樹脂材料で被膜を形成することにより、あるいは、めっき処理で被膜を形成することにより得ることができる。   The sealing portion can be obtained, for example, by crushing each surface, impregnating the surface layer portion of each surface with a sealing material, or forming a film on each surface. The sealing part may be obtained using any of these methods, but when the sealing part is constituted by a film formed on each of the above surfaces, it is desirable to use this film as a conductive film. In particular, in a hydrodynamic bearing device for a spindle motor incorporated in a disc device, static electricity that charges the disc or the like due to friction with air during operation is grounded (generally, a motor bracket that holds the hydrodynamic bearing device on the inner periphery). This is because it is necessary to provide a conductive path for discharging. That is, even when the sealing portion is formed of a film, the conductive path can be prevented from being blocked by providing the film with conductivity. The conductive film can be obtained, for example, by forming a film with a resin material containing a conductive filler, or by forming a film by plating.

ところで、軸受性能を向上するには、ラジアル軸受部の軸受スパンを拡大し、モーメント荷重に対する負荷能力(モーメント剛性)を高めることが有効である。しかしながら、軸受部材を焼結金属製とする本発明の構成では、軸受部材の内部空孔でも潤滑油を保持し得る分、シール隙間の容積を大きとる必要が生じる。従って、シール隙間の軸方向の一端がラジアル軸受隙間に通じた、すなわち、シール隙間とラジアル軸受隙間とが軸方向に積み重なった構造を有する流体軸受装置においては、何ら対策を講じることなくラジアル軸受部の軸受スパンを拡大すると流体軸受装置の軸方向寸法が長大化する。   By the way, in order to improve the bearing performance, it is effective to expand the bearing span of the radial bearing portion and increase the load capacity (moment rigidity) against the moment load. However, in the configuration of the present invention in which the bearing member is made of sintered metal, it is necessary to increase the volume of the seal gap as much as the lubricating oil can be retained even in the internal holes of the bearing member. Accordingly, in a hydrodynamic bearing device having a structure in which one end in the axial direction of the seal gap is connected to the radial bearing gap, that is, the seal gap and the radial bearing gap are stacked in the axial direction, the radial bearing portion is not taken without any measures. If the bearing span is increased, the axial dimension of the hydrodynamic bearing device becomes longer.

かかる問題は、例えば、軸受部材の密度を高め、軸受部材の気孔率を小さくすることで解消可能である。軸受部材の内部空孔で保持する潤滑油の総量を減じることができ、この油量低減分だけシール隙間の容積(例えば、軸方向寸法)を短縮することができるからである。ここでいう「気孔率」とは、軸受部材の単位体積あたりに占める内部空孔の容積の総和の割合である。しかしながら、軸受部材の気孔率を全体的に小さくすると、ラジアル軸受隙間への潤滑油の滲み出し量が不十分となり、油膜切れが生じるおそれがある。そのため、軸受部材の気孔率を部分的に異ならせる場合には、最も気孔率の高い領域にラジアル軸受面を設けるのが望ましい。   Such a problem can be solved, for example, by increasing the density of the bearing member and reducing the porosity of the bearing member. This is because the total amount of lubricating oil retained in the internal holes of the bearing member can be reduced, and the volume (for example, axial dimension) of the seal gap can be shortened by this oil amount reduction. Here, the “porosity” is the ratio of the total volume of the internal pores per unit volume of the bearing member. However, if the porosity of the bearing member is reduced as a whole, the amount of the lubricating oil that oozes out into the radial bearing gap becomes insufficient, and the oil film may be cut off. For this reason, when the porosity of the bearing member is partially different, it is desirable to provide a radial bearing surface in a region having the highest porosity.

なお、部分的に気孔率が異なる軸受部材を得るための手段としては、例えば、部分的に封孔材を含浸させる、互いに気孔率の異なる複数の圧粉体を一体化する、等が考えられる。   In addition, as means for obtaining a bearing member having partially different porosities, for example, partial impregnation with a sealing material, or integration of a plurality of green compacts having mutually different porosities can be considered. .

軸受部材は、軸方向の一端のみが開口したコップ状とする他、軸方向の他端も開口した円筒状に形成することもできる。軸受部材を円筒状に形成した場合、軸受部材の他端に蓋部材を固定することにより、この蓋部材で、軸受部材の他端開口部を閉塞すると共に、軸部材をスラスト一方向に支持する第1のスラスト軸受部を形成することができる。   The bearing member can be formed in a cup shape in which only one end in the axial direction is opened, or can be formed in a cylindrical shape in which the other end in the axial direction is also opened. When the bearing member is formed in a cylindrical shape, by fixing the lid member to the other end of the bearing member, the lid member closes the other end opening of the bearing member and supports the shaft member in one thrust direction. A first thrust bearing portion can be formed.

蓋部材で軸受部材の他端開口部を閉塞する場合、軸受部材と蓋部材との間に十分な固定強度を確保する必要がある。上記特許文献1に記載のように蓋部材を軸受部材の内周面に固定する場合、両者間に十分な固定強度を確保するには蓋部材を厚肉化する必要が生じる。しかし、蓋部材を厚肉化すると、流体軸受装置の軸方向寸法が長大化する、ラジアル軸受部の軸受スパンが縮小する等の望ましくない事態を招くおそれがあるため、蓋部材をむやみに厚肉化することはできない。   When the lid member closes the other end opening of the bearing member, it is necessary to ensure a sufficient fixing strength between the bearing member and the lid member. When the lid member is fixed to the inner peripheral surface of the bearing member as described in Patent Document 1, it is necessary to increase the thickness of the lid member in order to ensure a sufficient fixing strength between them. However, increasing the thickness of the lid member may lead to an undesirable situation such as an increase in the axial dimension of the hydrodynamic bearing device or a reduction in the bearing span of the radial bearing portion. It cannot be made.

これに対し、軸受部材の外周面に蓋部材を固定すれば、蓋部材を軸受部材の内周面に固定する場合に比べ、内周面と外周面の径差分だけ固定面積を増すことができるので、軸受部材に対する蓋部材の固定強度(蓋部材の耐抜け強度)を高めることができる。この場合、蓋部材には、開口部を閉塞する円盤状の部分と、外周面に固定される筒状の部分とが必要となるが、両者の固定面積を拡大するには筒状の部分を軸方向に長大化すれば足り、円盤状の部分を厚肉化する必要がない。しかも、筒状の部分を軸方向に長大化しても軸受装置全体の軸方向寸法には影響しない。従って、十分な耐抜け強度を確保するには、蓋部材を軸受部材の外周面に固定するのが望ましい。   On the other hand, if the lid member is fixed to the outer peripheral surface of the bearing member, the fixed area can be increased by the difference in diameter between the inner peripheral surface and the outer peripheral surface, compared to the case where the lid member is fixed to the inner peripheral surface of the bearing member. Therefore, it is possible to increase the fixing strength of the lid member with respect to the bearing member (resistance to drop resistance of the lid member). In this case, the lid member requires a disk-shaped portion that closes the opening and a cylindrical portion that is fixed to the outer peripheral surface. It is sufficient to increase the length in the axial direction, and it is not necessary to thicken the disk-shaped portion. Moreover, even if the cylindrical portion is elongated in the axial direction, the axial dimension of the entire bearing device is not affected. Therefore, in order to ensure a sufficient resistance to coming off, it is desirable to fix the lid member to the outer peripheral surface of the bearing member.

軸受部材の外周面に固定される蓋部材をプレス成形品とすれば、円盤状の部分と筒状の部分とを一体に有するコップ状の蓋部材を低コストに製作することができる。   If the lid member fixed to the outer peripheral surface of the bearing member is a press-molded product, a cup-shaped lid member integrally having a disk-shaped portion and a cylindrical portion can be manufactured at low cost.

流体軸受装置は、さらに、軸部材をスラスト他方向に支持する第2のスラスト軸受部を備えるものとすることができる。この場合、軸受部材に、第2のスラスト軸受部のスラスト軸受隙間に面したスラスト軸受面を設けることができる。この場合においても、スラスト軸受隙間への潤滑油の滲み出し量が不十分となり、スラスト軸受隙間で油膜切れが生じるのを防止するため、最も気孔率の高い領域にスラスト軸受面を設けるのが望ましい。   The hydrodynamic bearing device may further include a second thrust bearing portion that supports the shaft member in the thrust other direction. In this case, the bearing member can be provided with a thrust bearing surface facing the thrust bearing gap of the second thrust bearing portion. Even in this case, it is desirable to provide the thrust bearing surface in the region with the highest porosity in order to prevent the amount of lubricating oil from seeping into the thrust bearing gap and the oil film from being cut out in the thrust bearing gap. .

以上の構成において、シール隙間の軸方向寸法を流体軸受装置の軸方向寸法の17%以下とすれば、ラジアル軸受部の軸受スパンを従来よりも拡大して軸受性能、特にラジアル方向の回転精度を高めることができる。なお、ここで言う流体軸受装置の軸方向寸法とは、軸部材のうち、軸受部材の開口部から突出した部分の軸方向寸法を除く軸方向寸法をいう。具体的に述べると、図2および図7に示す流体軸受装置1では軸受部材7の軸方向寸法であり、図6に示す流体軸受装置1では、軸受部材7の上端から蓋部材8の外底面に至る軸方向寸法である。   In the above configuration, if the axial dimension of the seal gap is 17% or less of the axial dimension of the hydrodynamic bearing device, the bearing span, particularly the rotational accuracy in the radial direction, is increased by expanding the bearing span of the radial bearing portion. Can be increased. In addition, the axial direction dimension of the hydrodynamic bearing device said here means the axial direction dimension except the axial direction dimension of the part which protruded from the opening part of the bearing member among axial members. Specifically, in the hydrodynamic bearing device 1 shown in FIGS. 2 and 7, the axial dimension of the bearing member 7. In the hydrodynamic bearing device 1 shown in FIG. 6, the outer bottom surface of the lid member 8 from the upper end of the bearing member 7. This is the axial dimension that leads to

また、軸受部材の外周面の円筒度(JISB0621参照)は10μm以下に、軸受部材のラジアル軸受面の円筒度は0.7μm以下とするのが望ましい。これにより、ラジアル軸受隙間の幅精度を高めてラジアル方向の回転精度を高めることができ、しかもモータブラケットに対する軸受部材(流体軸受装置)の固定精度を高めて高いモータ性能を確保することができる。   Further, it is desirable that the cylindricity of the outer peripheral surface of the bearing member (see JISB0621) is 10 μm or less, and the cylindricity of the radial bearing surface of the bearing member is 0.7 μm or less. As a result, the width accuracy of the radial bearing gap can be increased to increase the rotational accuracy in the radial direction, and the fixing accuracy of the bearing member (fluid bearing device) to the motor bracket can be increased to ensure high motor performance.

