JP2009228873A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2009228873A
JP2009228873A JP2008078226A JP2008078226A JP2009228873A JP 2009228873 A JP2009228873 A JP 2009228873A JP 2008078226 A JP2008078226 A JP 2008078226A JP 2008078226 A JP2008078226 A JP 2008078226A JP 2009228873 A JP2009228873 A JP 2009228873A
Authority
JP
Japan
Prior art keywords
shaft member
peripheral surface
sleeve portion
inner peripheral
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008078226A
Other languages
Japanese (ja)
Inventor
Toshiaki Niwa
稔明 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008078226A priority Critical patent/JP2009228873A/en
Publication of JP2009228873A publication Critical patent/JP2009228873A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce manufacturing cost without deteriorating bearing performance in a fluid bearing device. <P>SOLUTION: A radial beating surface (a large diameter inner peripheral surface 8a1) and a first seal surface (a small diameter inner peripheral surface 8a2) are firmed in a sleeve 8, whereby a function conventionally performed by two members of a bearing sleeve and a seal member can be performed by one member. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ラジアル軸受隙間に形成される流体膜で、軸部材をラジアル方向で回転自在に支持する流体軸受装置に関する。   The present invention relates to a hydrodynamic bearing device that supports a shaft member rotatably in a radial direction with a fluid film formed in a radial bearing gap.

流体軸受装置は、その高回転精度および静粛性から、情報機器(例えばHDD)の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、若しくはMD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ用、プロジェクタのカラーホイールモータ用、又は電気機器の冷却等に使用されるファンモータなどの小型モータ用として使用されている。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is a magnetic disk drive device for information equipment (for example, HDD), an optical disk drive device such as a CD-ROM, CD-R / RW, DVD-ROM / RAM, or MD, For spindle motors of magneto-optical disk drive devices such as MO, for polygon scanner motors of laser beam printers (LBP), for color wheel motors of projectors, or for small motors such as fan motors used for cooling of electrical equipment, etc. It is used as

例えば特許文献1に示されている流体軸受装置は、下端に球面状凸部を有する軸部材と、内周に軸部材を挿入した軸受スリーブと、内周面に軸受スリーブを固定したコップ状のハウジングと、ハウジング開口部に設けられたシール部材とを備える。この流体軸受装置では、軸部材の外周面と軸受スリーブの内周面との間のラジアル軸受隙間に生じる流体膜で、軸部材をラジアル方向に非接触支持すると共に、軸部材の球面状凸部とハウジングの内底面に設けたスラストプレートとを接触摺動させることで、軸部材をスラスト方向に支持している。シール部材の内周面と軸部材の外周面との間には、軸受内部に満たされた潤滑油の外部への漏れ出しを防止するためのシール空間が形成される。   For example, the hydrodynamic bearing device shown in Patent Document 1 is a cup-shaped member in which a shaft member having a spherical convex portion at a lower end, a bearing sleeve having a shaft member inserted into an inner periphery, and a bearing sleeve fixed to an inner periphery surface. A housing and a seal member provided in the housing opening are provided. In this hydrodynamic bearing device, the fluid film generated in the radial bearing gap between the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing sleeve supports the shaft member in a non-contact manner in the radial direction, and the spherical convex portion of the shaft member. And the thrust plate provided on the inner bottom surface of the housing are slid in contact with each other, thereby supporting the shaft member in the thrust direction. Between the inner peripheral surface of the seal member and the outer peripheral surface of the shaft member, a seal space for preventing leakage of the lubricating oil filled in the bearing to the outside is formed.

特開2004−340183号公報JP 2004-340183 A

近年の情報機器の高性能化、高容量化に伴って、上記のような流体軸受装置の軸受剛性や回転精度等の軸受性能の向上が求められている。その一方で、情報機器の低価格化に伴って、上記のような流体軸受装置に対するコスト低減の要求も益々厳しくなっている。   With the recent increase in performance and capacity of information equipment, improvement in bearing performance such as bearing rigidity and rotational accuracy of the fluid dynamic bearing device as described above is required. On the other hand, along with the price reduction of information equipment, the demand for cost reduction of the hydrodynamic bearing device as described above has become increasingly severe.

本発明の課題は、流体軸受装置の軸受性能を低下させることなく、製造コストを低減することにある。   An object of the present invention is to reduce the manufacturing cost without deteriorating the bearing performance of the hydrodynamic bearing device.

前記課題を解決するために、本発明の流体軸受装置は、軸部材と、内周に軸部材を挿入したスリーブ部と、スリーブ部の内周面に設けられたラジアル軸受面と軸部材の外周面との間に形成されたラジアル軸受隙間と、スリーブ部の内周面に設けられた第1シール面と軸部材の外周面との間に形成され、軸受内部に満たされた潤滑流体の気液界面を毛細管力の引き込み作用で内部に保持する第1シール空間と、ラジアル軸受隙間に生じる流体膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材の端部と接触して軸部材をスラスト方向で支持するスラスト軸受部とを備える。   In order to solve the above-described problems, a hydrodynamic bearing device according to the present invention includes a shaft member, a sleeve portion in which the shaft member is inserted on the inner periphery, a radial bearing surface provided on the inner peripheral surface of the sleeve portion, and an outer periphery of the shaft member. Between the radial bearing gap formed between the bearing surface and the first seal surface provided on the inner peripheral surface of the sleeve portion and the outer peripheral surface of the shaft member. A first seal space that holds the liquid interface inside by pulling action of capillary force, a radial bearing that supports the shaft member in the radial direction with a fluid film generated in the radial bearing gap, and a shaft that contacts the end of the shaft member And a thrust bearing portion that supports the member in the thrust direction.

このように、本発明の流体軸受装置では、従来品(例えば上記特許文献1の流体軸受装置)の軸受スリーブ及びシール部材に相当する部材を、スリーブ部として一体化している。これにより、部品数を削減することができると共に、流体軸受装置の組立工数を削減することができるため、流体軸受装置の製造コストを低減することができる。   Thus, in the hydrodynamic bearing device of the present invention, the members corresponding to the bearing sleeve and the seal member of the conventional product (for example, the hydrodynamic bearing device of Patent Document 1 above) are integrated as a sleeve portion. As a result, the number of components can be reduced, and the number of assembling steps of the hydrodynamic bearing device can be reduced, so that the manufacturing cost of the hydrodynamic bearing device can be reduced.

この流体軸受装置では、例えば、軸部材に、大径部、小径部、及びこれらの間の肩面を設け、この肩面とスリーブ部とを軸方向で係合させることにより軸部材の抜け止めを行うことができる。また、スリーブ部の内周面に段差面を設け、この段差面と軸部材の肩面とを係合させることもできる。   In this hydrodynamic bearing device, for example, a shaft member is provided with a large-diameter portion, a small-diameter portion, and a shoulder surface therebetween, and the shoulder surface and the sleeve portion are engaged in the axial direction to prevent the shaft member from coming off. It can be performed. Further, a step surface can be provided on the inner peripheral surface of the sleeve portion, and the step surface can be engaged with the shoulder surface of the shaft member.

この場合、軸部材の肩面とスリーブ部との係合部における軸方向隙間δが、軸部材に許容される軸方向移動量となる。すなわち、軸方向隙間δが大きいと、軸部材の軸方向移動量が大きくなり、軸部材のガタツキが大きくなるため、軸方向隙間δはなるべく小さく設定することが好ましい。軸方向隙間δの設定は、例えば以下のように行われる。まず、軸部材の端部をスラスト軸受部と接触させた状態で、軸部材の肩面にスリーブ部を当接させる(図5参照)。その後、軸部材をスラスト軸受部から離反する方向に引っ張ることで、軸部材の肩面と係合させたスリーブ部を同方向に移動させる。こうして軸部材の引っ張り量で軸方向隙間δを設定することにより、スリーブ部や軸部材の寸法精度によらず、軸方向隙間δを高精度に設定することができる。例えば、上記のようにスリーブ部の内周面に段差面を設ける場合、この段差面を成形面とすれば、段差面の加工精度が高められ、軸方向隙間δをより高精度に設定することができる。上記のようにして軸方向隙間δを設定した場合、スリーブ部のスラスト軸受部側の端面は、スラスト方向で対向する面と非接触になっている(図2参照)。   In this case, the axial gap δ at the engaging portion between the shoulder surface of the shaft member and the sleeve portion is an axial movement amount allowed for the shaft member. That is, if the axial gap δ is large, the axial movement amount of the shaft member increases and the backlash of the shaft member increases. Therefore, it is preferable to set the axial gap δ as small as possible. The setting of the axial clearance δ is performed as follows, for example. First, the sleeve portion is brought into contact with the shoulder surface of the shaft member in a state where the end portion of the shaft member is in contact with the thrust bearing portion (see FIG. 5). Thereafter, the sleeve member engaged with the shoulder surface of the shaft member is moved in the same direction by pulling the shaft member in a direction away from the thrust bearing portion. Thus, by setting the axial gap δ by the amount of tension of the shaft member, the axial gap δ can be set with high accuracy regardless of the dimensional accuracy of the sleeve portion and the shaft member. For example, when a step surface is provided on the inner peripheral surface of the sleeve portion as described above, if this step surface is a molding surface, the processing accuracy of the step surface can be increased, and the axial clearance δ can be set with higher accuracy. Can do. When the axial clearance δ is set as described above, the end surface on the thrust bearing portion side of the sleeve portion is not in contact with the surface facing in the thrust direction (see FIG. 2).

このような流体軸受装置に衝撃荷重が加わると、軸部材の肩面とスリーブ部との接触部に大きな負荷が加わる。従って、スリーブ部のうち、軸部材の肩面と係合する部分には、表面硬化処理を施すことが望ましい。   When an impact load is applied to such a hydrodynamic bearing device, a large load is applied to the contact portion between the shoulder surface of the shaft member and the sleeve portion. Therefore, it is desirable to perform a surface hardening process on the portion of the sleeve portion that engages with the shoulder surface of the shaft member.

上記の流体軸受装置では、例えば、スリーブ部の外周面に第2シール面を設け、この第2シール面で第2シール空間を形成することができる。このように、スリーブ部の内周側の第1シール空間に加えて、スリーブ部の外周側に第2シール空間を形成することで、各シール空間の容積を縮小することができる。こうしてシール空間の軸方向寸法を縮小した分だけ、流体軸受装置を小型化することができる。あるいは、シール空間の軸方向寸法を縮小した分だけ、ラジアル軸受部の軸方向寸法を拡大して軸受剛性を高めることができる。   In the above hydrodynamic bearing device, for example, a second seal surface can be provided on the outer peripheral surface of the sleeve portion, and the second seal space can be formed by the second seal surface. Thus, in addition to the first seal space on the inner peripheral side of the sleeve portion, the volume of each seal space can be reduced by forming the second seal space on the outer peripheral side of the sleeve portion. Thus, the hydrodynamic bearing device can be downsized by the amount that the axial dimension of the seal space is reduced. Alternatively, the axial rigidity of the radial bearing portion can be increased by increasing the axial dimension of the seal space, and the bearing rigidity can be increased.

軸部材のスラスト軸受部側の端部が面する空間における圧力が、何らかの原因により過度に高まったり低下したりすると、軸受性能に悪影響を及ぼす恐れがある。そこで、この空間を、連通路を介して第2シール空間と連通すれば、圧力バランスを適性に保ち、上記不具合を回避することができる。   If the pressure in the space facing the end of the shaft member on the thrust bearing portion side excessively increases or decreases for some reason, the bearing performance may be adversely affected. Therefore, if this space is communicated with the second seal space via the communication path, the pressure balance can be kept appropriate and the above-mentioned problems can be avoided.

ところで、図7に示すスリーブ部8’は、ラジアル軸受面としての大径内周面8a1’、第1シール面としての小径内周面8a2’、及び段差面8a3’を有する。小径内周面8a2’は上方へ向けて漸次拡径したテーパ面であり、軸部材(図示省略)の外周面との間に楔形の第1シール空間を形成する第1シール面として機能する。このようなスリーブ部8’の内周面をコアロッド11’で成形しようとすると、図示のように両者の間にアンダーカットが生じるため、スリーブ部8’とコアロッド11’とを分離することが極めて困難となり、成形不能となる恐れがある。従って、このテーパ面状の小径内周面8a2’は、コアロッド以外の金型(例えば上パンチ)で成形したり、あるいは機械加工により形成せざるを得ず、加工精度の低下や加工コストの高騰を招くこととなる。   Incidentally, the sleeve portion 8 'shown in FIG. 7 has a large-diameter inner peripheral surface 8a1' as a radial bearing surface, a small-diameter inner peripheral surface 8a2 'as a first seal surface, and a step surface 8a3'. The small-diameter inner peripheral surface 8a2 'is a tapered surface that gradually increases in diameter upward, and functions as a first seal surface that forms a wedge-shaped first seal space with the outer peripheral surface of a shaft member (not shown). If an inner peripheral surface of such a sleeve portion 8 ′ is to be molded with the core rod 11 ′, an undercut occurs between the two as shown in the figure, and therefore it is extremely difficult to separate the sleeve portion 8 ′ and the core rod 11 ′. It may become difficult and may become impossible to mold. Accordingly, the tapered inner diameter surface 8a2 'having a tapered surface must be formed by a mold other than the core rod (for example, an upper punch) or formed by machining, resulting in a decrease in processing accuracy and an increase in processing cost. Will be invited.

そこで、本発明の流体軸受装置では、スリーブ部に、ラジアル軸受面としての大径内周面と、第1シール面としての小径内周面とを設けると共に、軸部材に、肩面から小径部へ向けて漸次縮径したテーパ面を設け、スリーブ部の小径内周面と軸部材のテーパ面との間に第1シール空間を形成する。これにより、スリーブ部の小径内周面を円筒面とすることができるため、スリーブ部の内周面をコアロッドで成形することができ、スリーブ部を高精度且つ低コストに加工することができる。   Therefore, in the hydrodynamic bearing device of the present invention, the sleeve portion is provided with a large-diameter inner peripheral surface as a radial bearing surface and a small-diameter inner peripheral surface as a first seal surface, and the shaft member is provided with a small-diameter portion from the shoulder surface. A tapered surface having a gradually reduced diameter is provided, and a first seal space is formed between the small diameter inner peripheral surface of the sleeve portion and the tapered surface of the shaft member. Thereby, since the small diameter inner peripheral surface of a sleeve part can be made into a cylindrical surface, the inner peripheral surface of a sleeve part can be shape | molded with a core rod, and a sleeve part can be processed with high precision and low cost.

また、上記の流体軸受装置において、軸受の内部空間の容積が増すと、軸受内部に満たされる潤滑流体の総量が増し、温度変化に伴う潤滑流体の体積変化が増大する。このため、潤滑流体の体積変化を吸収するシール空間の容積を拡大する必要が生じ、流体軸受装置の大型化を招くこととなる。そこで、本発明の流体軸受装置では、スリーブ部に、ラジアル軸受面としての小径内周面と、軸部材の大径部の外周面と対向する大径内周面とを設けている。すなわち、スリーブ部のスラスト軸受部側の端部を、軸部材の大径部の外径側まで延ばしている(図6参照)。これにより、軸受内部の空間の一部を埋め、軸受内部に満たされる潤滑流体を減らすことができるため、流体軸受装置の大型化を回避できる。   Further, in the above hydrodynamic bearing device, when the volume of the inner space of the bearing is increased, the total amount of the lubricating fluid filled in the bearing is increased, and the volume change of the lubricating fluid accompanying a temperature change is increased. For this reason, it is necessary to enlarge the volume of the seal space that absorbs the volume change of the lubricating fluid, which leads to an increase in size of the hydrodynamic bearing device. Therefore, in the hydrodynamic bearing device of the present invention, the sleeve portion is provided with a small-diameter inner peripheral surface as a radial bearing surface and a large-diameter inner peripheral surface facing the outer peripheral surface of the large-diameter portion of the shaft member. That is, the end of the sleeve portion on the thrust bearing portion side is extended to the outer diameter side of the large diameter portion of the shaft member (see FIG. 6). As a result, a part of the space inside the bearing can be filled and the lubricating fluid filled in the bearing can be reduced, so that an increase in size of the hydrodynamic bearing device can be avoided.

以上のように、本発明によれば、流体軸受装置の軸受性能を低下させることなく、製造コストを低減することができる。   As described above, according to the present invention, the manufacturing cost can be reduced without reducing the bearing performance of the fluid dynamic bearing device.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る流体軸受装置1を組込んだ情報機器用スピンドルモータである。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に取付けられたディスクハブ3と、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、モータブラケット6とを備えている。ステータコイル4はモータブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられている。流体軸受装置1は、モータブラケット6の内周に固定される。ディスクハブ3には、情報記録媒体としてのディスクDが1又は複数枚(図1では2枚)保持される。このスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、これに伴ってディスクハブ3およびディスクDが軸部材2と一体に回転する。   FIG. 1 is a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to an embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD. The spindle motor is supported by a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 attached to the shaft member 2, and a radial gap. And a stator coil 4 and a rotor magnet 5, and a motor bracket 6. The stator coil 4 is attached to the outer periphery of the motor bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 6. The disc hub 3 holds one or a plurality of discs D (two in FIG. 1) as information recording media. In this spindle motor, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force generated between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the disk D are connected to the shaft member 2. Rotates together.

流体軸受装置1は、図2に示すように、軸部材2と、内周に軸部材2を挿入したスリーブ部8と、スリーブ部8を内周に保持したハウジング7とを主に備える。尚、以下の説明において、軸方向でハウジング7の開口側を上側、閉口側を下側とする。   As shown in FIG. 2, the hydrodynamic bearing device 1 mainly includes a shaft member 2, a sleeve portion 8 in which the shaft member 2 is inserted on the inner periphery, and a housing 7 that holds the sleeve portion 8 on the inner periphery. In the following description, the opening side of the housing 7 is the upper side and the closing side is the lower side in the axial direction.