以上より、本発明によれば、低コストに製作可能でありながら、高い軸受性能を安定的に維持可能な流体軸受装置を提供することができる。   As described above, according to the present invention, it is possible to provide a fluid dynamic bearing device that can be manufactured at low cost and can stably maintain high bearing performance.

ディスク装置用のスピンドルモータを概念的に示す断面図である。It is sectional drawing which shows notionally the spindle motor for disk apparatuses. 本発明の第1実施形態に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on 1st Embodiment of this invention. (a)図は軸受部材の断面図、(b)図は軸受部材の下側端面を示す図である。FIG. 4A is a sectional view of a bearing member, and FIG. 4B is a view showing a lower end surface of the bearing member. 蓋部材の上側端面を示す図である。It is a figure which shows the upper end surface of a cover member. 図2の要部拡大断面図である。It is a principal part expanded sectional view of FIG. 本発明の第2実施形態に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on 3rd Embodiment of this invention. 図7に示す軸受部材の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the bearing member shown in FIG.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、流体軸受装置を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2の一端に設けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、モータブラケット6とを備えている。ステータコイル4はモータブラケット6の外周に取り付けられ、ロータマグネット5はディスクハブ3の内周に取り付けられる。流体軸受装置1の軸受部材7は、モータブラケット6の内周に固定される。ディスクハブ3には磁気ディスク等のディスクDが一又は複数枚(図示例は2枚)載置され、ディスクDは図示しないクランプ機構で固定される。以上の構成において、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device. The spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 provided at one end of the shaft member 2, and a radial direction, for example. A stator coil 4 and a rotor magnet 5 which are opposed to each other through a gap, and a motor bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the motor bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bearing member 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 6. One or a plurality (two in the illustrated example) of disks D such as magnetic disks are placed on the disk hub 3, and the disks D are fixed by a clamp mechanism (not shown). In the above configuration, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the disk D held by the disk hub 3 are rotated. It rotates integrally with the shaft member 2.

図2は、本発明の第1実施形態に係る流体軸受装置1を示すものである。この流体軸受装置1は、軸方向の両端が開口した軸受部材7と、軸受部材7の内周に挿入された軸部材2と、軸受部材7の一端開口を閉塞する蓋部材8とを構成部材として備え、内部空間には潤滑油が充満されている。なお、以下では、便宜上、蓋部材8が設けられた側を下側、その軸方向反対側を上側として説明を進める。   FIG. 2 shows the hydrodynamic bearing device 1 according to the first embodiment of the present invention. The hydrodynamic bearing device 1 includes a bearing member 7 having both ends opened in the axial direction, a shaft member 2 inserted into the inner periphery of the bearing member 7, and a lid member 8 that closes one end opening of the bearing member 7. The internal space is filled with lubricating oil. In the following description, for the sake of convenience, the description will proceed with the side on which the lid member 8 is provided as the lower side and the opposite side in the axial direction as the upper side.

軸部材2は、軸部2aとフランジ部2bとを有する。軸部2aおよびフランジ部2bは高剛性かつ耐摩耗性に富む金属材料、例えばステンレス鋼で形成される。軸部2aの下端には小径部2a2が形成されており、この小径部2a2を穴あき円盤状のフランジ部2bの内周に嵌合固定することで軸部材2が形成される。軸部とフランジ部の固定方法は任意であり、圧入、接着、溶接(特にレーザ溶接)等を採用することができる。軸部材2として、軸部2aとフランジ部2bを鍛造等で一体成形したものを使用することもできる。   The shaft member 2 has a shaft portion 2a and a flange portion 2b. The shaft portion 2a and the flange portion 2b are made of a metal material having high rigidity and high wear resistance, such as stainless steel. A small-diameter portion 2a2 is formed at the lower end of the shaft portion 2a, and the shaft member 2 is formed by fitting and fixing the small-diameter portion 2a2 to the inner periphery of the perforated disk-like flange portion 2b. A method for fixing the shaft portion and the flange portion is arbitrary, and press-fitting, adhesion, welding (particularly laser welding) and the like can be employed. As the shaft member 2, a shaft member 2a and a flange portion 2b integrally formed by forging or the like can be used.

軸受部材7は、軸方向の両端が開口した略円筒状をなし、スリーブ部7aと、スリーブ部7aの上側に配置されたシール部7bと、スリーブ部7aの下側に配置された固定部7cとを一体に有する。   The bearing member 7 has a substantially cylindrical shape with both axial ends open, and includes a sleeve portion 7a, a seal portion 7b disposed above the sleeve portion 7a, and a fixed portion 7c disposed below the sleeve portion 7a. And integrally.

図3(a)に示すように、スリーブ部7aの内周面7a1には、対向する軸部2aの外周面2a1との間にラジアル軸受隙間を形成する円筒状のラジアル軸受面A1,A2が軸方向の二箇所に離隔して設けられる。ラジアル軸受隙間の幅精度、すなわちラジアル軸受部R1,R2の軸受性能を高める観点から、ラジアル軸受面A1,A2の円筒度は、それぞれ0.7μm以下に形成される。ラジアル軸受面A1,A2には、それぞれ、複数の動圧溝Aa1,Aa2をヘリングボーン形状に配列してなるラジアル動圧発生部が形成される。本実施形態において、上側の動圧溝Aa1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。一方、下側の動圧溝Aa2は軸方向対称に形成され、その上下領域の軸方向寸法はそれぞれ上記軸方向寸法X2と等しくなっている。かかる構成により、軸部材2の回転時には、スリーブ部7aの内周面7a1と軸部2aの外周面2a1との間に介在する潤滑油が下方に押し込まれる(ポンピング能力のアンバランス)。なお、ラジアル動圧発生部は、対向する軸部2aの外周面2a1に形成しても良い。   As shown in FIG. 3A, cylindrical radial bearing surfaces A1 and A2 forming radial bearing gaps between the inner peripheral surface 7a1 of the sleeve portion 7a and the outer peripheral surface 2a1 of the opposed shaft portion 2a are provided. They are provided separately at two axial positions. From the viewpoint of improving the width accuracy of the radial bearing gap, that is, the bearing performance of the radial bearing portions R1 and R2, the cylindricity of the radial bearing surfaces A1 and A2 is respectively set to 0.7 μm or less. Radial dynamic pressure generating portions formed by arranging a plurality of dynamic pressure grooves Aa1 and Aa2 in a herringbone shape are formed on the radial bearing surfaces A1 and A2, respectively. In the present embodiment, the upper dynamic pressure groove Aa1 is formed to be axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axis in the upper region from the axial center m. The direction dimension X1 is larger than the axial direction dimension X2 of the lower region. On the other hand, the lower dynamic pressure groove Aa2 is formed symmetrically in the axial direction, and the axial dimensions of the upper and lower regions thereof are equal to the axial dimension X2. With this configuration, when the shaft member 2 rotates, the lubricating oil interposed between the inner peripheral surface 7a1 of the sleeve portion 7a and the outer peripheral surface 2a1 of the shaft portion 2a is pushed downward (unbalanced pumping ability). In addition, you may form a radial dynamic pressure generation | occurrence | production part in the outer peripheral surface 2a1 of the axial part 2a which opposes.

スリーブ部7aの下側端面7a2には、対向するフランジ部2bの上側端面2b1との間に第2スラスト軸受部T2のスラスト軸受隙間を形成する環状のスラスト軸受面Bが設けられ、該スラスト軸受面Bにはスラスト動圧発生部が形成される。スラスト動圧発生部は、図3(b)に示すように、スパイラル形状に配列された複数の動圧溝Baと、これを区画する図中クロスハッチングで示す丘部とを円周方向で交互に配して構成される。このスラスト動圧発生部は、対向するフランジ部2bの上側端面2b1に形成しても良い。   The lower end surface 7a2 of the sleeve portion 7a is provided with an annular thrust bearing surface B that forms a thrust bearing gap of the second thrust bearing portion T2 between the upper end surface 2b1 of the opposing flange portion 2b, and the thrust bearing. A thrust dynamic pressure generating portion is formed on the surface B. As shown in FIG. 3 (b), the thrust dynamic pressure generating portion alternately includes a plurality of dynamic pressure grooves Ba arranged in a spiral shape and hill portions shown by cross-hatching in the drawing to divide the grooves in the circumferential direction. Arranged. The thrust dynamic pressure generating portion may be formed on the upper end surface 2b1 of the opposing flange portion 2b.

シール部7bの内周面にはシール面7b1が設けられ、このシール面7b1と対向する軸部2aの外周面2a1との間に、上端が大気に開放し、下端がラジアル軸受隙間に通じたシール隙間Sが形成される。軸部2aの外周面2a1は径一定の円筒面状に形成される一方、シール面7b1は下方に向かって漸次縮径したテーパ面状に形成される。従って、シール隙間Sは下方に向けて隙間幅を漸次縮小させたテーパ形状を呈する。   A seal surface 7b1 is provided on the inner peripheral surface of the seal portion 7b. Between the seal surface 7b1 and the outer peripheral surface 2a1 of the shaft portion 2a facing the seal surface 7b1, the upper end opens to the atmosphere and the lower end communicates with the radial bearing gap. A seal gap S is formed. The outer peripheral surface 2a1 of the shaft portion 2a is formed in a cylindrical surface shape having a constant diameter, while the seal surface 7b1 is formed in a tapered surface shape whose diameter is gradually reduced downward. Accordingly, the seal gap S has a tapered shape in which the gap width is gradually reduced downward.

固定部7cの内周面7c1には、金属材料で円盤状に形成された蓋部材8が圧入、接着、圧入接着等の適宜の手段(ここでは圧入接着)で固定される。蓋部材8の上側端面8a1には、対向するフランジ部2bの下側端面2b2との間に第1スラスト軸受部T1のスラスト軸受隙間を形成する環状のスラスト軸受面Cが設けられ、該スラスト軸受面Cにはスラスト動圧発生部が形成される。本実施形態において、スラスト動圧発生部は図4に示すようなヘリングボーン形状であり、V字状に屈曲した複数の動圧溝Caと、これを区画する図中クロスハッチングで示す凸状の丘部とを円周方向で交互に配して構成される。このスラスト動圧発生部は、対向するフランジ部2bの下側端面2b2に形成しても良い。   A lid member 8 formed of a metal material in a disc shape is fixed to the inner peripheral surface 7c1 of the fixing portion 7c by appropriate means such as press-fitting, bonding, and press-fitting adhesion (here, press-fitting adhesion). The upper end surface 8a1 of the lid member 8 is provided with an annular thrust bearing surface C that forms a thrust bearing gap of the first thrust bearing portion T1 between the opposed lower end surface 2b2 of the flange portion 2b, and the thrust bearing. A thrust dynamic pressure generating portion is formed on the surface C. In the present embodiment, the thrust dynamic pressure generating portion has a herringbone shape as shown in FIG. 4, and has a plurality of dynamic pressure grooves Ca bent in a V shape and a convex shape shown by cross hatching in the drawing to partition the dynamic pressure grooves Ca. The hills are arranged alternately in the circumferential direction. The thrust dynamic pressure generating portion may be formed on the lower end surface 2b2 of the opposing flange portion 2b.

以上の構成からなる軸受部材7は、焼結金属の多孔質体、特に銅を主成分とする焼結金属の多孔質体で形成される。この軸受部材7のうち、シール面7b1および外部に露出した面(ここでは、シール部7bの上端面と外周面、スリーブ部7aの外周面、固定部7cの外周面と下端面と内周チャンファ)には、これらの面の表面開孔を封止する封孔部9が形成される。一方、ラジアル軸受面A1,A2が設けられたスリーブ部7aの内周面7a1や、スラスト軸受面Bが設けられたスリーブ部7aの下側端面7a2には封孔部9を形成しない。ラジアル軸受面A1,A2やスラスト軸受面Bの表面開孔からの潤滑油の滲み出しを可能とし、ラジアル軸受隙間および第2スラスト軸受隙間に形成される油膜の破断(いわゆる油膜切れ)を防止するためである。   The bearing member 7 having the above configuration is formed of a sintered metal porous body, particularly a sintered metal porous body mainly composed of copper. Of the bearing member 7, a seal surface 7b1 and a surface exposed to the outside (here, an upper end surface and an outer peripheral surface of the seal portion 7b, an outer peripheral surface of the sleeve portion 7a, an outer peripheral surface and a lower end surface of the fixing portion 7c, and an inner peripheral chamfer) ) Is formed with a sealing portion 9 for sealing the surface openings of these surfaces. On the other hand, the sealing portion 9 is not formed on the inner peripheral surface 7a1 of the sleeve portion 7a provided with the radial bearing surfaces A1 and A2 or the lower end surface 7a2 of the sleeve portion 7a provided with the thrust bearing surface B. The lubricating oil can ooze out from the surface openings of the radial bearing surfaces A1 and A2 and the thrust bearing surface B, and the oil film formed in the radial bearing gap and the second thrust bearing gap is prevented from breaking (so-called oil film breakage). Because.

なお、後述するように、本実施形態では、上記の各面上に形成した樹脂被膜で封孔部9が構成される。かかる封孔部9を固定部7cの内周面7c1に形成すると、蓋部材8を固定部7cの内周面7c1に接着(圧入接着)する本実施形態においては、蓋部材8と軸受部材7との間に十分な接着力を確保することができないおそれがある。かかる観点から、固定部7cの内周面7c1に封孔部9を形成していない。但し、例えば、めっき処理や目潰し処理を施すことで封孔部9を形成する場合には、蓋部材8と軸受部材7との間に十分な接着強度を確保することができるので、固定部7cの内周面7c1に封孔部9を形成しても構わない。   As will be described later, in the present embodiment, the sealing portion 9 is constituted by the resin film formed on each of the above surfaces. In the present embodiment in which the sealing member 9 is formed on the inner peripheral surface 7c1 of the fixing portion 7c, the lid member 8 is bonded (press-fit) to the inner peripheral surface 7c1 of the fixing portion 7c. There is a possibility that sufficient adhesive force cannot be secured between the two. From this viewpoint, the sealing portion 9 is not formed on the inner peripheral surface 7c1 of the fixing portion 7c. However, for example, when the sealing portion 9 is formed by performing a plating process or a crushing process, a sufficient adhesive strength can be ensured between the lid member 8 and the bearing member 7. The sealing portion 9 may be formed on the inner peripheral surface 7c1.

本実施形態において、封孔部9は、シール面7b1および外部に露出した面を覆うような被膜状に形成される。被膜状の封孔部9は、上記の各面上に、例えばエポキシ系樹脂、フェノール樹脂、メラミン樹脂等の熱硬化性樹脂をベース樹脂とし、これに少なくとも導電性充填材を適量配合した樹脂材料を適宜の手段で塗布した後、これを硬化させることで形成される。ベース樹脂に配合する導電性充填材に特段限定はないが、例えば、カーボン繊維、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉等の繊維状又は粉末状のものが使用可能である。このように、導電性充填材を含む樹脂材料で被膜状の封孔部9を形成することにより、封孔部9が導電性を有するものとなる。   In the present embodiment, the sealing portion 9 is formed in a film shape that covers the sealing surface 7b1 and the surface exposed to the outside. The film-shaped sealing portion 9 is a resin material in which a thermosetting resin such as an epoxy resin, a phenol resin, or a melamine resin is used as a base resin on each of the surfaces, and an appropriate amount of a conductive filler is blended therein. Is applied by an appropriate means and then cured. The conductive filler to be blended with the base resin is not particularly limited, but for example, fibrous or powdery materials such as carbon fiber, carbon black, graphite, carbon nanomaterial, and metal powder can be used. Thus, the sealing part 9 has electroconductivity by forming the film-form sealing part 9 with the resin material containing a conductive filler.

さらに、軸受部材7は、その気孔率が部分的に異なっている。ここでは、軸受部材7のうち、ラジアル軸受面A1,A2やスラスト軸受面Bが設けられたスリーブ部7aの内径側領域の気孔率を相対的に高くする一方、その他の領域の気孔率を相対的に小さくしている。なお、気孔率とは、軸受部材7の単位体積当たりに占める各内部空孔の容積の総和の割合をいい、以下の数式によって算出される。
気孔率[%]=100−密度比[%]={1−(ρ1/ρ0)}×100
ρ1:軸受部材7の密度 ρ0:軸受部材7と同一組成の物質の真密度
Furthermore, the porosity of the bearing member 7 is partially different. Here, among the bearing members 7, the porosity of the inner diameter side region of the sleeve portion 7a provided with the radial bearing surfaces A1 and A2 and the thrust bearing surface B is relatively increased, while the porosity of the other regions is relatively set. It is made small. The porosity is the ratio of the total volume of the internal holes per unit volume of the bearing member 7 and is calculated by the following mathematical formula.
Porosity [%] = 100−Density ratio [%] = {1− (ρ1 / ρ0)} × 100
ρ1: density of the bearing member 7 ρ0: true density of the material having the same composition as the bearing member 7

本実施形態では、軸受部材7のうち、外径側領域の内部空孔に封孔材を含浸させ、これを固化させることによって上記構成を得ている。封孔材は、流体軸受装置1の使用温度範囲内で溶融しないもの(固体の状態を保っているもの)であれば特段限定はなく、例えば、錫合金や亜鉛合金などの低融点金属、低融点ガラス、樹脂材料が使用可能である。   In the present embodiment, the above-described configuration is obtained by impregnating the inner hole in the outer diameter side region of the bearing member 7 with the sealing material and solidifying it. The sealing material is not particularly limited as long as it does not melt within the operating temperature range of the hydrodynamic bearing device 1 (maintains a solid state). For example, a low melting point metal such as a tin alloy or a zinc alloy, Melting glass and resin material can be used.

上記の構成を具備する軸受部材7は、例えば次のようにして製作される。   The bearing member 7 having the above configuration is manufactured, for example, as follows.

まず、銅粉末を主成分とする原料粉を圧粉して圧粉体を得た後、この圧粉体を焼結して焼結体を得る。次いで、焼結体にサイジングを施して、焼結体の各面の面精度や各部の寸法精度を所定の精度に矯正すると共に、焼結体のうちでラジアル軸受面A1,A2およびスラスト軸受面Bとなる部分にそれぞれ動圧発生部を型成形し、完成品形状をなす軸受部材7を得る。次いで、この軸受部材7の外径側領域の内部空孔に封孔材を含浸させ、含浸させた封孔材を固化させる。これにより、気孔率を部分的に異ならせた、詳細には、スリーブ部7aの内径側領域で相対的に気孔率が高くその他の領域で相対的に気孔率が低い軸受部材7が得られる。その後、この軸受部材7のうち、シール面7b1と外部に露出する面とに封孔部9を形成することにより、図2および図3に示す軸受部材7が完成する。但し、封孔部9のうち、軸受部材7の外周面を構成する部分は、軸受部材7の外周面の円筒度が10μm以下となるように仕上げる。モータブラケット6に対する固定精度を確保するためである。   First, a raw powder mainly composed of copper powder is compacted to obtain a green compact, and then the green compact is sintered to obtain a sintered body. Next, the sintered body is sized so that the surface accuracy of each surface of the sintered body and the dimensional accuracy of each part are corrected to a predetermined accuracy, and the radial bearing surfaces A1 and A2 and the thrust bearing surface among the sintered bodies A dynamic pressure generating portion is molded in each of the portions to be B to obtain a bearing member 7 having a finished product shape. Next, a sealing material is impregnated into the internal holes of the outer diameter side region of the bearing member 7, and the impregnated sealing material is solidified. As a result, the bearing member 7 having a partially different porosity, specifically, a relatively high porosity in the inner diameter side region of the sleeve portion 7a and a relatively low porosity in the other regions is obtained. Then, the sealing member 7 shown in FIG. 2 and FIG. 3 is completed by forming the sealing part 9 in the sealing surface 7b1 and the surface exposed to the outside of the bearing member 7. However, the part which comprises the outer peripheral surface of the bearing member 7 among the sealing parts 9 is finished so that the cylindricity of the outer peripheral surface of the bearing member 7 may be 10 micrometers or less. This is to secure the fixing accuracy with respect to the motor bracket 6.