軸部材2は、例えばSUS鋼などの金属材料の旋削加工により形成される。本実施形態では、軸部材2は、大径部2aと、大径部2aの上側に設けられた小径部2bと、大径部2aと小径部2bとの間に設けられた肩面2cと、肩面2cから小径部2bに延び、上方へ向けて漸次縮径したテーパ面2dとを一体に有する。軸部材2の下端部には球面状凸部2a2が設けられる。   The shaft member 2 is formed by turning a metal material such as SUS steel. In the present embodiment, the shaft member 2 includes a large diameter portion 2a, a small diameter portion 2b provided above the large diameter portion 2a, and a shoulder surface 2c provided between the large diameter portion 2a and the small diameter portion 2b. The tapered surface 2d that extends from the shoulder surface 2c to the small-diameter portion 2b and gradually decreases in diameter upward is integrally formed. A spherical convex portion 2 a 2 is provided at the lower end portion of the shaft member 2.

スリーブ部8は、例えば銅を主成分とする焼結金属で形成され、大径内周面8a1と、小径内周面8a2と、これらの間に設けられた段差面8a3とを一体に有する。スリーブ部8の外周面8dはハウジング7の内周面7a1に圧入、接着、圧入接着、溶着等の適宜の手段で固定される。尚、スリーブ部8は焼結金属に限らず、他の金属や樹脂、あるいはセラミック等で形成することも可能である。   The sleeve portion 8 is formed of, for example, a sintered metal containing copper as a main component, and integrally includes a large-diameter inner peripheral surface 8a1, a small-diameter inner peripheral surface 8a2, and a step surface 8a3 provided therebetween. The outer peripheral surface 8d of the sleeve portion 8 is fixed to the inner peripheral surface 7a1 of the housing 7 by appropriate means such as press fitting, bonding, press fitting, welding. The sleeve portion 8 is not limited to a sintered metal, and can be formed of other metals, resins, ceramics, or the like.

スリーブ部8の大径内周面8a1はラジアル軸受面として機能し、軸部材2の大径部2aの外周面2a1とラジアル軸受隙間を介して対向する。大径内周面8a1には、ラジアル動圧発生部として、例えば図3に示すようなヘリングボーン形状の動圧溝8a11、8a12が軸方向に離隔した2箇所の領域に形成される。上側の動圧溝8a11は、丘部(図3にクロスハッチングで示す)の軸方向中間部の帯状部分に対して軸方向非対称に形成されており、帯状部分より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(X1>X2)。   The large-diameter inner peripheral surface 8a1 of the sleeve portion 8 functions as a radial bearing surface and faces the outer peripheral surface 2a1 of the large-diameter portion 2a of the shaft member 2 via a radial bearing gap. For example, herringbone-shaped dynamic pressure grooves 8a11 and 8a12 as shown in FIG. 3 are formed in two regions separated in the axial direction on the large-diameter inner peripheral surface 8a1 as radial dynamic pressure generating portions. The upper dynamic pressure groove 8a11 is formed to be axially asymmetric with respect to the belt-like portion of the middle portion in the axial direction of the hill (shown by cross-hatching in FIG. 3), and the axial dimension X1 of the upper region from the belt-like portion is It is larger than the axial dimension X2 of the lower region (X1> X2).

スリーブ部の小径内周面8a2は円筒面状に形成され、この面が第1シール面として機能する。小径内周面8a2は、軸部材2のテーパ面2dと対向し、これらの面の間に下方へ向けて半径方向寸法を漸次縮小させた断面楔形の第1シール空間S1が形成される。   The small-diameter inner peripheral surface 8a2 of the sleeve portion is formed in a cylindrical surface shape, and this surface functions as a first seal surface. The small-diameter inner peripheral surface 8a2 is opposed to the tapered surface 2d of the shaft member 2, and a wedge-shaped first seal space S1 having a radial dimension gradually reduced downward is formed between these surfaces.

スリーブ部8の段差面8a3は、軸部材2の肩面2cと軸方向隙間δを介して対向し、この軸方向隙間δが軸部材2の軸方向移動可能量となる。この段差面8a3と軸部材2の肩面2cとが軸方向で係合することにより、軸部材2の抜け止めが行われる。本実施形態のように、流体軸受装置1をHDDのスピンドルモータ用として使用する場合は、ディスクとヘッドとの干渉を防止するために、軸方向隙間δを30μm以下、好ましくは20μm以下に設定することが望ましい。尚、段差面8a3と軸部材2の肩面2cとの係合によるスリーブ部8の損傷を回避するために、スリーブ部8のうち、少なくとも段差面8a3に、DLC(ダイヤモンドライクカーボン)膜やMH(メタルハーディング)処理等による表面硬化処理を施すことが好ましい。   The stepped surface 8 a 3 of the sleeve portion 8 faces the shoulder surface 2 c of the shaft member 2 via an axial gap δ, and this axial gap δ becomes the axially movable amount of the shaft member 2. When the step surface 8a3 and the shoulder surface 2c of the shaft member 2 are engaged in the axial direction, the shaft member 2 is prevented from coming off. When the hydrodynamic bearing device 1 is used for an HDD spindle motor as in this embodiment, the axial gap δ is set to 30 μm or less, preferably 20 μm or less in order to prevent interference between the disk and the head. It is desirable. In order to avoid damage to the sleeve portion 8 due to the engagement between the step surface 8a3 and the shoulder surface 2c of the shaft member 2, at least the step surface 8a3 of the sleeve portion 8 has a DLC (diamond-like carbon) film or MH. It is preferable to perform a surface hardening treatment such as (metal harding) treatment.

スリーブ部8の下側端面8cは、スラスト方向で対向するハウジング7の内底面7b1と非接触となっている。スリーブ部8の上側端面8bには、撥油剤(例えば、含フッ素重合体)が塗布される。軸受内部に満たされた潤滑油が温度上昇により第1シール空間S1から溢れ出そうになった場合、撥油剤により潤滑油がスリーブ部8の上側端面8b側へ侵出することを防止できるため、潤滑油を第1シール空間S1内に保持できる。このとき、ハウジング7の側部7aの上端面7a2や、軸部材2の外周面にも撥油剤を塗布してもよい。また、スリーブ部8の上側端面8bに封孔処理を施せば、スリーブ部8の内部に含浸した潤滑油が、上側端面8bの表面開孔から外部へ漏れ出す事態を防止できる。   The lower end surface 8c of the sleeve portion 8 is not in contact with the inner bottom surface 7b1 of the housing 7 facing in the thrust direction. An oil repellent (for example, a fluoropolymer) is applied to the upper end surface 8 b of the sleeve portion 8. When the lubricating oil filled in the bearing is about to overflow from the first seal space S1 due to the temperature rise, the lubricating oil can be prevented from invading to the upper end face 8b side of the sleeve portion 8 by the oil repellent agent. Lubricating oil can be held in the first seal space S1. At this time, an oil repellent may be applied to the upper end surface 7 a 2 of the side portion 7 a of the housing 7 and the outer peripheral surface of the shaft member 2. In addition, if the upper end surface 8b of the sleeve portion 8 is sealed, it is possible to prevent the lubricating oil impregnated in the sleeve portion 8 from leaking out of the surface opening of the upper end surface 8b.

スリーブ部8は、例えば以下のようにして形成される。   The sleeve portion 8 is formed as follows, for example.

まず、金属粉末を圧粉成形した後、焼結することにより、およそスリーブ部8の形状をなした焼結体80を得る。本実施形態では、図4(a)に示すように、焼結体80の内周面に、大径内周面80a1、小径内周面80a2、及び段差面80a3が形成される。この焼結体80にサイジングを施すことにより、所定の寸法に成形される。具体的には、図4(a)に示すように、焼結体80の内周にコアロッド11を挿入する。コアロッド11は、大径外周面11aと、小径外周面11bと、肩面11cとを有する。コアロッド11の大径外周面11aには、スリーブ部8の大径内周面8a1に形成される動圧溝8a11、8a12に対応した成形部が設けられる(図示省略)。図4(a)に示す状態で、焼結体80とコアロッド11とは隙間嵌めの状態になっており、焼結体80の段差面80a3とコアロッド11の肩面11cは軸方向で係合している。尚、図4(a)では、理解の容易化のため、焼結体80とコアロッド11との間の隙間を誇張して示している。   First, the metal powder is compacted and then sintered to obtain a sintered body 80 having the shape of the sleeve portion 8. In the present embodiment, as shown in FIG. 4A, a large-diameter inner peripheral surface 80a1, a small-diameter inner peripheral surface 80a2, and a step surface 80a3 are formed on the inner peripheral surface of the sintered body 80. By sizing the sintered body 80, the sintered body 80 is formed into a predetermined size. Specifically, the core rod 11 is inserted into the inner periphery of the sintered body 80 as shown in FIG. The core rod 11 has a large-diameter outer peripheral surface 11a, a small-diameter outer peripheral surface 11b, and a shoulder surface 11c. The large-diameter outer peripheral surface 11a of the core rod 11 is provided with molding portions corresponding to the dynamic pressure grooves 8a11 and 8a12 formed in the large-diameter inner peripheral surface 8a1 of the sleeve portion 8 (not shown). In the state shown in FIG. 4A, the sintered body 80 and the core rod 11 are in a state of clearance fitting, and the stepped surface 80a3 of the sintered body 80 and the shoulder surface 11c of the core rod 11 are engaged in the axial direction. ing. In FIG. 4A, the gap between the sintered body 80 and the core rod 11 is exaggerated for easy understanding.