以上のようにして製作された軸受部材7は組立工程に供給され、軸部材2および蓋部材8が組み付けられる。蓋部材8の組み付けに際しては、まず、軸受部材7の内周に軸部材2を挿入した状態で、軸受部材7の固定部7cの内周面7c1あるいは蓋部材8の外周面に接着剤を塗布し、固定部7cの内周面7c1に蓋部材8の外周面を嵌合(圧入)する。そのまま蓋部材8を押し進め、フランジ部2bの両端面2b1,2b2に、軸受部材7のスリーブ部7aの下側端面7a2及び蓋部材8の上側端面8a1をそれぞれ当接させる(すなわち両スラスト軸受隙間の隙間幅を0にする)。次いで、両スラスト軸受隙間の隙間幅の合計量分だけ軸部材2を押し下げて蓋部材8の軸方向の位置決めを行った後、軸受部材7と蓋部材8との間に介在する接着剤を固化させる。これにより、蓋部材8の組み付けとスラスト軸受隙間の幅設定、すなわち流体軸受装置1の組立が完了する。組立完了後、軸受部材7の内部空孔を含め、流体軸受装置1の内部空間に流体としての潤滑油を満たすことにより、図2に示す流体軸受装置1が完成する。   The bearing member 7 manufactured as described above is supplied to the assembly process, and the shaft member 2 and the lid member 8 are assembled. When the cover member 8 is assembled, first, an adhesive is applied to the inner peripheral surface 7 c 1 of the fixing portion 7 c of the bearing member 7 or the outer peripheral surface of the cover member 8 with the shaft member 2 inserted into the inner periphery of the bearing member 7. Then, the outer peripheral surface of the lid member 8 is fitted (press-fitted) into the inner peripheral surface 7c1 of the fixed portion 7c. The lid member 8 is pushed forward as it is, and the lower end surface 7a2 of the sleeve portion 7a of the bearing member 7 and the upper end surface 8a1 of the lid member 8 are brought into contact with both end surfaces 2b1, 2b2 of the flange portion 2b (that is, both thrust bearing gaps). Set the gap width to 0). Next, after the shaft member 2 is pushed down by the total amount of the clearance widths of the thrust bearing gaps to position the lid member 8 in the axial direction, the adhesive interposed between the bearing member 7 and the lid member 8 is solidified. Let Thereby, the assembly of the lid member 8 and the setting of the width of the thrust bearing gap, that is, the assembly of the hydrodynamic bearing device 1 is completed. After the assembly is completed, the hydrodynamic bearing device 1 shown in FIG. 2 is completed by filling the internal space of the hydrodynamic bearing device 1 including the internal holes of the bearing member 7 with lubricating oil as a fluid.

以上の構成からなる流体軸受装置1において、軸部材2が回転すると、スリーブ部7aの内周面7a1の上下2箇所に離隔して設けたラジアル軸受面A1,A2と、これに対向する軸部2aの外周面2a1との間にそれぞれラジアル軸受隙間が形成される。そして軸部材2の回転に伴って両ラジアル軸受隙間の油膜圧力が動圧溝Aa1,Aa2の動圧作用によって高められ、その結果、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離隔形成される。これと同時に、フランジ部2bの下側端面2b2と蓋部材8の上側端面8a1に設けたスラスト軸受面Cとの間、およびスリーブ部7bの下側端面7b2に設けられたスラスト軸受面Bとフランジ部2bの上側端面2b1との間に、それぞれ第1および第2スラスト軸受隙間が形成される。そして、軸部材2の回転に伴って両スラスト軸受隙間の油膜圧力が動圧溝Ca,Baの動圧作用によってそれぞれ高められ、その結果、軸部材2をスラスト一方向に非接触支持する第1スラスト軸受部T1とスラスト他方向に支持する第2スラスト軸受部T2が形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the radial bearing surfaces A1 and A2 provided at two positions above and below the inner peripheral surface 7a1 of the sleeve portion 7a, and the shaft portion opposed thereto A radial bearing gap is formed between the outer peripheral surface 2a1 of 2a. As the shaft member 2 rotates, the oil film pressure in the radial bearing gaps is increased by the dynamic pressure action of the dynamic pressure grooves Aa1 and Aa2, and as a result, the radial bearing portion R1, which supports the shaft member 2 in a non-contact manner in the radial direction. R2 is formed separately at two axial positions. At the same time, between the lower end surface 2b2 of the flange portion 2b and the thrust bearing surface C provided on the upper end surface 8a1 of the lid member 8, and the thrust bearing surface B and flange provided on the lower end surface 7b2 of the sleeve portion 7b. First and second thrust bearing gaps are respectively formed between the upper end surface 2b1 of the portion 2b. As the shaft member 2 rotates, the oil film pressure in the thrust bearing gaps is increased by the dynamic pressure action of the dynamic pressure grooves Ca and Ba. As a result, the shaft member 2 is contactlessly supported in one thrust direction. A thrust bearing portion T1 and a second thrust bearing portion T2 that supports the thrust in the other direction are formed.

また、シール隙間Sが、軸受部材7の内部側に向かって径方向寸法を漸次縮小させたテーパ形状を呈しているため、シール隙間S内の潤滑油は毛細管力による引き込み作用によって軸受部材7の内部側に引き込まれる。さらに、シール隙間Sは、軸受部材7の内部空間を満たす潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で潤滑油の油面を常にシール隙間S内に保持する。これらの構成から、軸受部材7内部からの潤滑油漏れが効果的に防止される。   Further, since the seal gap S has a tapered shape in which the radial dimension is gradually reduced toward the inner side of the bearing member 7, the lubricating oil in the seal gap S is drawn into the bearing member 7 by a capillary action. It is drawn inside. Further, the seal gap S has a buffer function that absorbs the volume change accompanying the temperature change of the lubricating oil filling the internal space of the bearing member 7, and always keeps the oil level of the lubricating oil within the range of the assumed temperature change. Hold in the seal gap S. From these configurations, lubricating oil leakage from the bearing member 7 is effectively prevented.

図5に拡大して示すように、軸部材2には、フランジ部2bの上側端面2b1と下側端面2b2とに開口する連通路10が設けられる。このような連通路10を設けることにより、軸部材2の回転中には連通路10を介して第1スラスト軸受隙間と第2スラスト軸受隙間との間で潤滑油を流通させることができる。これにより、第1スラスト軸受隙間と第2スラスト軸受隙間との間で圧力バランス(特にモータ起動時の圧力バランス)をとることができる。   As shown in FIG. 5 in an enlarged manner, the shaft member 2 is provided with a communication passage 10 that opens to the upper end surface 2b1 and the lower end surface 2b2 of the flange portion 2b. By providing such a communication path 10, the lubricating oil can be circulated between the first thrust bearing gap and the second thrust bearing gap via the communication path 10 during rotation of the shaft member 2. Thereby, pressure balance (especially pressure balance at the time of motor starting) can be taken between the first thrust bearing gap and the second thrust bearing gap.

図5に示す連通路10は、径方向部10a及び軸方向部10bを有するもので、動圧溝Ba,Caが設けられたスラスト軸受面B,Cを避けてこれらの内径側に開口させるため、屈曲した形状をなしている。より詳細には、径方向部10aの外径端がフランジ部2bの上側端面2b1、軸受部材7の内周チャンファ、および軸部2aの下端部に設けられたヌスミ部2a3で形成される空間に開口し、径方向部10aの内径端につながった軸方向部10bが軸部2aの小径部2a2の外周面に沿って延び、スラスト軸受面Cに設けたスラスト動圧発生部の内径側の空間に開口している。なお、連通路10は、円周方向の一箇所に設ける他、複数箇所に設けることもできる。   The communication passage 10 shown in FIG. 5 has a radial portion 10a and an axial portion 10b, so that the thrust bearing surfaces B and C provided with the dynamic pressure grooves Ba and Ca are avoided and opened to the inner diameter side thereof. It has a bent shape. More specifically, the outer diameter end of the radial direction portion 10a is in a space formed by the upper end surface 2b1 of the flange portion 2b, the inner peripheral chamfer of the bearing member 7, and the Nusumi portion 2a3 provided at the lower end portion of the shaft portion 2a. An axial portion 10b that is open and connected to the inner diameter end of the radial portion 10a extends along the outer peripheral surface of the small diameter portion 2a2 of the shaft portion 2a, and is a space on the inner diameter side of the thrust dynamic pressure generating portion provided on the thrust bearing surface C. Is open. In addition, the communication path 10 can be provided at a plurality of locations in addition to being provided at one location in the circumferential direction.

軸部材2の回転中は、軸方向の二箇所に離隔して設けたラジアル動圧発生部のポンピング能力のアンバランス(図3(a)参照)により、軸受部材7のスリーブ部7aの内周面7a1と軸部2aの外周面2a1との間の潤滑油が下方に押し込まれる。そのため、軸受内部の閉塞側の空間、特に第1スラスト軸受部T1のスラスト軸受隙間よりも内径側の空間で圧力が高くなる傾向にある。このような場合に、第1スラスト軸受部T1の動圧溝Caを従来品で多用されるポンプインタイプのスパイラル形状にすると、第1スラスト軸受隙間に介在する潤滑油が内径側に押し込まれるため、第1スラスト軸受隙間よりも内径側の空間の圧力増大を助長することになる。これを回避するため、第1スラスト軸受隙間に動圧作用を発生させる動圧溝Caは、上記のとおりへリングボーン形状(図4参照)にするのが望ましい。   During rotation of the shaft member 2, the inner periphery of the sleeve portion 7 a of the bearing member 7 is caused by an imbalance (see FIG. 3A) of the pumping ability of the radial dynamic pressure generating portions that are provided apart in two axial directions. Lubricating oil between the surface 7a1 and the outer peripheral surface 2a1 of the shaft portion 2a is pushed downward. For this reason, the pressure tends to increase in the space on the closed side inside the bearing, particularly in the space on the inner diameter side of the thrust bearing gap of the first thrust bearing portion T1. In such a case, if the dynamic pressure groove Ca of the first thrust bearing portion T1 is made into a pump-in type spiral shape often used in the conventional product, the lubricating oil interposed in the first thrust bearing gap is pushed into the inner diameter side. The pressure increase in the space on the inner diameter side than the first thrust bearing gap is promoted. In order to avoid this, it is desirable that the dynamic pressure groove Ca for generating a dynamic pressure action in the first thrust bearing gap has a herringbone shape (see FIG. 4) as described above.

以上に示すように、本発明の構成によれば、上記特許文献1においてハウジング、軸受スリーブ、およびシール部材という3つの部材で満足していた各種機能を単一の軸受部材7で満足することができる。そのため、部品点数や組立工数を低減して、流体軸受装置1の低コスト化を図ることができる。また、この軸受部材7を得る上で部材同士の組み付けが不要であり、焼結金属製とされる軸受部材7には温度変化に伴う形状(寸法)変動も殆ど生じないことから、高い軸受性能を安定的に維持することができる。   As described above, according to the configuration of the present invention, the single bearing member 7 can satisfy various functions that were satisfied by the three members of the housing, the bearing sleeve, and the seal member in Patent Document 1. it can. Therefore, the number of parts and the number of assembly steps can be reduced, and the cost of the hydrodynamic bearing device 1 can be reduced. Further, in order to obtain this bearing member 7, it is not necessary to assemble the members, and since the bearing member 7 made of sintered metal hardly changes in shape (dimension) due to temperature change, high bearing performance is achieved. Can be stably maintained.

また、軸受部材7が焼結金属の多孔質体で形成される構成上、シール部7bのシール面7b1に封孔処理等を施さない場合には、シール面7b1の表面開孔からシール隙間Sに潤滑油の滲み出しが生じて所期のシール性能を確保できないおそれがある。これに対し、本発明では、シール面7b1にも封孔部9を設けたことから、シール隙間Sへの潤滑油の滲み出しを防止して高いシール性能を安定的に維持することができる。   Further, because the bearing member 7 is formed of a sintered metal porous body, when the sealing surface 7b1 of the seal portion 7b is not subjected to a sealing treatment or the like, the seal gap S from the surface opening of the seal surface 7b1. As a result, the lubricating oil may ooze out and the desired sealing performance may not be ensured. On the other hand, in the present invention, since the sealing portion 7 is also provided in the seal surface 7b1, the seepage of the lubricating oil into the seal gap S can be prevented and high sealing performance can be stably maintained.

また、軸受部材7の気孔率を部分的に異ならせるようにしたので、軸受部材7の内部空孔で保持し得る潤滑油の総量を減じることができ、この油量低減分だけシール隙間Sの軸方向寸法を短縮することができる。そのため、流体軸受装置1の軸方向寸法を長大化することなくラジアル軸受部R1、R2のスパンを拡大して、軸受性能(特にモーメント剛性)を高めることができる。その一方、軸受部材7のうち、最も気孔率が高い領域(本実施形態では相対的に気孔率が高い領域)にラジアル軸受面A1,A2およびスラスト軸受面Bを設けたので、軸受運転中には、ラジアル軸受隙間や第2スラスト軸受隙間に対して潤滑油を積極的に滲み出させることができる。そのため、各軸受隙間に介在する潤滑油量不足に起因して油膜切れが生じるような事態を防止することができ、高い軸受性能を安定的に維持することができる。   In addition, since the porosity of the bearing member 7 is partially varied, the total amount of lubricating oil that can be held in the internal holes of the bearing member 7 can be reduced, and the seal gap S of the seal gap S can be reduced by this oil amount reduction. The axial dimension can be shortened. Therefore, the span of the radial bearing portions R1 and R2 can be expanded without increasing the axial dimension of the hydrodynamic bearing device 1, and the bearing performance (especially moment rigidity) can be enhanced. On the other hand, since the radial bearing surfaces A1 and A2 and the thrust bearing surface B are provided in the region having the highest porosity (the region having a relatively high porosity in the present embodiment) of the bearing member 7, during the bearing operation. Can positively exude the lubricating oil into the radial bearing gap and the second thrust bearing gap. For this reason, it is possible to prevent a situation in which the oil film runs out due to insufficient amount of lubricating oil interposed in the bearing gaps, and high bearing performance can be stably maintained.

なお、本願発明者が検証したところ、上記構成を採用することにより、シール隙間S(シール部7b)の軸方向寸法Lsは、流体軸受装置1の軸方向寸法(ここでは、軸受部材7の軸方向寸法)Lの17%以下にすることができる。例えば、上記特許文献1の構成では、シール隙間の軸方向寸法Lsが軸受部材の軸方向寸法Lの20%程度であるから、本発明の構成を採用することでシール隙間Sの軸方向寸法を十分に短縮することができる。   In addition, when this inventor verified, by employ | adopting the said structure, the axial direction dimension Ls of the seal | sticker clearance gap S (seal part 7b) is the axial direction dimension (here, the axis | shaft of the bearing member 7) of the fluid bearing apparatus 1. (Direction dimension) can be 17% or less of L. For example, in the configuration of Patent Document 1, since the axial dimension Ls of the seal gap is about 20% of the axial dimension L of the bearing member, the axial dimension of the seal gap S can be increased by adopting the configuration of the present invention. It can be shortened sufficiently.

ところで図1にも示すように、流体軸受装置1はモータブラケット6の内周に組み込んで使用される。このとき、軸受部材7の外周面の表面開孔を被膜状の封孔部9で封止した本実施形態において、被膜状の封孔部9を一般には絶縁材料である樹脂材料のみで形成すると、ディスクDの回転中に帯電した静電気を効率的に接地側に逃がすことができず、最悪の場合ディスククラッシュを招くおそれがある。これに対し、導電性充填材を含む樹脂材料で被膜状の封孔部9を形成することにより、軸受部材7の外周面の表面開孔を封止するようにしたので、ディスクDが回転することによって帯電した静電気を、軸部材2→軸受部材7→モータブラケット6という経路を介して確実に接地側に放電することができる。   Incidentally, as shown in FIG. 1, the hydrodynamic bearing device 1 is used by being incorporated in the inner periphery of the motor bracket 6. At this time, in the present embodiment in which the surface opening of the outer peripheral surface of the bearing member 7 is sealed with the film-shaped sealing portion 9, the film-shaped sealing portion 9 is generally formed only of a resin material that is an insulating material. The static electricity charged during the rotation of the disk D cannot be efficiently released to the ground side, which may cause a disk crash in the worst case. On the other hand, since the surface opening of the outer peripheral surface of the bearing member 7 is sealed by forming the film-shaped sealing portion 9 with a resin material containing a conductive filler, the disk D rotates. Thus, the charged static electricity can be reliably discharged to the ground side through the path of the shaft member 2 → the bearing member 7 → the motor bracket 6.

但し、軸受部材7をモータブラケット6に対して接着固定するような場合には、接着剤によって上記の導電経路が遮断されるおそれがあるため、必要に応じて軸受部材7の下端外径端部とモータブラケット6の下端内径端部とにまたがって適当な導電材を塗布し、導電性被膜を形成するのが望ましい。   However, when the bearing member 7 is bonded and fixed to the motor bracket 6, there is a possibility that the conductive path may be blocked by the adhesive. It is desirable to apply a suitable conductive material across the lower end inner diameter end of the motor bracket 6 and form a conductive coating.

上記の導電経路を確保する観点から言えば、封孔部9は、軸受部材7の上記所定面にめっき処理を施すことによって被膜状に形成することもできる。但し、封孔部9は、必ずしも被膜状に形成する必要はない。例えば、軸受部材7の上記所定面に目潰し処理を施すことにより、あるいは上記所定面の表層部分に封孔材を含浸させることにより、表面開孔を封止することができる。これらの場合には、モータブラケット6と焼結金属製とされる軸受部材7との間で導電経路を構成することができる。   From the viewpoint of securing the conductive path, the sealing portion 9 can be formed into a film by plating the predetermined surface of the bearing member 7. However, the sealing part 9 does not necessarily have to be formed in a film shape. For example, the surface opening can be sealed by applying a crushing process to the predetermined surface of the bearing member 7 or impregnating a surface layer portion of the predetermined surface with a sealing material. In these cases, a conductive path can be formed between the motor bracket 6 and the bearing member 7 made of sintered metal.

以上、本発明に係る流体軸受装置1の一実施形態について説明を行ったが、本発明はこれに限定されない。以下、本発明の他の実施形態について説明を行うが、以上で説明した流体軸受装置1と異なる点についてのみ詳細に説明を行い、実質的に同一の部材等には共通の参照番号を付して重複説明を省略する。   Although one embodiment of the hydrodynamic bearing device 1 according to the present invention has been described above, the present invention is not limited to this. Hereinafter, other embodiments of the present invention will be described, but only differences from the hydrodynamic bearing device 1 described above will be described in detail, and substantially the same members and the like will be denoted by common reference numerals. Therefore, duplicate explanation is omitted.