この焼結体80の上側端面80bを上方から上パンチ12で押さえ、この状態で焼結体80をダイ13の内周に圧入する(図4(b)参照)。これにより、焼結体80の大径内周面80a1、小径内周面80a2、及び段差面80a3が、それぞれコアロッド11の大径外周面11a、小径外周面11b、及び肩面11cに押し付けられ、ラジアル軸受面としての大径内周面8a1、第1シール面としての小径内周面8a2、及び段差面8a3が成形される。これと同時に、コアロッド11の大径外周面11aの成形部により、スリーブ部8の大径内周面8a1に動圧溝8a11、8a12が成形される。さらに、ダイ13、上パンチ12、及び下パンチ14により、それぞれスリーブ部8の外周面8d、上側端面8b、及び下側端面8cが成形される。その後、スリーブ部8、コアロッド11、及び上パンチ12をダイ13の内周から引き上げる。このとき、スリーブ部8の内周面がスプリングバックにより僅かに拡径し、スリーブ部8の内周面とコアロッド11の外周面との間に微小隙間が形成される。これにより、スリーブ部8に成形されたラジアル軸受面や動圧溝8a11、8a12を損傷することなく、スリーブ部8とコアロッド11とを分離することができる。   The upper end face 80b of the sintered body 80 is pressed from above by the upper punch 12, and in this state, the sintered body 80 is press-fitted into the inner periphery of the die 13 (see FIG. 4B). Thereby, the large diameter inner peripheral surface 80a1, the small diameter inner peripheral surface 80a2, and the stepped surface 80a3 of the sintered body 80 are pressed against the large diameter outer peripheral surface 11a, the small diameter outer peripheral surface 11b, and the shoulder surface 11c of the core rod 11, respectively. A large-diameter inner peripheral surface 8a1 as a radial bearing surface, a small-diameter inner peripheral surface 8a2 as a first seal surface, and a step surface 8a3 are formed. At the same time, the dynamic pressure grooves 8a11 and 8a12 are formed on the large-diameter inner peripheral surface 8a1 of the sleeve portion 8 by the forming portion of the large-diameter outer peripheral surface 11a of the core rod 11. Further, the outer peripheral surface 8d, the upper end surface 8b, and the lower end surface 8c of the sleeve portion 8 are formed by the die 13, the upper punch 12, and the lower punch 14, respectively. Thereafter, the sleeve portion 8, the core rod 11, and the upper punch 12 are pulled up from the inner periphery of the die 13. At this time, the inner peripheral surface of the sleeve portion 8 is slightly expanded in diameter by the spring back, and a minute gap is formed between the inner peripheral surface of the sleeve portion 8 and the outer peripheral surface of the core rod 11. Thereby, the sleeve part 8 and the core rod 11 can be separated without damaging the radial bearing surface and the dynamic pressure grooves 8a11, 8a12 formed on the sleeve part 8.

本実施形態では、上記のように、軸部材2にテーパ面2dを設けることで楔形の第1シール空間S1を設けている。従って、スリーブ部8の小径内周面8a2は円筒面状とすることができ、スリーブ部8とコアロッド11との間にアンダーカットは生じない(図4参照)。このため、スリーブ部8の大径内周面8a1、小径内周面8a2、及び段差面8a3をコアロッド11で一括成形することができ、これらの面を簡易且つ高精度に加工することができる。このように、ラジアル軸受面としての大径内周面8a1が高精度に加工されるため、ラジアル軸受隙間の幅精度が向上し、優れた軸受性能を得ることができる。また、第1シール面としての小径内周面8a2が高精度に加工されるため、第1シール空間S1の容積が高精度に設定され、シール性能を高めることができる。さらに、段差面8a3が高精度に加工されるため、軸方向隙間δを精度良く設定することができ、軸部材2の軸方向許容移動量を精度良く設定することができる。また、これらの面がコアロッド11で一括成形されることで、各面の相対的な位置も高精度に設定される。   In this embodiment, the wedge-shaped first seal space S1 is provided by providing the shaft member 2 with the tapered surface 2d as described above. Accordingly, the small-diameter inner peripheral surface 8a2 of the sleeve portion 8 can be a cylindrical surface, and no undercut occurs between the sleeve portion 8 and the core rod 11 (see FIG. 4). For this reason, the large-diameter inner peripheral surface 8a1, the small-diameter inner peripheral surface 8a2 and the stepped surface 8a3 of the sleeve portion 8 can be collectively formed with the core rod 11, and these surfaces can be processed easily and with high accuracy. Thus, since the large-diameter inner peripheral surface 8a1 as the radial bearing surface is processed with high accuracy, the width accuracy of the radial bearing gap is improved, and excellent bearing performance can be obtained. Moreover, since the small-diameter inner peripheral surface 8a2 as the first seal surface is processed with high accuracy, the volume of the first seal space S1 is set with high accuracy, and the sealing performance can be enhanced. Furthermore, since the stepped surface 8a3 is processed with high accuracy, the axial gap δ can be set with high accuracy, and the allowable axial movement amount of the shaft member 2 can be set with high accuracy. In addition, since these surfaces are collectively formed by the core rod 11, the relative positions of the surfaces are also set with high accuracy.

ところで、軸受スリーブとシール部材とを別体に設け、これらをハウジングの内周面に固定した場合、それぞれの固定精度を高精度に設定する必要があるため、組立コストの高騰を招く恐れがある。また、各部材とハウジングとの接触面積は比較的小さいため、ハウジングへの固定精度や固定力を高めることが困難となる。さらに、例えば軸受スリーブを焼結金属で、シール部材を樹脂材料した場合、焼結金属製の軸受スリーブは表面開孔から接着剤が浸入することによりハウジングと強固に固定されるが、シール部材とハウジングとの固定力は弱くなる。これに対し、本発明のように、軸受スリーブとシール部材とをスリーブ部8として一体に設けると、これらを別体に設けた場合よりも組立工程が簡略化され、コスト低減を図ることができる。また、軸受スリーブとシール部材とを一体化することで、スリーブ部8とハウジング7との接触面積を大きくすることができ、ハウジング7への固定精度や固定力を高めることができる。また、スリーブ部8をハウジング7との固定強度の高い材料(例えば焼結金属)で形成することにより、スリーブ部8とハウジング7との固定力をさらに高めることができる。   By the way, when the bearing sleeve and the seal member are provided separately and are fixed to the inner peripheral surface of the housing, it is necessary to set the fixing accuracy with high accuracy, which may increase the assembly cost. . In addition, since the contact area between each member and the housing is relatively small, it is difficult to increase the accuracy and force of fixing to the housing. Further, for example, when the bearing sleeve is made of sintered metal and the seal member is made of a resin material, the sintered sleeve bearing sleeve is firmly fixed to the housing by the intrusion of the adhesive from the surface opening. Fixing force with the housing is weakened. On the other hand, when the bearing sleeve and the seal member are integrally provided as the sleeve portion 8 as in the present invention, the assembly process is simplified and costs can be reduced as compared with the case where they are provided separately. . Further, by integrating the bearing sleeve and the seal member, the contact area between the sleeve portion 8 and the housing 7 can be increased, and the fixing accuracy and fixing force to the housing 7 can be increased. Further, by forming the sleeve portion 8 with a material having a high fixing strength with the housing 7 (for example, sintered metal), the fixing force between the sleeve portion 8 and the housing 7 can be further increased.

ハウジング7は、例えば樹脂材料で形成され、側部7a及び底部7bを一体に有するコップ状を成している。ハウジング7の樹脂材料としては、例えば、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の結晶性樹脂、あるいはポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)等の非晶性樹脂をベース樹脂とする樹脂材料が使用可能である。また、この樹脂材料に、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカ状充填材、マイカ等の鱗片状充填材、カーボン繊維、カーボンブラック、黒鉛、カーボンナノマテリアル、各種金属粉等の繊維状または粉末状の導電性充填材などの各種充填剤を、目的に応じて適量配合してもよい。   The housing 7 is formed of a resin material, for example, and has a cup shape integrally including a side portion 7a and a bottom portion 7b. Examples of the resin material for the housing 7 include crystalline resins such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), and polyether ether ketone (PEEK), or polyphenyl sulfone (PPSU) and polyether sulfone (PES). ), A resin material based on an amorphous resin such as polyetherimide (PEI) can be used. In addition, fibrous resin such as glass fiber, whisker-like filler such as potassium titanate, scaly filler such as mica, carbon fiber, carbon black, graphite, carbon nanomaterial, various metal powders, etc. Various fillers such as fibrous or powdery conductive fillers may be blended in appropriate amounts according to the purpose.

ハウジング7の材料は上記に限らず、例えば、マグネシウム合金やアルミニウム合金等の低融点金属材料を使用してもよい。また、金属紛とバインダーの混合物で射出成形した後、脱脂・焼結するいわゆるMIM成形や、金属材料、例えば真ちゅう等の軟質金属のプレス成形でハウジング7を形成することもできる。また、ハウジング底部7bは、必ずしも側部7aと一体に形成する必要はなく、側部7aと別体に形成することもできる。   The material of the housing 7 is not limited to the above. For example, a low melting point metal material such as a magnesium alloy or an aluminum alloy may be used. Alternatively, the housing 7 can be formed by so-called MIM molding in which degreasing and sintering are performed after injection molding with a mixture of a metal powder and a binder, or press molding of a soft metal such as a metal material such as brass. Further, the housing bottom portion 7b is not necessarily formed integrally with the side portion 7a, and may be formed separately from the side portion 7a.

ハウジング7の内底面7b1は、軸部材2の下端部の球面状凸部2a2と接触して軸部材をスラスト方向に支持するスラスト軸受部Tを有する。本実施形態では、このようにハウジング7に直接スラスト軸受部Tを形成しているが、これに限らず、例えば耐摩耗性、摺動特性が良好な樹脂材料や焼結材料等で別途形成したスラストワッシャをハウジング7の内底面に配し、このスラストワッシャにスラスト軸受部Tを形成しても良い。この場合、ハウジング7は軸部材2と接触摺動することがなくなるため、ハウジング7に耐摩耗性が不要となり、ハウジング7の材料選択の幅が広がる。   The inner bottom surface 7b1 of the housing 7 has a thrust bearing portion T that contacts the spherical convex portion 2a2 at the lower end portion of the shaft member 2 and supports the shaft member in the thrust direction. In the present embodiment, the thrust bearing portion T is formed directly on the housing 7 as described above. However, the present invention is not limited to this, and is separately formed of, for example, a resin material or a sintered material having good wear resistance and sliding characteristics. A thrust washer may be disposed on the inner bottom surface of the housing 7 and the thrust bearing portion T may be formed on the thrust washer. In this case, since the housing 7 does not slide in contact with the shaft member 2, the housing 7 does not need wear resistance, and the range of material selection for the housing 7 is widened.

上記構成の流体軸受装置1の内部空間、すなわち第1シール空間S1で密封されたハウジング7の内部空間には、潤滑流体として例えば潤滑油が注油され、ハウジング7内が潤滑油で満たされる(図2中の散点領域)。この状態で、潤滑油の油面は第1シール空間S1の範囲内に維持される。このとき、ハウジング閉塞側の空間P、すなわち軸部材2の下端の球面状凸部2a2及びスリーブ部8の下側端面8cと、ハウジング7の内底面7b1との間に形成される空間や、軸部材2の肩面2cとスリーブ部8の段差面8a3との間の軸方向隙間δも、潤滑油で満たされている。   Lubricating oil, for example, is injected as a lubricating fluid into the internal space of the hydrodynamic bearing device 1 configured as described above, that is, the internal space of the housing 7 sealed in the first seal space S1, and the housing 7 is filled with the lubricating oil (see FIG. Scattered area in 2). In this state, the oil level of the lubricating oil is maintained within the range of the first seal space S1. At this time, the space P on the housing closing side, that is, the space formed between the spherical convex portion 2a2 at the lower end of the shaft member 2 and the lower end surface 8c of the sleeve portion 8 and the inner bottom surface 7b1 of the housing 7, The axial gap δ between the shoulder surface 2c of the member 2 and the stepped surface 8a3 of the sleeve portion 8 is also filled with lubricating oil.

以下、軸部材2の肩面2cとスリーブ部8の段差面8a3との間の軸方向隙間δの設定方法を説明する。   Hereinafter, a method of setting the axial clearance δ between the shoulder surface 2c of the shaft member 2 and the step surface 8a3 of the sleeve portion 8 will be described.

まず、図5に示すように、スリーブ部8及び軸部材2をハウジング7の内周に収容する。このとき、軸部材2の下端の球面状凸部2a2とハウジング7の内底面7b1とを当接させると共に、軸部材2の肩面2cとスリーブ部8の段差面8a3とを当接させる。この状態で、スリーブ部8の下側端面8cとハウジング7の内底面7b1とが非接触となるように、スリーブ部8及び軸部材2を予め設定しておく。すなわち、スリーブ部8の下側端面8cから段差面8a3までの軸方向寸法L1が、軸部材2の下端部から肩面2cまでの軸方向寸法L2よりも小さくなるように、これらが設計される(L1<L2)。   First, as shown in FIG. 5, the sleeve portion 8 and the shaft member 2 are accommodated in the inner periphery of the housing 7. At this time, the spherical convex portion 2a2 at the lower end of the shaft member 2 and the inner bottom surface 7b1 of the housing 7 are brought into contact with each other, and the shoulder surface 2c of the shaft member 2 and the step surface 8a3 of the sleeve portion 8 are brought into contact with each other. In this state, the sleeve portion 8 and the shaft member 2 are set in advance so that the lower end surface 8c of the sleeve portion 8 and the inner bottom surface 7b1 of the housing 7 are not in contact with each other. That is, these are designed so that the axial dimension L1 from the lower end surface 8c of the sleeve portion 8 to the stepped surface 8a3 is smaller than the axial dimension L2 from the lower end portion of the shaft member 2 to the shoulder surface 2c. (L1 <L2).

次いで、図5の矢印で示すように軸部材2を上方へ引っ張り、軸部材2の肩面2cと係合したスリーブ部8をハウジング7に対して上方へ移動させる。この作業は、軸部材2の引き上げ量、あるいはスリーブ部8のハウジング7に対する移動量を管理しながら行われる。軸部材2の引き上げ量(あるいはスリーブ部8の移動量、以下同様)が、軸部材2の肩面2cとスリーブ部8の段差面8a3との間の軸方向隙間δ(図2参照)の設定値に達したら、軸部材2の引き上げを止め、スリーブ部8をハウジング7の内周面7a1に固定する。スリーブ部8とハウジング7とを圧入により固定する場合、軸部材2を所定量だけ引き上げた時点でスリーブ部8の位置決め及び固定が完了する。また、スリーブ部8とハウジング7との嵌合面に接着剤を介在させれば、接着剤が潤滑剤として機能することでスリーブ部8の移動を容易化することができると共に、接着剤により両者の固定強度を高めることができる。   Next, as shown by the arrow in FIG. 5, the shaft member 2 is pulled upward, and the sleeve portion 8 engaged with the shoulder surface 2 c of the shaft member 2 is moved upward with respect to the housing 7. This operation is performed while managing the amount of lifting of the shaft member 2 or the amount of movement of the sleeve portion 8 relative to the housing 7. Setting of the axial clearance δ (see FIG. 2) between the shoulder surface 2c of the shaft member 2 and the stepped surface 8a3 of the sleeve portion 8 is the amount by which the shaft member 2 is lifted (or the movement amount of the sleeve portion 8; hereinafter the same). When the value is reached, lifting of the shaft member 2 is stopped, and the sleeve portion 8 is fixed to the inner peripheral surface 7 a 1 of the housing 7. When the sleeve portion 8 and the housing 7 are fixed by press-fitting, the positioning and fixing of the sleeve portion 8 is completed when the shaft member 2 is pulled up by a predetermined amount. Further, if an adhesive is interposed between the mating surfaces of the sleeve portion 8 and the housing 7, the adhesive functions as a lubricant so that the movement of the sleeve portion 8 can be facilitated. The fixing strength can be increased.

以上により、軸方向隙間δが所定の値に設定される。この方法によると、軸部材2の軸方向移動可能量となる軸方向隙間δを、軸部材2の引き上げ量により設定することができる。すなわち、スリーブ部8や軸部材2の寸法精度に関わらず、スリーブ部8の位置決めを高精度に行うことができるため、スリーブ部8や軸部材2の寸法精度が緩和され、これらの部材の加工コストを低減することができる。   As described above, the axial gap δ is set to a predetermined value. According to this method, the axial gap δ that is the axially movable amount of the shaft member 2 can be set by the pulling amount of the shaft member 2. That is, since the positioning of the sleeve portion 8 can be performed with high accuracy regardless of the dimensional accuracy of the sleeve portion 8 and the shaft member 2, the dimensional accuracy of the sleeve portion 8 and the shaft member 2 is reduced, and the processing of these members is performed. Cost can be reduced.

ところで、従来品のように軸受スリーブとシール部材とを別体に形成した流体軸受装置において、上記のような方法で軸方向隙間δを設定すると、シール部材のみをハウジングに対して移動させることとなる。このとき、シール部材とハウジングとの接触面積が小さいため、シール部材がハウジングに対してずれた状態で固定される恐れがある。これに対し、本発明のように軸受スリーブ及びシール部材を一体化すれば、スリーブ部8とハウジング7の接触面積を大きくすることができるため、スリーブ部8のハウジング7に対して高精度に位置決めすることができる。   By the way, in the hydrodynamic bearing device in which the bearing sleeve and the seal member are formed separately as in the conventional product, when the axial clearance δ is set by the above method, only the seal member is moved relative to the housing. Become. At this time, since the contact area between the seal member and the housing is small, the seal member may be fixed in a state of being displaced with respect to the housing. On the other hand, if the bearing sleeve and the seal member are integrated as in the present invention, the contact area between the sleeve portion 8 and the housing 7 can be increased. Therefore, the sleeve portion 8 can be positioned with high accuracy with respect to the housing 7. can do.