図6は、本発明の第2実施形態に係る流体軸受装置1を示すものである。同図に示す流体軸受装置1が図2に示すものと異なる主な点は、蓋部材8を軸受部材7の外周面に固定した点にある。詳細に述べると、蓋部材8を、円盤状のプレート部8aと、プレート部8aの外径端から上方に延びる円筒状の筒部8bとを一体に有するコップ状に形成し、筒部8bの内周面8b1を軸受部材7に設けた小径外周面7a3に固定している。なお、蓋部材8は、ステンレス鋼等の金属板をプレス加工することによってプレート部8aと筒部8bとを一体に有するコップ状に形成される。これにより、かかる形状の蓋部材8を低コストに製作することができる。   FIG. 6 shows a hydrodynamic bearing device 1 according to a second embodiment of the present invention. The main difference of the hydrodynamic bearing device 1 shown in FIG. 2 from that shown in FIG. 2 is that the lid member 8 is fixed to the outer peripheral surface of the bearing member 7. More specifically, the lid member 8 is formed in a cup shape integrally including a disk-shaped plate portion 8a and a cylindrical tube portion 8b extending upward from the outer diameter end of the plate portion 8a. The inner peripheral surface 8 b 1 is fixed to a small diameter outer peripheral surface 7 a 3 provided on the bearing member 7. The lid member 8 is formed in a cup shape integrally including the plate portion 8a and the cylindrical portion 8b by pressing a metal plate such as stainless steel. Thereby, the lid member 8 having such a shape can be manufactured at low cost.

このように、軸受部材7の外周面(ここでは小径外周面7a3)に蓋部材8を固定すれば、蓋部材8を軸受部材7の内周面に固定する場合(図2参照)に比べ、内周面と外周面の径差分だけ固定面積を増すことができるので、軸受部材7に対する蓋部材8の固定強度(蓋部材8の耐抜け強度)を高めることができる。この場合、蓋部材8には、軸受部材7の下端開口部を閉塞するプレート部8aと、小径外周面7a3に固定される筒部8bとが必要となるが、軸受部材7に対する蓋部材8の固定面積を拡大するには筒部8bを軸方向に長大化すれば足り、プレート部8aを厚肉化する必要がない。しかも、筒部8bを軸方向に長大化しても流体軸受装置1全体の軸方向寸法には影響しない。従って、流体軸受装置1の軸方向寸法やラジアル軸受部R1、R2の軸受スパンに影響を与えることなく、蓋部材8の耐抜け強度を高めることができる。   Thus, if the lid member 8 is fixed to the outer peripheral surface of the bearing member 7 (here, the small-diameter outer peripheral surface 7a3), compared to the case where the lid member 8 is fixed to the inner peripheral surface of the bearing member 7 (see FIG. 2), Since the fixed area can be increased by the difference in diameter between the inner peripheral surface and the outer peripheral surface, the fixing strength of the lid member 8 with respect to the bearing member 7 (the resistance to falling off of the lid member 8) can be increased. In this case, the lid member 8 requires a plate portion 8a that closes the lower end opening of the bearing member 7 and a cylindrical portion 8b that is fixed to the small-diameter outer peripheral surface 7a3. In order to increase the fixed area, it is sufficient to lengthen the cylindrical portion 8b in the axial direction, and it is not necessary to increase the thickness of the plate portion 8a. Moreover, even if the cylindrical portion 8b is elongated in the axial direction, the axial dimension of the entire hydrodynamic bearing device 1 is not affected. Therefore, it is possible to increase the slip-proof strength of the lid member 8 without affecting the axial dimension of the hydrodynamic bearing device 1 and the bearing spans of the radial bearing portions R1 and R2.

加えて、蓋部材8の筒部8bを、モータブラケット6に対する取り付け部として活用することができる。蓋部材8とモータブラケット6は何れも金属製であるので、両部材間で高い接着強度を得ることができる。従って、軸受部材7の外周面に樹脂被膜からなる封孔部9を形成する場合でも、流体軸受装置1がモータブラケット6から脱落するような事態を防止することができる。   In addition, the cylindrical portion 8 b of the lid member 8 can be used as an attachment portion for the motor bracket 6. Since both the lid member 8 and the motor bracket 6 are made of metal, high adhesive strength can be obtained between the two members. Therefore, even when the sealing portion 9 made of a resin film is formed on the outer peripheral surface of the bearing member 7, it is possible to prevent the fluid bearing device 1 from dropping from the motor bracket 6.

さらに、蓋部材8は金属材料で形成されているので、軸受装置の運転に伴ってディスクD等に帯電した静電気を、軸部材2→蓋部材8→モータブラケット6という経路を介して確実に接地側に放電することができる。蓋部材8とモータブラケット6とを接着固定する場合、接着剤(通常は絶縁体である)によって上記導電経路が遮断される事態を防止するため、必要に応じて、蓋部材8の下端の外径端とモータブラケット6の下端の内径端とに跨って導電材を塗布し、導電性被膜を形成する。このように蓋部材8で導電経路を構成すれば、軸受部材7の導電性が不要となるので、封孔部9を樹脂被膜で構成する場合であっても封孔部9自体に導電性は不要となる。そのため、封孔部9を形成する樹脂材料中への導電性充填材の配合を不要とし、あるいは配合量を少なくすることができる。これにより、被膜状の封孔部9を形成する際の材料コストを抑えることができる。   Further, since the lid member 8 is formed of a metal material, the static electricity charged to the disk D or the like with the operation of the bearing device is reliably grounded through the path of the shaft member 2 → the lid member 8 → the motor bracket 6. Can be discharged to the side. When the lid member 8 and the motor bracket 6 are bonded and fixed, in order to prevent a situation in which the conductive path is blocked by an adhesive (usually an insulator), the outer side of the lower end of the lid member 8 is removed as necessary. A conductive material is applied across the diameter end and the inner diameter end of the lower end of the motor bracket 6 to form a conductive coating. If the conductive path is constituted by the lid member 8 in this way, the conductivity of the bearing member 7 becomes unnecessary. Therefore, even if the sealing portion 9 is made of a resin film, the sealing portion 9 itself has no conductivity. It becomes unnecessary. Therefore, it is not necessary to mix the conductive filler in the resin material forming the sealing portion 9, or the blending amount can be reduced. Thereby, the material cost at the time of forming the film-form sealing part 9 can be suppressed.

図6に示す流体軸受装置1では、軸受部材7のうち、スリーブ部7aの内周面7a1に設けたラジアル軸受面A2の一部又は全部と、蓋部材8の筒部8bとが軸方向でオーバーラップしている。このような場合に金属製の蓋部材8の筒部8bを軸受部材7の外周面7a3に圧入すると、軸受部材7のラジアル軸受面A2に変形が生じ、ラジアル軸受部R2の軸受性能に悪影響を及ぼすおそれがある。そのため、蓋部材8の筒部8bは、軸受部材7の小径外周面7a3に対して隙間接着(筒部8bの内周面8b1と軸受部材7の小径外周面7a3との間に半径方向の隙間を形成し、この半径方向隙間を満たす接着剤で固定)している。これにより、ラジアル軸受部R2の軸受性能が低下するような事態を回避することができる。ラジアル軸受面A2に変形が生じないのであれば、軸受部材7の小径外周面7a3に蓋部材8の筒部8bを軽圧入するようにしても良い。   In the hydrodynamic bearing device 1 shown in FIG. 6, a part or all of the radial bearing surface A <b> 2 provided on the inner peripheral surface 7 a 1 of the sleeve portion 7 a and the cylindrical portion 8 b of the lid member 8 in the bearing member 7 are axial. It overlaps. In such a case, when the cylindrical portion 8b of the metal lid member 8 is press-fitted into the outer peripheral surface 7a3 of the bearing member 7, the radial bearing surface A2 of the bearing member 7 is deformed, which adversely affects the bearing performance of the radial bearing portion R2. There is a risk. Therefore, the cylindrical portion 8b of the lid member 8 is bonded to the small-diameter outer peripheral surface 7a3 of the bearing member 7 by a gap (a radial gap between the inner peripheral surface 8b1 of the cylindrical portion 8b and the small-diameter outer peripheral surface 7a3 of the bearing member 7). And fixed with an adhesive that fills the gap in the radial direction). Thereby, the situation where the bearing performance of radial bearing part R2 falls can be avoided. If the radial bearing surface A2 is not deformed, the cylindrical portion 8b of the lid member 8 may be lightly press-fitted into the small-diameter outer peripheral surface 7a3 of the bearing member 7.

なお、図6では、小径外周面7a3の表面開孔から潤滑油が滲み出すのを防止する観点から小径外周面7a3の軸方向全長に亘って封孔部9を形成しているが、小径外周面7a3のうちで蓋部材8の筒部8bが嵌合される領域には、必ずしも封孔部9を形成する必要はない。特に、蓋部材8を小径外周面7a3に接着固定する本実施形態において、この封孔部9を図2に示す第1実施形態と同様に樹脂被膜で構成する場合には、小径外周面7a3のうちで蓋部材8の嵌合領域にはむしろ封孔部9を形成しないのが望ましい。軸受部材7と蓋部材8との間に十分な接着強度を確保するためである。   In FIG. 6, the sealing portion 9 is formed over the entire axial length of the small-diameter outer peripheral surface 7a3 from the viewpoint of preventing the lubricating oil from seeping out from the surface opening of the small-diameter outer peripheral surface 7a3. It is not always necessary to form the sealing portion 9 in the region of the surface 7a3 where the cylindrical portion 8b of the lid member 8 is fitted. In particular, in the present embodiment in which the lid member 8 is bonded and fixed to the small-diameter outer peripheral surface 7a3, when the sealing portion 9 is formed of a resin film as in the first embodiment shown in FIG. 2, the small-diameter outer peripheral surface 7a3 Of these, it is desirable not to form the sealing portion 9 in the fitting region of the lid member 8. This is because sufficient adhesive strength is secured between the bearing member 7 and the lid member 8.