上記構成の流体軸受装置1において、軸部材2が回転すると、スリーブ部8の大径内周面8a1と軸部材2の大径部2aの外周面2a1との間にラジアル軸受隙間が形成される。そして、軸部材2の回転に伴って、ラジアル軸受隙間の潤滑油が各動圧溝8a11、8a12の軸方向中心の丘部の帯状部分側に押し込まれ、その圧力が上昇する。このような動圧溝8a11、8a12の動圧作用によって、軸部材2をラジアル方向に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。これと同時に、軸部材2の下端に設けられた球面状凸部2a2とスラスト軸受部Tとしてのハウジング7の内底面7b1とが接触摺動することにより、軸部材2がスラスト方向に接触支持される。   In the hydrodynamic bearing device 1 configured as described above, when the shaft member 2 rotates, a radial bearing gap is formed between the large-diameter inner peripheral surface 8a1 of the sleeve portion 8 and the outer peripheral surface 2a1 of the large-diameter portion 2a of the shaft member 2. . As the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed into the belt-like portion side of the hill portion at the axial center of each of the dynamic pressure grooves 8a11 and 8a12, and the pressure rises. By such dynamic pressure action of the dynamic pressure grooves 8a11, 8a12, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner in the radial direction are configured. At the same time, the spherical convex portion 2a2 provided at the lower end of the shaft member 2 and the inner bottom surface 7b1 of the housing 7 serving as the thrust bearing portion T slide in contact with each other, whereby the shaft member 2 is contacted and supported in the thrust direction. The

また、この実施形態では、第1ラジアル軸受部R1の動圧溝8a11は、軸方向中間部の丘部の帯状部分に対して軸方向非対称(X1>X2)に形成されている(図3参照)。このため、軸部材2の回転に伴う動圧溝8a11による潤滑油の引き込み力(ポンピング力)は、上側領域が下側領域に比べて大きくなる。この引き込み力の差圧によって、ラジアル軸受隙間に満たされた潤滑油が下方に流動し、ハウジング閉塞側の空間P(図2参照)で負圧が発生する事態を防止できる。尚、このようにラジアル軸受隙間の潤滑油を強制的に下方へ押込むことにより、ハウジング閉塞側の空間Pの圧力が高まり、軸部材2に上向きの力が生じることがある。この軸部材2に生じる上向きの力と、ディスクハブ3やディスクDの重量による下向きの力とのバランスを考慮して、動圧溝8a11の上側領域と下側領域のアンバランス量(X1とX2との差)を適宜設定すればよい。   Further, in this embodiment, the dynamic pressure groove 8a11 of the first radial bearing portion R1 is formed to be axially asymmetric (X1> X2) with respect to the belt-like portion of the hill portion at the axially intermediate portion (see FIG. 3). ). For this reason, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove 8a11 accompanying the rotation of the shaft member 2 is larger in the upper region than in the lower region. Due to the differential pressure of the pulling force, it is possible to prevent the lubricating oil filled in the radial bearing gap from flowing downward and generating a negative pressure in the space P (see FIG. 2) on the housing closing side. In addition, by forcing the lubricating oil in the radial bearing gap downward, the pressure in the space P on the housing closing side increases, and an upward force may be generated on the shaft member 2 in some cases. Considering the balance between the upward force generated in the shaft member 2 and the downward force due to the weight of the disk hub 3 and the disk D, the unbalance amount (X1 and X2) of the upper region and the lower region of the dynamic pressure groove 8a11 The difference may be set as appropriate.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明する。尚、以下の説明において、上記の実施形態と同様の構成、機能を有する部位には、同一の符号を付して説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, other embodiments of the present invention will be described. In the following description, parts having the same configuration and function as those in the above embodiment are denoted by the same reference numerals and description thereof is omitted.

図6に示す流体軸受装置10は、軸部材2が、小径部としての軸部2bと、軸部2bの下端に設けられた大径部としてのフランジ部2aとを有する。軸部2bの外周面2b1は円筒面状に形成され、フランジ部2aの下側端面には、下方へ向けて突出した球面状凸部2a2が形成される。スリーブ部8は、軸部材2の大径外周面2a1と対向する大径内周面8a1と、ラジアル軸受面としての小径内周面8a2とを有する。軸部材2の肩面2cとしてのフランジ部2aの上側端面と、スリーブ部8の段差面8a3とは、軸方向隙間δを介して対向する。   In the hydrodynamic bearing device 10 shown in FIG. 6, the shaft member 2 includes a shaft portion 2b as a small diameter portion and a flange portion 2a as a large diameter portion provided at the lower end of the shaft portion 2b. The outer peripheral surface 2b1 of the shaft portion 2b is formed in a cylindrical surface shape, and a spherical convex portion 2a2 protruding downward is formed on the lower end surface of the flange portion 2a. The sleeve portion 8 has a large-diameter inner peripheral surface 8a1 facing the large-diameter outer peripheral surface 2a1 of the shaft member 2, and a small-diameter inner peripheral surface 8a2 serving as a radial bearing surface. The upper end surface of the flange portion 2a as the shoulder surface 2c of the shaft member 2 and the step surface 8a3 of the sleeve portion 8 face each other with an axial gap δ therebetween.

スリーブ部8の小径内周面8a2の上側には、上方へ向けて漸次拡径し、第1シール面として機能する内周テーパ面8eが設けられる。この内周テーパ面8eと軸部材2の軸部2aの外周面2a1との間に、第1シール空間S1が形成される。また、スリーブ部8の外周面8dの上側には、上方へ向けて漸次縮径し、第2シール面として機能する外周テーパ面8fが形成される。この外周テーパ面8fとハウジング7の内周面7a1との間に、第2シール空間S2が形成される。このように2つのシール空間S1及びS2を設けることにより、軸受内部の潤滑油の体積変化を吸収するバッファ機能を維持したまま、シール空間S1、S2の容積を減じることができる。従って、シール空間S1、S2の軸方向寸法を縮小することが可能となり、この縮小した分だけラジアル軸受隙間の軸方向寸法を拡大してラジアル方向の軸受剛性を向上させることができる。あるいは、シール空間S1、S2の軸方向寸法を縮小した分だけ、流体軸受装置1を薄型化することができる。   On the upper side of the small-diameter inner peripheral surface 8a2 of the sleeve portion 8, an inner peripheral tapered surface 8e that gradually increases in diameter upward and functions as a first seal surface is provided. A first seal space S1 is formed between the inner peripheral tapered surface 8e and the outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2. Further, on the upper side of the outer peripheral surface 8d of the sleeve portion 8, an outer peripheral tapered surface 8f that gradually decreases in diameter toward the upper side and functions as a second seal surface is formed. A second seal space S2 is formed between the outer peripheral tapered surface 8f and the inner peripheral surface 7a1 of the housing 7. By providing the two seal spaces S1 and S2 in this way, the volumes of the seal spaces S1 and S2 can be reduced while maintaining a buffer function that absorbs the volume change of the lubricating oil inside the bearing. Accordingly, the axial dimensions of the seal spaces S1 and S2 can be reduced, and the axial dimension of the radial bearing gap can be enlarged by this reduction, thereby improving the bearing rigidity in the radial direction. Alternatively, the hydrodynamic bearing device 1 can be made thinner by the amount that the axial dimensions of the seal spaces S1 and S2 are reduced.

尚、第1シール空間S1は、ラジアル軸受隙間と軸方向に並べて配されているため、第1シール空間S1の軸方向寸法を大きくすると、ラジアル軸受隙間の軸方向寸法の縮小や、流体軸受装置10の大型化を招く。これに対し、第2シール空間S2はラジアル軸受隙間と径方向で異なる位置に配されているため、ラジアル軸受隙間に関係なく、軸方向寸法を拡大することができる。従って、第2シール空間S2の容積を第1シール空間S1の容積よりも大きくすることで、第1シール空間S1をさらに縮小することができる。   Since the first seal space S1 is arranged in the axial direction with the radial bearing gap, if the axial dimension of the first seal space S1 is increased, the axial dimension of the radial bearing gap can be reduced, or the hydrodynamic bearing device. 10 increase in size. On the other hand, since the second seal space S2 is arranged at a position different from the radial bearing gap in the radial direction, the axial dimension can be enlarged regardless of the radial bearing gap. Therefore, the first seal space S1 can be further reduced by making the volume of the second seal space S2 larger than the volume of the first seal space S1.

スリーブ部8の外周面8dには、円周方向等間隔の複数箇所(例えば3箇所)に軸方向溝8d1が形成される。この軸方向溝8d1は、例えばスリーブ部8の成形型に予め軸方向溝8d1に対応する成形部を設けておくことで、スリーブ部8の圧粉成形と同時に成形することができる。この軸方向溝8d1とハウジング7の内周面7a1とで形成される連通路により、第2シール空間S2と、ハウジング閉塞側の空間Pとが連通される。これにより、空間Pに満たされた潤滑油の圧力バランスを適正に保つことができる。   On the outer peripheral surface 8d of the sleeve portion 8, axial grooves 8d1 are formed at a plurality of locations (for example, three locations) at equal intervals in the circumferential direction. The axial groove 8d1 can be molded simultaneously with the compacting of the sleeve portion 8 by providing a molding portion corresponding to the axial groove 8d1 in advance in the molding die of the sleeve portion 8, for example. The communication path formed by this axial groove 8d1 and the inner peripheral surface 7a1 of the housing 7 allows the second seal space S2 and the space P on the housing closing side to communicate with each other. Thereby, the pressure balance of the lubricating oil filled in the space P can be properly maintained.

スリーブ部8の小径内周面8a2に、図3に示すようなアンバランスを有する動圧溝を形成すると、上記実施形態と同様に、ラジアル軸受隙間の潤滑油が下方へ強制的に押し込まれる。この場合、例えば、第1シール空間S1と第2シール空間S2とを連通する径方向の連通路を設ければ、ラジアル軸受隙間の下方へ押し込まれた潤滑油が、ハウジング7の閉塞側の空間P→軸方向溝8d1→第2シール空間S2→径方向の連通路→第1シール空間S1を循環して、ラジアル軸受隙間に再び引き込まれる。このように、軸受内部の潤滑油を強制的に流動循環させることで、潤滑油に局部的な負圧が発生する事態をより効果的に防止することができる。特に、本発明のように、従来品におけるシール部材と軸受スリーブをスリーブ部8として一体化することにより、潤滑油をシール空間を含めた広域な経路を循環させることが可能となるため、負圧の発生を確実に防止できる。第1シール空間S1と第2シール空間S2とを連通する径方向の連通路は、例えばスリーブ部8に径方向の貫通孔で構成することができる。あるいは、スリーブ部8のうち、第1シール空間S1と第2シール空間S2との間の領域における内部空孔率を他の領域よりも高くすることにより、径方向の連通路を構成することができる。尚、潤滑油を上記経路と逆向きに循環させたい場合は、例えば動圧溝のアンバランスを図3に示す例とは反対向き、すなわちX1<X2となるように形成すればよい。また、上記のように軸受内部の潤滑油を強制的に循環させる必要がない場合は、動圧溝を軸方向対称に形成してもよい。   When a dynamic pressure groove having an unbalance as shown in FIG. 3 is formed on the small-diameter inner peripheral surface 8a2 of the sleeve portion 8, the lubricating oil in the radial bearing gap is forcibly pushed downward as in the above embodiment. In this case, for example, if a radial communication path that connects the first seal space S <b> 1 and the second seal space S <b> 2 is provided, the lubricating oil pushed downward in the radial bearing gap is the space on the closed side of the housing 7. P → Axial groove 8d1 → second seal space S2 → radial communication path → first seal space S1 is circulated and drawn back into the radial bearing gap. In this way, by forcibly flowing and circulating the lubricating oil inside the bearing, a situation in which a local negative pressure is generated in the lubricating oil can be more effectively prevented. In particular, as in the present invention, by integrating the seal member and the bearing sleeve in the conventional product as the sleeve portion 8, it becomes possible to circulate the lubricating oil through a wide path including the seal space. Can be reliably prevented. The radial communication path that communicates the first seal space S1 and the second seal space S2 can be configured by, for example, a radial through hole in the sleeve portion 8. Alternatively, the radial communication path can be configured by making the internal porosity in the region between the first seal space S1 and the second seal space S2 of the sleeve portion 8 higher than the other regions. it can. When it is desired to circulate the lubricating oil in the direction opposite to the above path, for example, the dynamic pressure groove unbalance may be formed in the direction opposite to the example shown in FIG. 3, that is, X1 <X2. Moreover, when it is not necessary to forcibly circulate the lubricating oil inside the bearing as described above, the dynamic pressure grooves may be formed symmetrically in the axial direction.

また、図6に示す流体軸受装置10では、スリーブ部8の下端部を軸部材2のフランジ部2a(大径部)の外径側まで延ばし、スリーブ部8の大径内周面8a1を軸部材2の大径外周面2a1と対向させている。これにより、軸受スリーブ8のスラスト軸受部T側に設けられた、ハウジング7の閉塞側の空間Pの一部が埋められ、空間Pに満たされる潤滑油量を減じることができ、シール空間S1及びS2の容積をさらに縮小することが可能となる。   In the hydrodynamic bearing device 10 shown in FIG. 6, the lower end portion of the sleeve portion 8 is extended to the outer diameter side of the flange portion 2a (large diameter portion) of the shaft member 2, and the large diameter inner peripheral surface 8a1 of the sleeve portion 8 is used as the shaft. The member 2 is opposed to the large-diameter outer peripheral surface 2a1. Thereby, a part of the space P on the closed side of the housing 7 provided on the thrust bearing portion T side of the bearing sleeve 8 is filled, and the amount of lubricating oil filled in the space P can be reduced, and the seal space S1 and It becomes possible to further reduce the volume of S2.

また、図2や図6に示す流体軸受装置1、10において、スリーブ部8の下側端面8cをもっと下方へ延ばし、前記空間Pの容積をさらに減じてもよい。但し、図5に示す組立途中の状態において、スリーブ部8の下側端面8cがハウジング7の内底面7b1と接触しない範囲内に限られる。また、ハウジング7の内底面7b1の外径部に段部を設け、この段部で前記空間Pの容積を減じることもできる。あるいは、別途設けた部材を空間Pに配することで、空間Pの容積を減じることもできる。   Further, in the hydrodynamic bearing devices 1 and 10 shown in FIGS. 2 and 6, the lower end surface 8c of the sleeve portion 8 may be extended further downward to further reduce the volume of the space P. However, it is limited to a range in which the lower end surface 8c of the sleeve portion 8 is not in contact with the inner bottom surface 7b1 of the housing 7 in a state in the middle of the assembly shown in FIG. Further, a step portion can be provided on the outer diameter portion of the inner bottom surface 7b1 of the housing 7, and the volume of the space P can be reduced by this step portion. Alternatively, by disposing a separately provided member in the space P, the volume of the space P can be reduced.

また、上記の実施形態では、軸部材2の球面状凸部2a2をハウジング7の内底面7b1と接触させることでピボット軸受を構成しているが、これとは逆に、ハウジング7の内底面側に凸部を設けると共に、軸部材2の下端面を平坦面とし、これらを接触させてもよい。あるいは、両者に凸部を設け、この凸部同士を接触させてもよい。また、これらの凸部は、スラスト方向に対向する部材と接触する限り形状は問わず、上記のように球面状に形成する他、断面楕円状の曲面状に形成してもよい。また、上記の実施形態では、軸部材2の下端部全体を球面状凸部としているが、これに限らず、例えば軸部材の下端面やハウジングの内底面の一部を突出させて凸部を形成してもよい。   In the above embodiment, the pivot bearing is configured by bringing the spherical convex portion 2a2 of the shaft member 2 into contact with the inner bottom surface 7b1 of the housing 7, but conversely, the inner bottom surface side of the housing 7 is formed. In addition to providing a convex portion, the lower end surface of the shaft member 2 may be a flat surface and may be brought into contact with each other. Or you may provide a convex part in both and this convex part may be made to contact. In addition, these convex portions may be formed in a curved surface shape having an elliptical cross section in addition to a spherical shape as described above, as long as they contact a member facing in the thrust direction. Further, in the above-described embodiment, the entire lower end portion of the shaft member 2 is a spherical convex portion. However, the present invention is not limited to this, and for example, the lower end surface of the shaft member and a part of the inner bottom surface of the housing are projected to form the convex portion. It may be formed.

また、上記の実施形態では、ラジアル軸受隙間の潤滑流体に動圧作用を発生させる動圧発生部としてヘリングボーン形状の動圧溝が形成されているが、これに限らず、例えばスパイラル形状の動圧溝やステップ軸受、あるいは多円弧軸受を採用してもよい。あるいは、ラジアル軸受隙間を介して対向するスリーブ部の内周面及び軸部材の外周面を共に円筒面状に形成し、いわゆる真円軸受を構成してもよい。   In the above-described embodiment, the herringbone-shaped dynamic pressure groove is formed as the dynamic pressure generating portion that generates the dynamic pressure action in the lubricating fluid in the radial bearing gap. A pressure groove, a step bearing, or a multi-arc bearing may be employed. Alternatively, both the inner peripheral surface of the sleeve portion and the outer peripheral surface of the shaft member facing each other through the radial bearing gap may be formed into a cylindrical surface shape to constitute a so-called perfect circle bearing.

また、上記の実施形態では、スリーブ部8側にラジアル動圧発生部を形成しているが、この面とラジアル軸受隙間を介して対向する軸部材側に動圧溝を形成してもよい。   In the above-described embodiment, the radial dynamic pressure generating portion is formed on the sleeve portion 8 side. However, a dynamic pressure groove may be formed on the shaft member side facing this surface via a radial bearing gap.

また、上記の実施形態では、ラジアル軸受部R1、R2が軸方向で離隔して設けられているが、これらを軸方向で連続的に設けてもよい。あるいは、これらの何れか一方のみを設けてもよい。   Moreover, in said embodiment, although radial bearing part R1, R2 is spaced apart and provided in the axial direction, you may provide these continuously in an axial direction. Alternatively, only one of these may be provided.

また、上記の実施形態では、流体軸受装置1、10の内部に充満し、ラジアル軸受隙間に動圧作用を生じる流体として潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体、あるいは潤滑グリース等を使用することもできる。   Further, in the above-described embodiment, the lubricating oil is exemplified as the fluid that fills the fluid bearing devices 1 and 10 and generates the dynamic pressure action in the radial bearing gaps. A fluid that can be generated, for example, a gas such as air, a magnetic fluid, or lubricating grease may be used.