図7は、本発明の第3実施形態に係る流体軸受装置1を示すものである。同図に示す流体軸受装置1は、蓋部材8を軸受部材7の内周面に固定した点において図2に示す流体軸受装置1と共通しているが、気孔率が互いに異なる第1領域71と第2領域72とを一体化することによって軸受部材7を形成した点において図2に示す実施形態と構成を異にしている。   FIG. 7 shows a hydrodynamic bearing device 1 according to a third embodiment of the present invention. The hydrodynamic bearing device 1 shown in the figure is common to the hydrodynamic bearing device 1 shown in FIG. 2 in that the lid member 8 is fixed to the inner peripheral surface of the bearing member 7, but the first regions 71 having different porosities. 2 and the second region 72 are integrated to differ from the embodiment shown in FIG. 2 in that the bearing member 7 is formed.

具体的に述べると、第1領域71の気孔率は、第2領域72の気孔率よりも高く設定されている。第1領域71は、軸受部材7のスリーブ部7aの内径側一部領域を構成する円筒状を呈し、内周面には円筒状のラジアル軸受面A1,A2が軸方向に二箇所に離隔して設けられ、また下側端面には環状のスラスト軸受面Bが設けられている。ラジアル軸受面A1,A2、およびスラスト軸受面Bには、例えば図3(a)(b)に示すようなラジアル動圧発生部およびスラスト動圧発生部がそれぞれ形成されている。一方、第2領域72は、第1領域71と一体化されたときにシール部7bを構成する小径筒部72aと、スリーブ部7aの外径側一部領域および固定部7cを構成する大径筒部72bとを一体に有する断面略L字形状を呈し、封孔部9は、小径筒部72aで構成されるシール面7b1と外部に露出した面とに形成されている。   Specifically, the porosity of the first region 71 is set to be higher than the porosity of the second region 72. The first region 71 has a cylindrical shape constituting a partial region on the inner diameter side of the sleeve portion 7a of the bearing member 7, and cylindrical radial bearing surfaces A1 and A2 are spaced apart at two locations in the axial direction on the inner peripheral surface. An annular thrust bearing surface B is provided on the lower end surface. For example, a radial dynamic pressure generating portion and a thrust dynamic pressure generating portion as shown in FIGS. 3A and 3B are formed on the radial bearing surfaces A1 and A2 and the thrust bearing surface B, respectively. On the other hand, the second region 72 has a small diameter cylindrical portion 72a that constitutes the seal portion 7b when integrated with the first region 71, and a large diameter that constitutes the outer diameter side partial region of the sleeve portion 7a and the fixing portion 7c. It has a substantially L-shaped cross section integrally including a cylindrical portion 72b, and the sealing portion 9 is formed on a sealing surface 7b1 formed of a small diameter cylindrical portion 72a and a surface exposed to the outside.

以上の構成からなる軸受部材7は、例えば以下のようにして製造することができる。   The bearing member 7 having the above configuration can be manufactured, for example, as follows.

まず、図8に示すように、金属粉末を主成分とする原料粉末を圧縮成形し、相対的に高気孔率(低密度)の第1領域71に対応する第1圧粉体71’と、相対的に低気孔率(高密度)の第2領域72に対応する第2圧粉体72’とを個別に製作する。互いに密度の異なる圧粉体71’,72’は、例えば、互いに粒径の異なる原料粉末を用いることにより、あるいは同一の原料粉末を用いて圧縮率を互いに異ならせることにより得ることができる。この段階で、第1圧粉体71’にラジアル動圧発生部およびスラスト動圧発生部は形成されておらず、第2圧粉体72’に封孔部9は形成されていない。嵌合時における両圧粉体71’,72’の欠損等を防止すべく、第1圧粉体71’の外径寸法d1は、第2圧粉体72’の内径寸法d2以下に形成される。   First, as shown in FIG. 8, a raw powder mainly composed of metal powder is compression-molded, and a first green compact 71 ′ corresponding to a first region 71 having a relatively high porosity (low density), A second green compact 72 ′ corresponding to the second region 72 having a relatively low porosity (high density) is individually manufactured. The green compacts 71 ′ and 72 ′ having different densities can be obtained, for example, by using raw material powders having different particle sizes, or by using the same raw material powder and different compression ratios. At this stage, the radial dynamic pressure generating portion and the thrust dynamic pressure generating portion are not formed in the first green compact 71 ′, and the sealing portion 9 is not formed in the second green compact 72 ′. The outer diameter d1 of the first green compact 71 ′ is formed to be equal to or smaller than the inner diameter d2 of the second green compact 72 ′ in order to prevent the loss of both the green compacts 71 ′ and 72 ′ at the time of fitting. The

次いで、第2圧粉体72’の内周に第1圧粉体71’を嵌合した後、所定温度で加熱することにより第1圧粉体71’と第2圧粉体72’の互いに対向する面同士が焼結結合される。これにより、両圧粉体71’,72’が一体化してなり、かつ、第1圧粉体71’の配置領域の気孔率が、第2圧粉体72’の配置領域のそれよりも高い焼結体が得られる。次いで、上記の焼結体に寸法サイジングを施して各部の寸法等を矯正する。また、溝サイジングを施して、ラジアル動圧発生部およびスラスト動圧発生部をそれぞれ成形する。その後、焼結体の所定の面に封孔部9を形成することによって図7に示す軸受部材7が完成する。   Next, after the first green compact 71 ′ is fitted to the inner periphery of the second green compact 72 ′, the first green compact 71 ′ and the second green compact 72 ′ are mutually heated by heating at a predetermined temperature. Opposing surfaces are sinter bonded. As a result, both the green compacts 71 'and 72' are integrated, and the porosity of the arrangement area of the first green compact 71 'is higher than that of the arrangement area of the second green compact 72'. A sintered body is obtained. Next, dimension sizing is performed on the sintered body to correct the dimensions and the like of each part. Further, groove sizing is performed to form a radial dynamic pressure generating portion and a thrust dynamic pressure generating portion, respectively. Then, the sealing member 9 shown in FIG. 7 is completed by forming the sealing portion 9 on a predetermined surface of the sintered body.

以上のように、個別に製作した第1領域71と第2領域72とを一体化することによって焼結金属製の軸受部材7を形成すれば、各領域の気孔率(密度)の制御を容易かつ精度良く行うことが可能となる。そのため、ラジアル軸受面A1,A2およびスラスト軸受面Bが形成される第1領域71の内部空孔で十分量の潤滑油を保持可能とする一方、第2領域の内部空孔で保持可能な潤滑油の量を少なくした軸受部材7が容易に得られる。   As described above, if the bearing member 7 made of sintered metal is formed by integrating the individually manufactured first region 71 and second region 72, the porosity (density) of each region can be easily controlled. And it becomes possible to carry out with high precision. Therefore, a sufficient amount of lubricating oil can be held in the internal holes in the first region 71 where the radial bearing surfaces A1 and A2 and the thrust bearing surface B are formed, while lubrication that can be held in the internal holes in the second region. The bearing member 7 with a reduced amount of oil can be easily obtained.

以上では、ラジアル動圧発生部として動圧溝を設けることにより、ラジアル軸受部R1,R2を動圧軸受で構成した場合について説明を行ったが、ラジアル動圧発生部として多円弧面、ステップ面、および波状面を設けることにより、いわゆる多円弧軸受、ステップ軸受、および波型軸受等、公知のその他の動圧軸受でラジアル軸受部を構成することも可能である。また、ラジアル軸受隙間を介して対向する二面の双方を円筒面とした、いわゆる真円軸受でラジアル軸受部を構成することもできる。   In the above description, the case where the radial bearing portions R1 and R2 are configured by the dynamic pressure bearing by providing the dynamic pressure groove as the radial dynamic pressure generating portion has been described. However, as the radial dynamic pressure generating portion, a multi-arc surface, a step surface By providing the wavy surface, the radial bearing portion can be constituted by other known dynamic pressure bearings such as so-called multi-arc bearings, step bearings, and corrugated bearings. Moreover, a radial bearing part can also be comprised with what is called a perfect-circle bearing which made both two surfaces which oppose through a radial bearing clearance | interval the cylindrical surface.

また、以上では、スラスト動圧発生部として動圧溝を設けることにより両スラスト軸受部T1,T2を動圧軸受で構成した場合について説明を行ったが、スラスト軸受面にステップ面や波状面を設けることにより、いわゆるステップ軸受や波型軸受等、公知のその他の動圧軸受でスラスト軸受部T1,T2の何れか一方又は双方を構成することもできる。また、第1スラスト軸受部T1は、軸部材2の下端を接触支持するいわゆるピボット軸受で構成することもできる。この場合には、第2スラスト軸受部T2は基本的に不要となる。   In the above description, the case where both thrust bearing portions T1 and T2 are composed of dynamic pressure bearings by providing dynamic pressure grooves as thrust dynamic pressure generating portions has been described. However, a step surface or a wavy surface is provided on the thrust bearing surface. By providing, one or both of the thrust bearing portions T1 and T2 can be configured by other known dynamic pressure bearings such as so-called step bearings and wave bearings. The first thrust bearing portion T1 can also be configured by a so-called pivot bearing that contacts and supports the lower end of the shaft member 2. In this case, the second thrust bearing portion T2 is basically unnecessary.

以上では、軸部材2が回転側を構成し、軸受部材7が静止側を構成する流体軸受装置1に本発明を適用した場合について説明を行ったが、これとは逆に軸受部材7が回転側を構成し、軸部材2が静止側を構成するいわゆる軸固定型の流体軸受装置に本発明を適用することも可能である。詳細な図示は省略するが、軸固定型の流体軸受装置では、軸受部材にディスクハブ3が固定され、軸部材がモータブラケット6に固定される。   In the above description, the case where the present invention is applied to the hydrodynamic bearing device 1 in which the shaft member 2 constitutes the rotating side and the bearing member 7 constitutes the stationary side has been described. Conversely, the bearing member 7 rotates. It is also possible to apply the present invention to a so-called fixed shaft type hydrodynamic bearing device in which the shaft member 2 forms the stationary side. Although not shown in detail, in the shaft-fixed type hydrodynamic bearing device, the disk hub 3 is fixed to the bearing member, and the shaft member is fixed to the motor bracket 6.