また、本発明の流体軸受装置は、上記のようにHDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用、あるいは電気機器の冷却ファン用のファンモータとしても好適に使用することができる。   In addition, the hydrodynamic bearing device of the present invention is not limited to the spindle motor used in the disk drive device such as the HDD as described above, but is a information device used under high-speed rotation, such as a spindle motor for driving a magneto-optical disk of an optical disk. It can also be suitably used as a fan motor for supporting a rotating shaft in a polygonal motor for a laser beam printer, a polygon scanner motor of a laser beam printer, or a cooling fan for electrical equipment.

流体軸受装置を組み込んだスピンドルモータの断面図である。It is sectional drawing of the spindle motor incorporating the hydrodynamic bearing apparatus. 流体軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. スリーブ部の断面図である。It is sectional drawing of a sleeve part. (a)及び(b)は、スリーブ部の成形工程を示す断面図である。(A) And (b) is sectional drawing which shows the formation process of a sleeve part. 軸方向隙間δの設定方法を示す断面図である。It is sectional drawing which shows the setting method of axial direction clearance gap (delta). 本発明の他の実施形態に係る流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on other embodiment of this invention. スリーブ部とコアロッドとの間でアンダーカットが生じる場合を示す断面図である。It is sectional drawing which shows the case where an undercut arises between a sleeve part and a core rod.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
2a 大径部
2a2 球面状凸部
2b 小径部
2c 肩面
2d テーパ面
7 ハウジング
8 スリーブ部
8a1 大径内周面(ラジアル軸受面)
8a11、8a12 動圧溝
8a2 小径内周面(第1シール面)
8a3 段差面
8e 内周テーパ面(第1シール面)
8f 外周テーパ面(第2シール面)
R1 第1ラジアル軸受部
R2 第2ラジアル軸受部
T スラスト軸受部
S1 第1シール空間
S2 第2シール空間
δ 軸方向隙間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 2a Large diameter part 2a2 Spherical convex part 2b Small diameter part 2c Shoulder surface 2d Tapered surface 7 Housing 8 Sleeve part 8a1 Large diameter inner peripheral surface (radial bearing surface)
8a11, 8a12 Dynamic pressure groove 8a2 Small diameter inner peripheral surface (first seal surface)
8a3 Stepped surface 8e Inner circumferential taper surface (first seal surface)
8f Tapered outer surface (second seal surface)
R1 First radial bearing portion R2 Second radial bearing portion T Thrust bearing portion S1 First seal space S2 Second seal space δ Axial clearance

Claims (10)

軸部材と、内周に軸部材を挿入したスリーブ部と、スリーブ部の内周面に設けられたラジアル軸受面と軸部材の外周面との間に形成されたラジアル軸受隙間と、スリーブ部の内周面に設けられた第1シール面と軸部材の外周面との間に形成され、軸受内部に満たされた潤滑流体の気液界面を毛細管力の引き込み作用で内部に保持する第1シール空間と、ラジアル軸受隙間に生じる流体膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材の端部と接触して軸部材をスラスト方向で支持するスラスト軸受部とを備えた流体軸受装置。   A shaft member, a sleeve portion in which the shaft member is inserted on the inner periphery, a radial bearing gap formed between the radial bearing surface provided on the inner peripheral surface of the sleeve portion and the outer peripheral surface of the shaft member, and the sleeve portion A first seal that is formed between a first seal surface provided on the inner peripheral surface and the outer peripheral surface of the shaft member, and holds the gas-liquid interface of the lubricating fluid filled in the bearing inside by drawing action of capillary force. Fluid bearing comprising a space, a radial bearing portion that supports the shaft member in the radial direction with a fluid film generated in the radial bearing gap, and a thrust bearing portion that contacts the end portion of the shaft member and supports the shaft member in the thrust direction apparatus. 軸部材に、大径部、小径部、及びこれらの間の肩面を設け、この肩面とスリーブ部とを軸方向で係合可能とした請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the shaft member is provided with a large-diameter portion, a small-diameter portion, and a shoulder surface between them, and the shoulder surface and the sleeve portion can be engaged in the axial direction. スリーブ部の内周面に、軸部材の肩面と係合可能な段差面を設けた請求項2記載の流体軸受装置。   The hydrodynamic bearing device according to claim 2, wherein a stepped surface that can be engaged with a shoulder surface of the shaft member is provided on an inner peripheral surface of the sleeve portion. スリーブ部の段差面が成形面である請求項3記載の流体軸受装置。   The hydrodynamic bearing device according to claim 3, wherein the stepped surface of the sleeve portion is a molding surface. スリーブ部のスラスト軸受部側の端面を、スラスト方向で対向する面と非接触とした請求項2記載の流体軸受装置。   The hydrodynamic bearing device according to claim 2, wherein an end surface of the sleeve portion on the thrust bearing portion side is not in contact with a surface opposed in the thrust direction. スリーブ部のうち、軸部材の肩面と係合する部分に表面硬化処理を施した請求項2記載の流体軸受装置。   The hydrodynamic bearing device according to claim 2, wherein a surface hardening process is performed on a portion of the sleeve portion that engages with a shoulder surface of the shaft member. スリーブ部の外周面に設けた第2シール面で第2シール空間を形成した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a second seal space is formed by a second seal surface provided on an outer peripheral surface of the sleeve portion. 軸部材のスラスト軸受部側の端部が面する空間と第2シール空間とを連通する連通路を設けた請求項7記載の流体軸受装置。   8. The hydrodynamic bearing device according to claim 7, further comprising a communication passage that communicates the space facing the end of the shaft member on the thrust bearing portion side and the second seal space. スリーブ部に、ラジアル軸受面としての大径内周面と、第1シール面としての小径内周面とを設けると共に、軸部材に、肩面から小径部へ向けて漸次縮径したテーパ面を設け、スリーブ部の小径内周面と軸部材のテーパ面との間に第1シール空間を形成した請求項2記載の流体軸受装置。   The sleeve portion is provided with a large-diameter inner peripheral surface as a radial bearing surface and a small-diameter inner peripheral surface as a first seal surface, and a tapered surface gradually reduced in diameter from the shoulder surface toward the small-diameter portion on the shaft member. The hydrodynamic bearing device according to claim 2, wherein a first seal space is formed between the small-diameter inner peripheral surface of the sleeve portion and the tapered surface of the shaft member. スリーブ部に、ラジアル軸受面としての小径内周面と、軸部材の大径部の外周面と対向する大径内周面とを設けた請求項2記載の流体軸受装置。   The hydrodynamic bearing device according to claim 2, wherein the sleeve portion is provided with a small-diameter inner peripheral surface as a radial bearing surface and a large-diameter inner peripheral surface facing the outer peripheral surface of the large-diameter portion of the shaft member.
JP2008078226A 2008-03-25 2008-03-25 Fluid bearing device Withdrawn JP2009228873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008078226A JP2009228873A (en) 2008-03-25 2008-03-25 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078226A JP2009228873A (en) 2008-03-25 2008-03-25 Fluid bearing device

Publications (1)

Publication Number Publication Date
JP2009228873A true JP2009228873A (en) 2009-10-08

Family

ID=41244498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078226A Withdrawn JP2009228873A (en) 2008-03-25 2008-03-25 Fluid bearing device

Country Status (1)

Country Link
JP (1) JP2009228873A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172956A1 (en) * 2011-06-15 2012-12-20 Ntn株式会社 Fluid dynamic bearing device
WO2019139007A1 (en) * 2018-01-11 2019-07-18 Ntn株式会社 Fluid dynamic bearing device and motor equipped with same
US11136929B2 (en) 2018-01-30 2021-10-05 Robert Bosch Gmbh Device and method for controlling an internal combustion engine having a catalytic converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172956A1 (en) * 2011-06-15 2012-12-20 Ntn株式会社 Fluid dynamic bearing device
WO2019139007A1 (en) * 2018-01-11 2019-07-18 Ntn株式会社 Fluid dynamic bearing device and motor equipped with same
US11136929B2 (en) 2018-01-30 2021-10-05 Robert Bosch Gmbh Device and method for controlling an internal combustion engine having a catalytic converter

Similar Documents

Publication Publication Date Title
KR101439924B1 (en) Fluid dynamic bearing device and its assembling method
KR101213552B1 (en) Dynamic pressure bearing device
KR101519426B1 (en) Fluid dynamic-pressure bearing device
KR20080013863A (en) Dynamic pressure bearing device
KR101244275B1 (en) Fluid bearing device
WO2009104441A1 (en) Sintered bearing
JP2007024146A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
US8876385B2 (en) Bearing member and fluid dynamic bearing device using same
JP4738868B2 (en) Hydrodynamic bearing device
JP5095111B2 (en) Hydrodynamic bearing device
JP2007051717A (en) Manufacturing method of dynamic pressure bearing device
JP2009228873A (en) Fluid bearing device
JP2008190711A (en) Manufacturing process for hydrodynamic bearing unit
JP5231095B2 (en) Hydrodynamic bearing device
JP5122205B2 (en) Method for assembling hydrodynamic bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2010091004A (en) Hydrodynamic pressure bearing device and manufacturing method therefor
JP2008075687A (en) Fluid bearing device
JP2007100834A (en) Hydrodynamic bearing device
JP4937524B2 (en) Hydrodynamic bearing device
JP5188942B2 (en) Fluid dynamic bearing device
JP2007255646A (en) Fluid bearing device
JP2010031972A (en) Fluid dynamic bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607