1 流体軸受装置
2 軸部材
7 軸受部材
7b シール部
7b1 シール面
8 蓋部材
9 封孔部
A1、A2 ラジアル軸受面
B、C スラスト軸受面
S シール隙間
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
L 流体軸受装置の軸方向寸法
Ls シール隙間の軸方向寸法
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 7 Bearing member 7b Seal part 7b1 Seal surface 8 Lid member 9 Sealing part A1, A2 Radial bearing surface B, C Thrust bearing surface S Seal clearance R1, R2 Radial bearing part T1, T2 Thrust bearing part L Axial dimension of hydrodynamic bearing device Ls Axial dimension of seal gap

Claims (10)

内周にラジアル軸受面を有し、少なくとも軸方向の一端が開口した軸受部材と、軸受部材の内周に挿入された軸部材と、軸受部材のラジアル軸受面と軸部材の外周面との間に形成され、潤滑油で満たされたラジアル軸受隙間と、軸方向の一端がラジアル軸受隙間に通じ、軸受部材の一端開口部で潤滑油の油面を保持するシール隙間とを備える流体軸受装置において、
軸受部材が、シール隙間に面したシール面を有する焼結金属の多孔質体からなり、かつ、少なくともシール面と外部に露出した面の表面開孔を封止する封孔部を有することを特徴とする流体軸受装置。
A bearing member having a radial bearing surface on the inner periphery and having at least one axial end opening, a shaft member inserted in the inner periphery of the bearing member, and between the radial bearing surface of the bearing member and the outer peripheral surface of the shaft member In a hydrodynamic bearing device comprising a radial bearing gap formed in a cylinder and filled with lubricating oil, and a seal gap in which one end in the axial direction leads to the radial bearing gap and holds the oil level of the lubricating oil at one end opening of the bearing member ,
The bearing member is made of a sintered metal porous body having a seal surface facing the seal gap, and has a sealing portion that seals at least the surface opening of the seal surface and the surface exposed to the outside. Fluid bearing device.
封孔部を導電性被膜で構成した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the sealing portion is made of a conductive film. 軸受部材の気孔率を部分的に異ならせ、最も気孔率の高い領域にラジアル軸受面を設けた請求項1又は2記載の流体軸受装置。   3. The hydrodynamic bearing device according to claim 1, wherein the bearing member has a partially different porosity, and a radial bearing surface is provided in a region having the highest porosity. 軸受部材の軸方向の他端を開口させ、この他端開口部を閉塞する蓋部材で、軸部材をスラスト一方向に支持する第1スラスト軸受部を形成した請求項1〜3の何れか一項に記載の流体軸受装置。   The first thrust bearing portion that supports the shaft member in one thrust direction is formed by a lid member that opens the other end in the axial direction of the bearing member and closes the opening at the other end. The hydrodynamic bearing device according to item. 軸受部材の外周面に蓋部材を固定した請求項4記載の流体軸受装置。   The hydrodynamic bearing device according to claim 4, wherein a lid member is fixed to the outer peripheral surface of the bearing member. 蓋部材をプレス成形品とした請求項5記載の流体軸受装置。   The hydrodynamic bearing device according to claim 5, wherein the lid member is a press-formed product. さらに、軸部材をスラスト他方向に支持する第2スラスト軸受部を備え、
軸受部材が、第2スラスト軸受部のスラスト軸受隙間に面したスラスト軸受面を有する請求項4〜6の何れか一項に記載の流体軸受装置。
And a second thrust bearing portion for supporting the shaft member in the thrust other direction,
The hydrodynamic bearing device according to any one of claims 4 to 6, wherein the bearing member has a thrust bearing surface facing a thrust bearing gap of the second thrust bearing portion.
軸受部材の気孔率を部分的に異ならせ、最も気孔率の高い領域にスラスト軸受面を設けた請求項7記載の流体軸受装置。   The hydrodynamic bearing device according to claim 7, wherein the porosity of the bearing member is partially varied, and a thrust bearing surface is provided in a region having the highest porosity. シール隙間の軸方向寸法を、流体軸受装置の軸方向寸法の17%以下とした請求項1〜8の何れか一項に記載の流体軸受装置。   The hydrodynamic bearing device according to any one of claims 1 to 8, wherein an axial dimension of the seal gap is 17% or less of an axial dimension of the hydrodynamic bearing device. 軸受部材の外周面の円筒度が10μm以下、軸受部材のラジアル軸受面の円筒度が0.7μm以下である請求項1〜9の何れか一項に記載の流体軸受装置。   The hydrodynamic bearing device according to any one of claims 1 to 9, wherein a cylindricity of the outer peripheral surface of the bearing member is 10 µm or less, and a cylindricity of the radial bearing surface of the bearing member is 0.7 µm or less.
JP2009165866A 2009-07-14 2009-07-14 Fluid bearing device Pending JP2011021649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009165866A JP2011021649A (en) 2009-07-14 2009-07-14 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009165866A JP2011021649A (en) 2009-07-14 2009-07-14 Fluid bearing device

Publications (1)

Publication Number Publication Date
JP2011021649A true JP2011021649A (en) 2011-02-03

Family

ID=43631914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009165866A Pending JP2011021649A (en) 2009-07-14 2009-07-14 Fluid bearing device

Country Status (1)

Country Link
JP (1) JP2011021649A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150267741A1 (en) * 2014-03-24 2015-09-24 Tung Pei Industrial Co., Ltd. Hydrodynamic bearing structure for bearing cooling fan and method for assembling the same
EP3128192A4 (en) * 2014-04-04 2018-03-07 NTN Corporation Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
WO2019139007A1 (en) * 2018-01-11 2019-07-18 Ntn株式会社 Fluid dynamic bearing device and motor equipped with same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054636A (en) * 2000-08-11 2002-02-20 Sankyo Seiki Mfg Co Ltd Bearing device
JP2003314533A (en) * 2002-04-25 2003-11-06 Ntn Corp Fluid bearing device
JP2004245248A (en) * 2003-02-10 2004-09-02 Nippon Densan Corp Bearing mechanism, motor, and disk driving device
JP2007092992A (en) * 2005-08-26 2007-04-12 Matsushita Electric Ind Co Ltd Sleeve for hydrodynamic bearing device, hydrodynamic bearing device and spindle motor using the same, and method for manufacturing sleeve
JP2007255450A (en) * 2006-03-20 2007-10-04 Ntn Corp Dynamic pressure bearing device and method for manufacturing the same
JP2008039104A (en) * 2006-08-08 2008-02-21 Ntn Corp Fluid bearing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054636A (en) * 2000-08-11 2002-02-20 Sankyo Seiki Mfg Co Ltd Bearing device
JP2003314533A (en) * 2002-04-25 2003-11-06 Ntn Corp Fluid bearing device
JP2004245248A (en) * 2003-02-10 2004-09-02 Nippon Densan Corp Bearing mechanism, motor, and disk driving device
JP2007092992A (en) * 2005-08-26 2007-04-12 Matsushita Electric Ind Co Ltd Sleeve for hydrodynamic bearing device, hydrodynamic bearing device and spindle motor using the same, and method for manufacturing sleeve
JP2007255450A (en) * 2006-03-20 2007-10-04 Ntn Corp Dynamic pressure bearing device and method for manufacturing the same
JP2008039104A (en) * 2006-08-08 2008-02-21 Ntn Corp Fluid bearing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150267741A1 (en) * 2014-03-24 2015-09-24 Tung Pei Industrial Co., Ltd. Hydrodynamic bearing structure for bearing cooling fan and method for assembling the same
US9500227B2 (en) * 2014-03-24 2016-11-22 Tung Pei Industrial Co., Ltd. Hydrodynamic bearing structure for cooling fan and method for assembling the same
EP3128192A4 (en) * 2014-04-04 2018-03-07 NTN Corporation Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
US10167899B2 (en) 2014-04-04 2019-01-01 Ntn Corporation Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
WO2019139007A1 (en) * 2018-01-11 2019-07-18 Ntn株式会社 Fluid dynamic bearing device and motor equipped with same

Similar Documents

Publication Publication Date Title
JP5384014B2 (en) Sintered bearing
US8356938B2 (en) Fluid dynamic bearing apparatus
JP6100046B2 (en) Fluid dynamic bearing device and motor including the same
JP6189589B2 (en) Fluid dynamic bearing device and motor including the same
JP6422755B2 (en) Fluid dynamic bearing device and motor including the same
JP2011021649A (en) Fluid bearing device
JP3686630B2 (en) Hydrodynamic bearing device
JP2006316896A (en) Method for manufacturing oil-impregnated sintered bearing and oil-impregnated sintered bearing
JP5323620B2 (en) Sintered metal bearing for fluid dynamic bearing device, and fluid dynamic bearing device provided with the bearing
JP2008039104A (en) Fluid bearing device
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP5762837B2 (en) Fluid dynamic bearing device
JPH11182551A (en) Manufacture of hydrodynamic porous oil retaining bearing
JP4795116B2 (en) Hydrodynamic bearing device
JP2009228873A (en) Fluid bearing device
JP2010043666A (en) Dynamic pressure bearing device
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
JP5335304B2 (en) Fluid dynamic bearing device
JP7184583B2 (en) Intermediate manufacturer of hydrodynamic bearing devices, motors and bearings
JP5214401B2 (en) Hydrodynamic bearing device
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
CN116888373A (en) Sintered oil-impregnated bearing and fluid dynamic bearing device provided with same
JP2021001629A (en) Bearing member and fluid dynamic pressure bearing device including the same
WO2012172956A1 (en) Fluid dynamic bearing device
JP4134058B2 (en) Spindle motor for information equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130529